Master Bioinformatics for Health Sciences Comparative Protein Structure Prediction

Marc A. Marti-Renom

Adjunct Assistant Professor http://salilab.org/~marcius

Depts. of Biopharmaceutical Sciences and Pharmaceutical Chemistry California Institute for Quantitative Biomedical Research University of California at San Francisco

DISCLAIMER!

Name	Type ^a	World Wide Web address ^b								
DATABASES										
CATH	S	http://www.biochem.ucl.ac.uk/bsm/cath/								
DBAli	S	http://www.salilab.org/DBAli/								
GenBank	S	http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html								
GeneCensus	S	http://bioinfo.mbb.yale.edu/genome								
MODBASE	S	http://salilab.org/modbase/								
MSD	S	http://www.rcsb.org/databases.html								
NCBI	S	http://www.ncbi.nlm.nih.gov/								
PDB	S	http://www.rcsb.org/pdb/								
PSI	S	http://www.nigms.nih.gov/psi/								
Sacch3D	S	http://genome-www.stanford.edu/Sacch3D/								
SCOP	S	http://scop.mrc-Imb.cam.ac.uk/scop/								
TIGR	S	http://www.tigr.org/tdb/mdb/mdbcomplete.html								
TrEMBL	S	http://srs.ebi.ac.uk/								
FOLD ASSIGNM	ENT									
123D	S	http://123d.ncifcrf.gov/								
3D-PSSM	S	http://www.sbg.bio.ic.ac.uk/~3dpssm/								
BIOINBGU	S	http://www.cs.bgu.ac.il/~bioinbgu/								
BLAST	S	http://www.ncbi.nlm.nih.gov/BLAST/								
DALI	S	http://www2.ebi.ac.uk/dali/								
FASS	S	http://bioinformatics.burnham-inst.org/FFAS/index.html								
FastA	S	http://www.ebi.ac.uk/fasta3/								
FRSVR	S	http://fold.doe-mbi.ucla.edu/								
FUGUE	S	http://www-cryst.bioc.cam.ac.uk/~fugue/								
LOOPP	S	http://ser-loopp.tc.cornell.edu/cbsu/loopp.htm								

http://salilab.org/bioinformatics_resources.shtml

Program

Intro to comparative protein structure prediction

Template Search*

Target – Template Alignment*

Model Building

Model Evaluation

http://www.salilab.org/modeller/tutotial/

Objective

TO LEARN HOW-TO MODEL A 3D-STRUCTURE FROM A SEQUENCE AND A KNOWN STRUCTURE

What are we going to do?

Ask!

Each day...

Basic introduction

Theory (representation-scoring-optimization)

Available programs

Application

Nomenclature

Homology: Sharing a common ancestor, may have similar or dissimilar functions

Similarity: Score that quantifies the degree of relationship between two sequences.

Identity: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

Template: 3D structure/s to be used during protein structure prediction.

Model: Predicted 3D structure of the target sequence.

protein prediction .vs. protein determination

Why protein structure prediction?

	Y 2005	Y 2006
Sequences	1,700,000	millions
Structures	28,000	50,000

Why protein structure prediction?

	Y 2005
Sequences	1,700,000
Structures	900,000

http://salilab.org/modbase/

Experiment

Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- ◆ The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.

Principles of Protein Structure

Folding

Ab initio prediction

Evolution

Threading Comparative Modeling

Steps in Comparative Protein Structure Modeling

 TARGET
 TEMPLATE

 ASILPKRLFGNCEQTSDEGL
 KIERTPLVPHISAQNVCLKID

 DVPERLIPERASFQWMNDK
 Image: Constraint of the second sec

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

A. Šali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Šali, Curr. Opin. Str. Biol. 7, 206, 1997. M. Marti et al. Ann. Rev. Biophys. Biomolec. Struct., 29, 291, 2000.

Utility of protein structure models, despite errors

General References

Protein Structure Prediction:

Marti-Renom el al. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000. Baker & Sali. Science 294, 93-96, 2001.

Comparative Modeling:

Marti-Renom el al. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000. Marti-Renom el al. Current Protocols in Protein Science 1, 2.9.1-2.9.22, 2002.

MODELLER:

Sali & Blundell. J. Mol. Biol. 234, 779-815, 1993.

Structural Genomics:

Sali. Nat. Struct. Biol. 5, 1029, 1998. Burley et al. Nat. Genet. 23, 151, 1999. Sali & Kuriyan. TIBS 22, M20, 1999. Sanchez et al. Nat. Str. Biol. 7, 986, 2000. Baker & Sali. Science 294, 93-96, 2001. Vitkup et al. Nat. Struct. Biol. 8, 559, 2001.

http://www.salilab.org/modeller/tutorial/

Programs, servers and databases

http://salilab.org

External Resources

PDB, Uniprot, GENBANK, NR, PIR, INTERPRO, Kinase Resource UCSC Genome Browser, CHIMERA, Pfam, SCOP, CATH

Acknowledgments

COMPARATIVE MODELING

Andrej Sali M. S. Madhusudhan Narayanan Eswar David Eramian Ursula Pieper Ben Webb Min-Yi Shen Mark Peterson Ash Stuart Andras Fiser (AECOM) Roberto Sanchez (MSSM) Bino John (Pitsburg U.) Eric Feyfant (GI)

ASSEMBLIES

Frank Alber Damien Devos Maya Topf Dmitry Korkin Fred Davis Mike Kim

STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB) NY-SGXRC

BRCAI

Alvaro Monteiro (Cornell)

MODEL ASSESSMENT

Francisco Melo (CU, Chile) Alejandro Panjkovich (CU, Chile)

NIH

NSF Sinsheimer Foundation A. P. Sloan Foundation Burroughs-Wellcome Fund Merck Genome Res. Inst. Mathers Foundation I.T. Hirschl Foundation The Sandler Family Foundation Human Frontiers Science Program SUN IBM Intel Structural Genomix

FUNCTIONAL ANNOTATION Andrea Rossi Rachel Karchin Libusha Kelly Nebojša Mirkovic

Master Bioinformatics for Health Sciences

Comparative Protein Structure Prediction template selection & sequence-structure alignment*

Marc A. Marti-Renom

Adjunct Assistant Professor http://salilab.org/~marcius

Depts. of Biopharmaceutical Sciences and Pharmaceutical Chemistry California Institute for Quantitative Biomedical Research University of California at San Francisco

Sequence and structure space (domains)

Domains from sequence
Structure-Structure comparisons
How can we compare structures
How we classify the structural space
Aligning sequences and structures

Domain boundaries from sequence VERY DIFFICULT!!!!

MENFEIWVEKYRPRTLDEVVGQDEVIQRLKGYVERKNIPHLLFSGPPGTGKTATAIALARDLFGENWRDN FIEMNASDERGIDVVRHKIKEFARTAPIGGAPFKIIFLDEADALTADAQAALRRTMEMYSKSCRFILSCN YVSRIIEPIQSRCAVFRFKPVPKEAMKKRLLEICEKEGVKITEDGLEALIYISGGDFRKAINALQGAAAI GEVVDADTIYQITATARPEEMTELIQTALKGNFMEARELLDRLMVEYGMSGEDIVAQLFREIISMPIKDS LKVQLIDKLGEVDFRLTEGANERIQLDAYLAYLSTLAKK

Domain boundaries from sequence (SnapDragon)

Table 2. Average accuracy percentages of linker prediction over 57 proteins

		Continuous set	Discontinuous set	Full set
Randomised background Z-score >2	Coverage	63.3	43.6	54.8
0	Success	27.2	31.1	28.9
Self-normalised Z-score >1	Coverage	64.7	39.5	53.5
	Success	26.6	31.7	28.9
Self-normalised Z-score >2	Coverage	48.7	24.3	38.7
	Success	41.3	28.3	29.9

Georgea and Heringa (2002) J. Mol. Biol. 316 pp839

Domain boundaries from sequence and predicted SSE (DomSSEA)

	% Con	rrectly assigned				
Methods	All chains	Multidomai chains				
DomSSEA observed secondary structure	70.2	24.7				
DomSSEA predicted & consensus	68.6	24.0				
DomSSEA predicted & L/(N-1)	68.0	24.0				
DomSSEA predicted secondary structure	68.7	23.6				
Absolute difference in length	62.0	8.4				
Average domain length & DGS-M	66.6	6.1				
FASTA alignment	57.9	2.3				
Random (weighted)	58.3	1.1				
DGS-M	76.6	0.0				
DGS-W	76.6	0.0				

Dersden et al. (2003) Prot. Science 11 pp2014

Prediction of Secondary Structure (PSI-PRED)

Jones DT. (1999) J. Mol. Biol. 292 pp195

Prediction of Secondary Structure (PSI-PRED)

http://bioinf.cs.ucl.ac.uk/psipred/

000	PSIPRED Protein Structure Prediction Server	
	+ A A C + A A A A A A A A A A A A A A A	ac
	Bioinformatics Unit	
PSIPRED home>	The PSIPRED Protein Structure Prediction Server	
Info	We suggest that you do not bookmark this page as it is liable to move. It is best to access the server via the <u>PSIPRED home page</u> , which has more information about the methods and a full reference list.	
Input	Help Input sequence (single letter code)	
Sequence		
Choose	Predict Secondary Structure (PSIPRED v2.4) Predict Transmembrane Topology (MEMSAT2)	
Prediction	 Fold Recognition (GenTHREADER - quick) Fold Recognition (GenTHREADER - quick) 	
Method		
Filtering	Help ✓ Mask low complexity regions	
Options	Mask transmembrane helices Mask coiled-coil regions Warning: Turn off all filtering if you are running MEMSAT2	
Submit	E-mail address Help	r I
Sequence	Password (only required for commercial e-mail addresses) Help	4 4

Template Selection "Structural Space"

Structure-Structure alignments

As any other bioinformatics problem...

- Representation
 - Scoring
 - Optimizer

Representation

Structures

All atoms and coordinates

Reduced atom representation

Vector representation

Secondary Structure

Accessible surface (and others)

Scoring

Raw scores

	с	S	т	P	A	G	N	D	E	Q	н	R	К	М	I	L	v	F	Y	w
с	9	-1	-1	-3	0	-3	-3	-3	-4	-3	-3	-3	-3	-1	-1	-4	-1	-2	-2	-2
S	-1	4	1	-1	1	0	1	0	0	0	-1	-1	0	-1	-2	-2	-2	-2	-2	-3
т	-1	1	4	1	-1	1	0	1	0	0	0	-1	0	-1	-2	-2	-2	-2	-2	-3
P	-3	-1	1	7	-1	-2	-1	-1	-1	-1	-2	-2	-1	-2	-3	-3	-2	-4	-3	-4
A	0	1	-1	-1	4	0	-1	-2	-1	-1	-2	-1	-1	-1	-1	-1	-2	-2	-2	-3
G	-3	0	1	-2	0	6	-2	-1	-2	-2	-2	-2	-2	-3	-4	-4	0	-3	-3	-2
N	-3	1	0	-2	-2	0	6	1	0	0	-1	0	0	-2	-3	-3	-3	-3	-2	-4
D	-3	0	1	-1	-2	-1	1	6	2	0	-1	-2	-1	-3	-3	-4	-3	-3	-3	-4
E	-4	0	0	-1	-1	-2	0	2	5	2	0	0	1	-2	-3	-3	-3	-3	-2	-3
Q	-3	0	0	-1	-1	-2	0	0	2	5	0	1	1	0	-3	-2	-2	-3	-1	-2
Н	-3	-1	0	-2	-2	-2	1	1	0	0	8	0	-1	-2	-3	-3	-2	-1	2	-2
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5	2	-1	-3	-2	-3	-3	-2	-3
K	-3	0	0	-1	-1	-2	0	-1	1	1	-1	2	5	-1	-3	-2	-3	-3	-2	-3
м	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5	1	2	-2	0	-1	
I	-1	-2	-2	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	- 4	2	1	0	-1	-3
L	-1	-2	-2	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	- 4	3	0	-1	-2
v	-4	-2	-2	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	- 4	-1	-1	-3
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6	3	1
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-4	-1	3	7	2
W	-2	-3	-3	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11

Aminoacid substitutions

 $RMSD(x, y) = \sqrt{\left(\frac{1}{N}\right) \sum_{i=1}^{N} \left(\left\| \mathbf{x}(i) - \mathbf{y}(i) \right\|^{2} \right)}$

Root Mean Square Deviation

Secondary Structure (H,B,C)

Accessible surface (B,A [%])

Angles or distances

Scoring

Significance of an alignment (score)

Probability that the optimal alignment of two random sequences/structures of the same length and composition as the aligned sequences/structures have at least as good a score as the evaluated alignment.

Sometimes approximated by Z-score (normal distribution).

Karlin and Altschul, 1990 PNAS 87, pp2264

Optimizer

Global dynamic programming alignment

Backtracking to get the best alignment

Optimizer Local dynamic programming alignment

Backtracking to get the best alignment

Smith and Waterman (1981) J. Mol Biol, 147 pp195

Optimizer

Global .vs. local alignment

Optimizer

Multiple alignment

Pairwise alignments

Example – 4 sequences A, B, C, D.

6 pairwise comparisons then cluster analysis

Multiple alignments

Following the tree from step 1

Align B-D with A-C

Coverage .vs. Accuracy

Same RMSD ~ 2.5Å

Coverage ~90% C α

Coverage ~75% Cα

Structural alignment by properties conservation (SALIGN-MODELLER)

Structural alignment by properties conservation (SALIGN-MODELLER)

http://salilab.org/DBAli

Madhusudhan, in preparation
Vector Alignment Search Tool (VAST)

Gibrat JF et al. (1996) Curr Opin Struct Biol 3 pp377

Vector Alignment Search Tool (VAST)

http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml

Incremental combinatorial extension (CE)

Incremental combinatorial extension (CE)

http://cl.sdsc.edu/ce.html

Matching molecular models obtained from theory (MAMMOTH)

Matching molecular models obtained from theory (MAMMOTH)

http://ub.cbm.uam.es/mammoth/pair/index3.php

Classification of the structural space

Adai AT, Date SV, Wieland S, Marcotte EM. J Mol Biol. 2004 Jun 25;340(1):179-90

http://bioinformatics.icmb.utexas.edu/lgl/

SCOP_{1.65} database

http://scop.mrc-lmb.cam.ac.uk/scop/

- ✓ Largely recognized as "standard of gold"
- ✓ Manually classification
- ✓ Clear classification of structures in:

CLASS FOLD SUPER-FAMILY FAMILY

✓ Some large number of tools already available

Manually classification Not 100% up-to-date Domain boundaries definition

Class	Number of folds	Number of superfamilies	Number of families
All alpha proteins	179	299	480
All beta proteins	126	248	462
Alpha and beta proteins (a/b)	121	199	542
Alpha and beta proteins (a+b)	234	349	567
Multi-domain proteins	38	38	53
Membrane and cell surface proteins	36	66	73
Small proteins	66	95	150
Total	800	1294	2327

Murzin A. G., el at. (1995). J. Mol. Biol. 247, 536-540.

CATH_{2.6.0} database

http://www.biochem.ucl.ac.uk/bsm/cath/

Uses FSSP for superimposition

- ✓ Recognized as "standard of gold"
- ✓ Semi-automatic classification
- Clear classification of structures in: CLASS ARCHITECTURE TOPOLOGY
 - HOMOLOGOUS SUPERFAMILIES
- ✓ Some large number of tools already available
- ✓ Easy to navigate

Semi-automatic classification Domain boundaries definition

Volution									
Date	11-04-2005								
۲	۵	0	٢	9	۵	0	D		
Mainly Alpha	5	251	465	1402	2189	3705	14105		
Mainly Beta	19	160	311	1443	2961	4329	18771		
Alpha Beta	14	414	706	3014	4781	7660	33080		
Few Secondary Structures	1	82	90	144	232	285	1098		
Preliminary single domain assigment	ts 10	808	809	906	967	1090	3012		
Multi-domain domains	1	12	12	16	25	36	109		
CATH-35 Sequence families	1	4707	4707	4719	4768	4862	6168		
	1	22	22	27	33	38	198		

0.00

Orengo, C.A., et al. (1997) Structure. 5. 1093-1108.

DBAliv2.0 database

http://salilab.org/DBAli/

Uses MAMMOTH for superimposition

- ✓ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families
- Up-to-date multiple structure alignments
- Easy to navigate
- ✓ Provides some tools for structure comparison

Does not provide (yet) a stable classification

Pairwise structure alignments

Last update:	June 6th, 2005
Number of chains:	65,286
Number of structure-structure comparisons:*	791,171,210
Multiple structure alignments	
Last update:	May 14th, 2005
Number of representative chains:	22,324
Number of families:	8,737

Classification of the structural space Not an easy task!

Domain definition AND domain classification

Day, et al. (2003) Protein Sciences, 12 pp2150

Application (ModDom)

Assigning domains from structure

and the second second second	4 3 2 2 1									_
		1	2	3	4 Resid	5 (ue nu	6 7 mber	78	9	
	#	1	2	3	4	5	6	7	8	9
	1	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	0

	4 3 2 2 1			_			~			_
		1	2	3	4 Resi	5 due n	6 umbe	7 :r	8	9
	#	1	2	3	4	5	6	7	8	9
	1	1	1	1	1	0	0	0	0	0
9 8	2	1	1	1	1	0	0	0	0	0
	3	1	1	2	2	1	1	1	1	1
3 4 5 6 7	4	1	1	2	2	1	1	1	1	1
	5	0	0	1	1	2	2	2	2	2
	6	0	0	1	1	2	3	3	3	3
	7	0	0	1	1	2	3	3	3	3
	8	0	0	1	1	2	3	3	3	3
	9	0	0	1	1	2	3	3	3	3

 $\bigcirc \bigcirc \bigcirc$

	Conservation	1	2	3	4 Resid	5 due n	6 umbe	7 r	8 9	9
	#	1	2	3	4	5	6	7	8	9
	1					0	0	0	0	0
9 8	2					0	0	0	0	0
	3									
3 - 4 - 5 - 6 - 7	4									
	5	0	0							
	6	0	0				3	3	3	3
	7	0	0				3	3	3	3
	8	0	0				3	3	3	3
	9	0	0				3	3	3	3

1phh	290-329	2.7Å	3.1
1hadB	72-111	on	

1phh	279-373	3.9Å	4.7
1bke	310-410	rrrrAg o	

1phh	1-213	3.0Å	8.1
1qjdA	125-379		

1phh	1-319	3.6Å	9.8
1gerA	3-327		a a a a a a a a a a a a a a a a a a a

1phh	1-378	3.8Å	10.3
1feaC	2-464		

1phh	1-316	3.8Å	17.2
119dB	2-364		

Benchmark dataset

2163 chains from Islam et al. 1995 → 569 Non-redundant <2Å && <30aa diff.

> Divide randomly into two sets Remove of incomplete or obsolete entries.

FINAL:

Training set \rightarrow 242 chains Testing set \rightarrow 234 chains

Scoring function R = Volume/ASA

Domain \rightarrow max(<dist f(R)>)

What are domains?

Structural recurrent fragments

G-protein (1gotB) all- $\beta \rightarrow 7$ bladed beta propeller domain

Ribosomal protein S6 (1ris) $\alpha+\beta \rightarrow$ *Ferrodoxin Like domain*

1ee9A 17.9% id. 2.3Å

6timB 11.1% id. 2.6Å

Cytochrome C Peroxidase (2cyp) all- $\alpha \rightarrow CCP$ -like domain

Barnase Domain-Swapping

chymotrypsin inhibitor 2

1-37 | 38-64

1-40 | 41-64

Neira JL, Davis B, Ladurner AG, Buckle AM, Gay GP, Fersht AR. 1996. Fold Des 1:189-208. Ladurner AG, Itzhaki LS, de Prat GG, Fersht AR. 1997. J Mol Biol 273:317-329.
Sequence space .vs. Structure space

The PDB is a covering set of small protein structures.

Sequence space .vs. Structure space

Structure map @ >20% sequence identity

~22,000 nodes 186 clusters Larger cluster contains 20,231 chains

Sequence space .vs. Structure space

SALIGN aligning profiles (PP_SCAN in MODELLER)

Marti-Renom, et al. (2004) Prot. Sci. 13 pp1071 Narayanan, et al. in prepration

ALIGN: DP pairwise method

eq.-Seq

õ

Seq.-Str

Prof.-Seq

Prof.-Prof.

100

5.0

BLAST2SEQ: Local heuristic method

SEA: Local structure prediction method

SAM: HMM method
PSI-BLAST: Local search method that uses multiple sequence information for one of the sequences.
LOBSTER: HHM + Phylogeny Method

CLUSTALW: DP multiple sequence method. COMPASS: DP profile-profile method

SALIGN: DP pairwise method that uses multiple sequence information for both sequences.

SALIGN protocols

Profile generation

- PSI-Blast (PBP)
- Henikoff & Henikoff (HH)
- Henikoff & Henikoff + Similarity (HS)
- Henikoff & Henikoff substitution matrix (MAT)

Profile comparison

- Correlation coefficient (CC)
- Euclidean distance (ED)
- Dot product (DP)
- Jensen-Shannon distance (JS)
- Average value (Ave)

SALIGN protocols accuracy

SALIGN protocol	CE overlap [%]	Shift score
ССрвр	55 ± 23	0.61 ± 0.24
ССнн	56 ± 23	0.61 ± 0.24
ССнѕ	56 ± 24	0.62 ± 0.23
ССмат	51 ± 25	0.55 ± 0.27
ЕДрвр	54 ± 24	0.60 ± 0.25
ЕДнн	54 ± 24	0.59 ± 0.26
EDHS	55 ± 24	0.59 ± 0.26
DPрвр	55 ± 23	0.61 ± 0.24
DРнн	56 ± 23	0.60 ± 0.25
DPнs	55 ± 24	0.61 ± 0.24
JSнн	53 ± 24	0.60 ± 0.24
JSHs	54 ± 24	0.60 ± 0.24
Ауемат	49 ± 26	0.52 ± 0.29
ТОР	62 ± 20	0.67 ± 0.20

SALIGN accuracy

Method	CE overlap	Shift score
CE	100 ± 0	1.00 ± 0.00
BLAST	26 ± 29	0.32 ± 0.33
PSI-BLAST	43 ± 31	0.48 ± 0.35
SAM	48 ± 26	0.50 ± 0.34
LOBSTER	50 ± 27	0.51 ± 0.32
SEA	49 ± 27	0.53 ± 0.29
ALIGN	42 ± 25	0.44 ± 0.28
CLUSTALW	43 ± 27	0.44 ± 0.31
COMPASS	43 ± 32	0.49 ± 0.35
ССнн	56 ± 23	0.61 ± 0.24
ССнѕ	56 ± 24	0.62 ± 0.24
ТОР	62 ± 20	0.67 ± 0.20

SALIGN success

Alignment accuracy (CE overlap) 200 pairwise DBAli alignments

Program

Intro to comparative protein structure prediction

Template Search*

Target – Template Alignment*

Model Building

Model Evaluation

Master Bioinformatics for Health Sciences

Protein Structure Prediction model building & model assessment

Marc A. Marti-Renom

Adjunct Assistant Professor http://salilab.org/~marcius

Depts. of Biopharmaceutical Sciences and Pharmaceutical Chemistry California Institute for Quantitative Biomedical Research University of California at San Francisco

Model building with MODELLER

- Points and restraints
- Model accuracy
- Modeling loops
- Evaluating models
- MOULDER
- Modeing genes (examples)
- Modeling genomes (large-scale modeling)

Information about a protein can come from three distinct sources

Experimental observations

Statistical rules

Laws of physics

Modeling by optimization

Classes of methods for comparative protein structure modeling

- Model building by assembly of rigid bodies core, loops, sidechains.
- Model building by segment matching.
- Model building by satisfaction of spatial restraints.

Comparative modeling by satisfaction of spatial restraints MODELLER

1. Extract spatial restraints 400 ********** 300 200 200 100 15 19 21 17 23 25 2. Satisfy spatial restraints C_a - C_a DISTANCE [Å] $F(R) = \prod_{i} p_i (f_i / I)$

> A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Accuracy and applicability of comparative models

"Biological" significance of modeling errors

NMR – X-RAY Erabutoxin 3ebx Erabutoxin 1era

NMR Ileal lipid-binding protein 1eal

CRABPII1opbBFABP1ftpAALBP1lib40% seq. id.

X-RAY

Interleukin 1 β 41bi (2.9Å) Interleukin 1 β 2mib (2.8Å)

Model Accuracy

HIGH ACCURACY

NM23 Seq id 77%

Cα equiv 147/148 RMSD 0.41Å

MEDIUM ACCURACY

CRABP Seq id 41%

Cα equiv 122/137 RMSD 1.34Å

Sidechains Core backbone Loops Alignment

EDN Seq id 33%

Cα equiv 90/134 RMSD 1.17Å

X-RAY / MODEL

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

Typical errors in comparative models

MODEL X-RAY TEMPLATE

Region without a template

Incorrect template

Misalignment

Distortion/shifts in aligned regions

Sidechain packing

edn 7rsa

Utility of protein structure models, despite errors

Modeling of loops in protein structures

Loop Modeling in Protein Structures

 α + β barrel: flavodoxin

antiparallel β-barrel

IG fold: immunoglobulin

Loop modeling strategies

- database is complete only up to 4-6 residues
- even in DB search, the different conformations must be ranked
- loops longer than 4 residues need extensive optimization
- DB method is efficient for specific families (eg, canonical loops in Ig's, β -hairpins)

Loop Modeling by Conformational Search

- 1. Protein representation.
- 2. Energy (scoring) function.
- 3. Optimization algorithm.

Energy Function for Loop Modeling

The energy function is a sum of many terms:

- 1. Stereochemistry (CHARMM).
- 2. Mainchain conformation (Φ , Ψ).
- 3. Non-bonded contacts.

Energy Function for Loop Modeling

1) Statistical preferences for dihedral angles:

2) Restraints from the CHARMM-22 force field:

3) Statistical potential for non-bonded contacts:

Mainchain Terms for Loop Modeling

Optimization of Objective Function

- Test set: 40 randomly selected loops of known structures, for each length from 1 to 14 residues.
- Starting conformation: Loop atoms were spaced evenly on a line spanning the two anchor regions, then randomized by \pm 5 Å.
- To simulate real comparative modeling situations, performance of the loop modeling problem was determined by predicting loops in only approximately correct environment.

Optimization of Objective Function

Calculating an Ensemble of Loop Models

Accuracy of loop models as a function of amount of optimization

Accuracy of Loop Modeling

RMSD=0.6Å

RMSD=1.1Å

RMSD=2.8Å

HIGH ACCURACY (<1Å)

MEDIUM ACCURACY (<2Å)

LOW ACCURACY (>2Å)

50% (30%) of 8-residue loops 40% (48%) of 8-residue loops 10% (22%) of 8-residue loops

Fraction of Loops Modeled With at Least Medium Accuracy

Problems in Practical Loop Modeling

- 1. Decide which regions to model as loops.
- 2. Correct alignment of anchor regions & environment.
- 3. Modeling of a loop.

T0058: 80-85 RMSD_{mnch} loop = 1.09 Å RMSD_{mnch} anchors = 0.29 Å

T0076: 46-53 RMSD_{mnch} loop = 1.37 Å RMSD_{mnch} anchors = 1.52 Å

Potentials of Mean Force (PMF)

Empirical energy functions (PMF)

Idea: energy leads to structure, thus it should be possible to infer energy from many known structures

To be used in: model refinement and assessment

Properties needed:

Deep minimum at correct state (native) Smooth (energy landscape) Simple (CPU calculation)

Types:

Contact potential Distance potentials Surface potentials

Approximations/Limitations in PMFs

Database size.

PMF versus Energy (additive/higher order terms).

Reference state.

Physical origin.

Finkelstein et al. (1995) Proteins 23, pp142

Potentials of Mean Force

As any other bioinformatics problem...

- Representation - Scoring
 - Optimizer

Representation

Sequence/Structures

>gi42541361 MDIRSVSSLRGLLCLPPSWPRR

Primary sequence

All atoms and coordinates

Distance space

Reduced atoms representation

Secondary Structure

Accessible surface

Scoring Statistical Potentials (background)

Structural space

Sequence space

MKLLIVLTCISLCSCICTVVQRCASNKPHVLEDPCKVQH HLSVNQCVLLPQCCPKSCKICTHLISIEVVLTCRAVDKM MHVNCVEQCSLQDCIKIAPRVLKTCILCVLKPCLTSVSH VHLVQPTSCCCKKNCICHVEIRSLDILTKSVQLACLVPM

MQCCRVQKICDLLAVELCKLHISTPSCKILCVVTSVPHN

Scoring Statistical Potential (inspiration)

$$K = \frac{[AB]}{[A] \cdot [B]}$$
$$\Delta G = -RT \ln(K) = -RT \ln \frac{[AB]}{[A] \cdot [B]}$$

From statistical physics, we know that energy difference between two states (ΔE) and the ratio of their occupancies (N₁:N₂) are related [9]:

$$\Delta E = -kT \ln \left(\frac{N_1}{N_2}\right) \tag{1}$$

in which T is the absolute temperature and k is the Boltzmann's constant. As we are interested in an interaction energy between two amino acid side chains, it would seem natural to define N_1 as the number of interactions between these two residues types in a group of real protein structures, a number which is readily available from simple database analysis. But this number must be compared with the number of interactions in some other system, N_2 , to obtain the energy difference between them.

$A + B \longleftarrow AB$

Tanaka and Sheraga (1975) PNAS, **72** pp3802 Sippl, (1990) J.Mo.Biol. **213** pp859 Godzik, (1996) Structure **15** pp363

Scoring

Statistical Potential (reference state)

Theory of simple liquids 2nd edition JP Hansen and IR McDonald, Academic Press.

Scoring Statistical Potential... Hydrogen Bonds

Long range free energy

Free energy of the protein backbone hydrogen bond N · · · O compiled from a database of 289 X-ray structures

$$\rho_{NO}(r) = \sum_{ij} \delta(r - r_{ij})$$

$$g_{NO}(r) = \frac{\rho_{NO}(r)}{\rho^2}$$

$$W_{NO}(r) = -kT \ln \left(g_{NO}(r) \right)$$

Sippl (1996). JMB 260 pp644

Scoring Statistical Potential... Distance Potentials

Sippl (1993). JCAM 7 pp473

Scoring Significance of an alignment (score)

Energy Z-score the model with respect the energy of random models (or rest of decoys).

http://www.came.sbg.ac.at

ANOLEA

http://protein.bio.puc.cl/cardex/servers/anolea/

Scoring Deriving Structural space -E I I I III III <E> $Zscore = \frac{\left(\langle E \rangle - E_{m}\right)}{\sigma_{E}}$ all atom potential

 σ_{E}

+E

Verify3D

http://shannon.mbi.ucla.edu/DOE/Services/Verify_3D/

Deriving

Structural space

DFIRE

http://phyyz4.med.buffalo.edu/hzhou/dmonomer.html

Deriving

Structural space

Scoring

Pseudo-Energy with respect a ideal gas-phase reference state

DOPE (MODELLER)

http://www.salilab.org/modeller/

Deriving

Structural space

Scoring

Pseudo-Energy with respect a ideal spherical protein as a reference state

Moulding: iterative alignment, model building, model assessment

Iterative process... MOULDER

John & Sali (2003). NAR 31 pp3982

Genetic algorithm operators

Also, "two point crossover" and "gap deletion".

Composite model assessment score

Weighted linear combination of several scores:

- Pair (Pp) and surface (Ps) statistical potentials;
- Structural compactness (S_C);
- Harmonic average distance score (H_a);
- Alignment score (A_S) .

 $Z = 0.17 Z(P_P) + 0.02 Z(P_s) + 0.10 Z(S_c) + 0.26 Z(H_a) + 0.45 (A_s)$

Z(score) = (score- μ)/ σ μ ... average score of all models σ ... standard deviation of the scores

Benchmark with the "very difficult" test set

D. Fischer threading test set of 68 structural pairs (a subset of 19)

Target -template	Sequence identity [%]	Coverage [% aa]	Initial prediction		Final prediction		Best prediction	
			Cα RMSD [Å]	CE overlap [%]	RMSD [Å]	CE overlap [%]	RMSD [A]	CE overlap [%]
1ATR-1ATN	13.8	94.3	19.2	20.2	18.8	20.2	17.1	24.6
1BOV-1LTS	4.4	83.5	10.1	29.4	3.6	79.4	3.1	92.6
1CAU-1CAU	18.8	96.7	11.7	15.6	10.0	27.4	7.6	47.4
1COL-1CPC	11.2	81.4	8.6	44.0	5.6	58.6	4.8	59.3
1LFB-1HOM	17.6	75.0	1.2	100.0	1.2	100.0	1.1	100.0
1NSB-2SIM	10.1	89.2	13.2	20.2	13.2	20.1	12.3	26.8
1RNH-1HRH	26.6	91.2	13.0	21.2	4.8	35.4	3.5	57.5
1YCC-2MTA	14.5	55.1	3.4	72.4	5.3	58.4	3.1	75.0
2AYH-1SAC	8.8	78.4	5.8	33.8	5.5	48.0	4.8	64.9
2CCY-1BBH	21.3	97.0	4.1	52.4	3.1	73.0	2.6	77.0
2PLV-1BBT	20.2	91.4	7.3	58.9	7.3	58.9	6.2	60.7
2POR-2OMF	13.2	97.3	18.3	11.3	11.4	14.7	10.5	25.9
2RHE-1CID	21.2	61.6	9.2	33.7	7.5	51.1	4.4	71.1
2RHE-3HLA	2.4	96.0	8.1	16.5	7.6	9.4	6.7	43.5
3ADK-1GKY	19.5	100.0	13.8	26.6	11.5	37.7	7.7	48.1
3HHR-1TEN	18.4	98.9	7.3	60.9	6.0	66.7	4.9	79.3
4FGF-81IB	14.1	98.6	11.3	24.0	9.3	30.6	5.4	41.2
6XIA-3RUB	8.7	44.1	10.5	14.5	10.1	11.0	9.0	34.3
9RNT-2SAR	13.1	88.5	5.8	41.7	5.1	51.2	4.8	69.0
AVERAGE	14.2	85.2	9.6	36.7	7.7	44.8	6.3	57.8

Application to a difficult modeling case 1BOV-1LTS

Sequence identity 4.4%

Initial model C α RMSD 10.1Å

Final model C α RMSD 3.6Å

d

Structural analysis of missense mutations in human BRCA1 BRCT domains

Cannot measure the functional impact of every possible SNP at all positions in each protein! Thus, prediction based on general principles of protein structure is needed.

Mirkovic et al. (2004) Cancer Research 64 pp3790

Human BRCA1 and its two BRCT domains

CONFIDENTIAL

BRACAnalysis ™ Comprehensive BRCA1-BRCA2 Gene Sequence Analysis Result

Interpretation

GENETIC VARIANT OF UNCERTAIN SIGNIFICANCE

The BRCA2 variant H2116R results in the substitution of arginine for histidine at amino acid position 2116 of the BRCA2 protein. Variants of this type may or may not affect BRCA2 protein function. Therefore, the contribution of this variant to the relative risk of breast or ovarian cancer cannot be established solely from this analysis. The observation by Myriad Genetic Laboratories of this particular variant in an individual with a deleterious truncating mutation in BRCA2, however, reduces the likelihood that H2116R is itself deleterious.

Authorized Signature:

Brian E. Ward, Ph.D. Laboratory Director

These test-results should only be used in conjunction with the pacent's clinical history and any previous analysis of appropriate family members. It is strongly recommended that these results be communicated to the patient in a strong that includes appropriate counseling. The accompanying Technical Specifications summary describes the analysis, method, performance characteristics, nomenclude, and interpreting patients of this test. This test may be considered investigational by some states. This test was developed and its performance characteristics determined that years or approval is not necessary. This has not been reviewed by the U.S. Food and Drug Administration. The FDA has determined that such clearance or approval is not necessary.

Missense mutations in BRCT domains by function

Putative binding site on BRCA1

Williams *et al.* 2004 Nature Structure Biology. **June 2004 11**:519 Mirkovic *et al.* 2004 Cancer Research. **June 2004 64**:3790

What is the physiological ligand of Brain Lipid-Binding Protein?

Predicting features of a model that are not present in the template

1. BLBP binds fatty acids.

2. Build a 3D model.

3. Find the fatty acid that fits most snuggly into the ligand binding cavity.

L. Xu, R. Sánchez, A. Šali, N. Heintz, J. Biol. Chem. 271, 24711, 1996.

Does RuvB have the same fold as δ' of E.coli DNA polymerase III?

<i>Ec</i> d'	MRWYPWLRPDFEKLVASYQAGRGHHALLIQALPGMGDDALIYALSRYLLCQQPQGHKSCGHCRG
RUVB	LEEYVGQPQVRSQMEIFIKAAKLRGDALDHLLIFGPPGLGKTTLANIVANEMG
<i>Ec</i> d'	CQLMQAGTHPDYYTLAPEKGKATLGVDAVREVTEKLNEAARLGGAKVVWVTDAALLTDAAANALLKTL
RUVB	VNLRTTSGPVLEKAGDLAAMLTNLEPHDVLFIDEIHRLSPVVEEVLYPAM
<i>Ec</i> d'	EEPPAETWFFLATREPERLLATLRSRCRLHYLAPPPEQYAVTWLSRE
Ppdp	EDYQLDIMIGEGPAARSIKIDLPPFTLIGATTRAGSLTSPLRDRFGIVQRLEFYQVPDLQYIVSRS
<i>Ec</i> d'	VTMSQDALLAALRLSAGSPGAALALFQGDNWQARETLCQALAYSVPSGD
RUVB	ARFMGLEMSDDGALEVARRARGTPRIANRLLRRVRDFAEVKHDGTISADIAAQALDMLNVDAEGFDYM
<i>Ec</i> d'	-WYSLLAALNHEQAPARLHWLATLLMDALKR/VTNVDVPGLVAELANHLSPSRLQAILGDVC
RUVB	DRKLLLAVIDKFF-GGPVGLDNLAAAIGEERETIEDVLEPYLIQQGFLQRTPRGRMATTRAWNHFG

Ec d' HIREQLMSVAGANRELLITDLLLRIEHYLQPGVVLP RUVB ITPPEMP-----

B. Guenther, et al. Cell 91, 335, 1997. Yamada, K., et al. Proc.Nat.Acad.Sci.USA 98,1442, 2001.

Modeling genomes

Structural Genomics

Characterize most protein sequences based on related known structures

The number of "families" is much smaller than the number of proteins.
 Any one of the members of a family is fine.

There are **~16,000** families (90%) @ 30% sequence identity cutoff

Sali. Nat. Struct. Biol. **5**, 1029, 1998. Sali et al. Nat. Struct. Biol., **7**, 986, 2000. Sali. Nat. Struct. Biol. **7**, 484, 2001. Baker & Sali. Science **294**, 93, 2001. Vitkup et al. Nat. Struct. Biol. **8**, 559, 2001

Structure Space & Structural Genomics

Structure map @ >30% sequence identity

Isolated cluster of two structural genomics entries in PDB corresponding to 116r (chains A and B) and 1kyt (chains A and B)

MshbS, Lmbe-Related Proteins (including chains from 1q74, and 1q7t PDB entries) structuraly joined by **1uan** chain A from structural genomics

Thymidylate Synthase Complementing Proteins (including chains from 1o2a, 1o2b, 1o24, 1o25, 1o26, 1o27, and 1o28 PDB entries) structuraly joined by 1kq4 chains from structural genomics
MODPIPE2.0 Large-Scale Protein Structure Modeling

Eswar et.al., (2003) Nucl.Acids.Res. 31(13)

ModBase Statistics

Large-scale modeling of the TrEMBL-SWISSPROT databases

Sequences (total)	1,679,742
Sequences (modeled)	964,442
Models	2,947,461

MODBASE

http://salilab.org/modbase

Searc	h Page					
Home	User Login	ModBase Search Page	ModWeb	Modelling Server	Help	Current Logins
	BASE w	Database of Compa elcome to ModBase, a database of three-d	rative imensional Did ModBase	Protein Struc protein models calcu e Interface)	ture Mo lated by con	odels nparative modeling.
General I	nformation					
Statistics		ModBase search form				Search
Project Pa	ages	Secret tune @ Model/Default)		Display type 🛛 🛛	Jodel Detail (ar	anhical) =(
Documen	tation	Search type and model(Delault)	<u> </u>	Display type 🖬 j	viodei Detali (gra	iprical)
Authors a Acknowle	nd dgements	All available datasets are selected			Select spe	ecific dataset(s)
Publicatio	ons					
Todo List		Search by properties				
Related R	esources	Property 🛛 ALL	<u> </u>			
No MODBASE c theoretically of models, not e determined s models may significant em	ontains calculated xperimentally tructures. The contain ors.	Organism 🛛 ALL	<u> </u>	or	<u>A</u>	ivanced search

Model Details

Mon	Home	User Login	ModBase Se	arch Page	ModWeb Modelling Server	Help
BASE					Current I	Logins
Sequence Infor	mation					
Primary Databas	se Link 🖬	P43632 (KI2S4	HUMAN)			
Organism 😰		<u>Homo sapiens</u>				
Annotation		killer cell immun associated trans	oglobulin-like recep script 8) (nkat-8)de	otor 2ds4 precurs (p58 natural kille	or (mhc class ide nk cell receptor) (natura r cell receptor clone cl-39) (p58 nk	al killer
Sequence Lengt	h	304				
Model Informat	tion					
Perform action	on this	model 🖬 : Select	Sequence Model Co	verage 🛙	SegId Fold HScore 384	
	-	s	Sequence Identity	89.00%		
		In E	E-Value	2e-43		
			Model Score	1.00		
	30	1	Farget Region	27-221		
y			Protein Length	304		
		M 2	Code	<u>1nkr</u>		
		1	Template Region	6-200		
			Dataset	snp-human2		
Filtered models	s for curr	rent sequence (<u>S</u>	how all models)			
👾 👌						
Cross-reference	es					

Sequence Overview Segid Fold MScore hypothetical protein Pseudomonas aeruginosa 3738 Q8G8A6 SegId Fold MScore Q8G9W1 hypothetical protein Escherichia coli 1140 Streptococcus pneumoniae, Streptococcus pneumoniae SegId Fold hypothetical protein spr1965 Q8CY62 1038 R6 Scor

Model Overview

A.S.	•	Q8G8C7	hypothetical protein	<u>Pseudomonas</u> <u>aeruginosa</u>	4996	2089-2158	70	37.00	7e-14	1.00	<u>1dnyA</u>	8-78
教	•	<u>Q8G8C7</u>	hypothetical protein	<u>Pseudomonas</u> <u>aeruginosa</u>	4996	492-1017	526	36.00	1e-82	1.00	<u>1amuA</u>	19-529
	•	Q8G9W1	hypothetical protein	<u>Escherichia coli</u>	1140	349-1135	787	35.00	0	1.00	<u>1r9dA</u>	6-783

Protein Structure Prediction SUMMARY

http://www.salilab.org/modeller/tutorial/

A suite of programs, servers and databases for

comparative protein structure modeling

http://salilab.org

External Resources

PDB, Uniprot, GENBANK, NR, PIR, INTERPRO, Kinase Resource UCSC Genome Browser, CHIMERA, Pfam, SCOP, CATH

Name	Typeª	World Wide Web address ^b
DATABASES		
CATH	S	http://www.biochem.ucl.ac.uk/bsm/cath/
DBAli	S	http://www.salilab.org/DBAli/
GenBank	S	http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html
GeneCensus	S	http://bioinfo.mbb.yale.edu/genome
MODBASE	S	http://salilab.org/modbase/
MSD	S	http://www.rcsb.org/databases.html
NCBI	S	http://www.ncbi.nlm.nih.gov/
PDB	S	http://www.rcsb.org/pdb/
PSI	S	http://www.nigms.nih.gov/psi/
Sacch3D	S	http://genome-www.stanford.edu/Sacch3D/
SCOP	S	http://scop.mrc-Imb.cam.ac.uk/scop/
TIGR	S	http://www.tigr.org/tdb/mdb/mdbcomplete.html
TrEMBL	S	http://srs.ebi.ac.uk/
FOLD ASSIGNM	ENT	
123D	S	http://123d.ncifcrf.gov/
3D-PSSM	S	http://www.sbg.bio.ic.ac.uk/~3dpssm/
BIOINBGU	S	http://www.cs.bgu.ac.il/~bioinbgu/
BLAST	S	http://www.ncbi.nlm.nih.gov/BLAST/
DALI	S	http://www2.ebi.ac.uk/dali/
FASS	S	http://bioinformatics.burnham-inst.org/FFAS/index.html
FastA	S	http://www.ebi.ac.uk/fasta3/
FRSVR	S	http://fold.doe-mbi.ucla.edu/
FUGUE	S	http://www-cryst.bioc.cam.ac.uk/~fugue/
LOOPP	S	http://ser-loopp.tc.cornell.edu/cbsu/loopp.htm

http://salilab.org/bioinformatics_resources.shtml

TAKE HOME SLIDE!!

Master Bioinformatics for Health Sciences MODELLER tutorial

\$>mod8v1 model.py

Marc A. Marti-Renom

Adjunct Assistant Professor http://salilab.org/~marcius

Depts. of Biopharmaceutical Sciences and Pharmaceutical Chemistry California Institute for Quantitative Biomedical Research University of California at San Francisco

Steps in Comparative Protein Structure Modeling

TARGET

ASILPKRLFGNCEQTSDEGL KIERTPLVPHISAQNVCLKID DVPERLIPERASFQWMNDK

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

TEMPLATE

A. Šali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Šali, Curr. Opin. Str. Biol. 7, 206, 1997. M. Marti et al. Ann. Rev. Biophys. Biomolec. Struct., 29, 291, 2000.

Comparative modeling by satisfaction of spatial restraints minder! **MODELLER**

3D GKITFYERGFQGHCYESDC-NLQP... SEO GKITFYERG---RCYESDCPNLOP...

1. Extract spatial restraints

2. Satisfy spatial restraints

 $F(R) = \prod_{i} p_i (f_i / I)$

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Typical errors in comparative models

Incorrect template

MODEL X-RAY TEMPLATE

Region without a template

Distortion/shifts in aligned regions

Misalignment

EDN ----EP DOPTHAGMPETOHINTSOOCTHANVORVUSININGARAMATERSOOTHAAUVOITUHITSOOCTHANVORVUSININGARAMATERSOOTHALUVSININGARAMATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHANATERSOOTHATUVSI ATAKAMATERSOOTHATUVSINATUVSINTI ATAKAMATERSOOTH

Sidechain packing

Marti-Renom et al. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000.

Utility of protein structure models, despite errors

minder!

Modeller

Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints

New features in MODELLER 8

- SALIGN: versatile alignment module
- MODPIPE2.0: Large-scale protein structure modeling
- orofile.build(): Iterative database searching & profile construction
- orofile.scan(): fold-assignment & profile-profile alignments
- New objective functions
- Mod-EM: Fitting a model into an EM map
- Additional features and bugs fixed

SALIGN: Versatile alignment command in MODELLER

Madhusudhan et al. in preparation

MODPIPE2.0 Large-Scale Protein Structure Modeling

Eswar et.al., (2003) Nucl.Acids.Res. 31(13)

profile.build(): Iterative database searching & profile construction

- Rigorous Smith-Waterman local alignments
- Statistical significance using z-scores
- Null model for statistics from actual sequences
- Built-in mechanism to detect profile divergence

profile.scan(): Large-scale fold-assignment & profile-profile alignments

- · Correlation Coefficient as the scoring scheme
- Smith-Waterman local alignments
- Statistical significance using z-scores
- Null model for statistics from actual sequences

Method	CE overlap	Shift score
CE	100 ± 0	1.00 ± 0.00
BLAST	26 ± 29	0.32 ± 0.33
PSI-BLAST	43 ± 31	0.48 ± 0.35
SAM	48 ± 26	0.50 ± 0.34
LOBSTER	50 ± 27	0.51 ± 0.32
SEA	49 ± 27	0.53 ± 0.29
ALIGN	42 ± 25	0.44 ± 0.28
CLUSTALW	43 ± 27	0.44 ± 0.31
COMPASS	43 ± 32	0.49 ± 0.35
ССнн	56 ± 23	0.61 ± 0.24
ССнз	56 ± 24	0.62 ± 0.24
ТОР	62 ± 20	0.67 ± 0.20

Eswar et.al., in preparation Marti-Renom et al. (2004) Protein Science 13 pp1071

New objective functions in Modeller

- Discrete Optimized Protein Energy (DOPE)
 - A highly accurate distance dependent statistical potential
 - The best performer among 29 tested scoring functions
 - Has been released with Modeller 8v0
 - Applications to loop modeling and model assessment
- Solvation model in Modeller
 - The GB/SA solvation model is implemented in Modeller
 - A newer scheme for point charges that concurs with CHARMM22
 - Will be included in Modeller 8v1
- Other modifications
 - Minor modifications to the atomic van der Waals radii (radii.lib)

Mod-EM: Fitting a model into an EM map

Allows protein models to be docked into lower-resolution electron microscopy maps for scoring

Representation:

map: density in voxels, $\rho^{\text{EM}}(r)$ *protein:* based on atomic mass, $\rho^{\text{probe}}(r)$ - can be represented by different functions: Gaussian, uniform sphere model, hybrid Gaussian/sphere model *filters:* cutoff filters, sqr filter, Laplacian

Scoring function:

Cross-correlation function (C) between the map density and the probe 'density':

Optimization methods (density.grid_search()):

Exhaustive rigid rotation and translation Monte Carlo optimization

Additional features

- New methods for model assessment:
 - DOPE
 - GA341
 - ModEM scoring
- Improved user interface:
 - Python interface allows for more powerful and flexible scripting, and easier integration with other applications
 - Legacy TOP scripts are still parsed

Obtaining MODELLER and related information

- MODELLER (8v0) web page
- http://www.salilab.org/modeller/
 - Download Software (Linux/Windows/Mac/Solaris)
 - HTML Manual
 - Join Mailing List

sgi

Using MODELLER

- No GUI! 😕
- Controlled by command file 88
- Script is written in PYTHON language ③
- You may know Python language is simple <a>©©

Using MODELLER

INPUT:

- Target Sequence (FASTA/PIR format)
- Template Structure (PDB format)
- TOP command file
- OUTPUT:
 - Target-Template Alignment
 - Model in PDB format
 - Other data

Modeling of BLBP Input

Target: Brain lipid-binding protein (BLBP)
 BLBP sequence in PIR (MODELLER) format:

>P1;blbp

sequence:blbp::::::::

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSID DRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
loq.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='lhms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
loq.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='lhms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

>P1;1hms
<pre>structureX:1hms: 1 : : 131 : :undefined:undefined:-1.00:-1.00</pre>
${\tt VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA$
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp: ::::::0.00:0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

>P1;1hms
<pre>structureX:1hms: 1 : : 131 : :undefined:undefined:-1.00:-1.00</pre>
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp: :: :: :: 0.00: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

_aln.pos	1	0	20	30	40	50	60
lhms	VDAFLGTWK	LVDSKNFDI	DYMKSLGVGF	ATRQVASMTKI	PTTIIEKNGD	LTLKTHSTFF	NTEISFKLGV
blbp	VDAFCATWK	LTDSQNFD	EYMKALGVGF2	ATRQVGNVTKI	PTVIISQEGGE	VVIRTQCTF	NTEINFQLGE
_consrvd	**** ***	* ** ***	*** *****	**** ***	** ** *	* ***	**** * **
aln.p	70	80	90	100	110	120	130
1hms	EFDETTADD	RKVKSIVT	LDGGKLVHLQI	KWDGQETTLVF	RELIDGKLILT	TLTHGTAVCTE	RTYEKE
blbp	EFEETSIDD	RNCKSVVR	LDGDKLIHVQI	KWDGKETNCTF	REIKDGKMVVI	LTFGDIVAVE	RCYEKA
_consrvd	** ** **	* * * * *	*** ** * *	**** ** *	** *** *	*** * * *	* ***

Modeling of BLBP STEP 2: Model the blbp structure using the alignment from step 1. Python script for model building

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                       # request verbose output
env = environ()
                                  # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms',
                                         # codes of the templates
             sequence = 'blbp')
                                           # code of the target
a.starting model= 1
                                 # index of the first model
                                 # index of the last model
a.ending model = 1
                                  # (determines how many models to calculate)
                                  # do the actual homology modelling
a.make()
```

Modeling of BLBP STEP 2: Model the blbp structure using the alignment from step 1. Python script for model building

```
# Homology modelling by the automodel class
from modeller.automodel import * # Load the automodel class
log.verbose()
                           # request verbose output
                                 # create a new MODELLER environment
env = environ()
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = 'lhms', # codes of the templates
             sequence = 'blbp')
                                           # code of the target
a.starting model= 1
                                 # index of the first model
a.ending model = 1
                                 # index of the last model
                                  # (determines how many models to calculate)
                                  # do the actual homology modelling
a.make()
```
Modeling of BLBP STEP 2: Model the blbp structure using the alignment from step 1. Python script for model building

```
# Homology modelling by the automodel class
from modeller.automodel import * # Load the automodel class
                   # request verbose output
log.verbose()
env = environ()
                                 # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom_files'
a = automodel(env,
            alnfile = 'blbp-1hms.ali', # alignment filename
            knowns = 'lhms', # codes of the templates
             sequence = 'blbp')
                                  # code of the target
                              # index of the first model
a.starting model= 1
a.ending model = 1
                                # index of the last model
                                 # (determines how many models to calculate)
                                 # do the actual homology modelling
a.make()
```

Run by typing mod8v0 model.py in the directory where you have the python file. MODELLER will produce a align.log file

Modeling of BLBP STEP 2: Model the blbp structure using the alignment from step 1. Python script for model building

PDB file Can be viewed with Chimera http://www.cgl.ucsf.edu/chimera/ Rasmol http://www.openrasmol.org

Model file → blbp.B9990001

http://www.salilab.org/bioinformatics_resources.shtml

http://www.salilab.org/modeller/tutorial/

