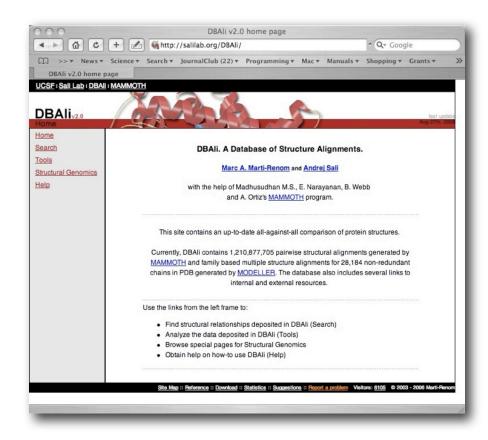
DBAli tools

The AnnoLite and AnnoLyze programs for automatic annotation of protein structures

Marc A. Marti-Renom

http://bioinfo.cipf.es/squ/


Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/

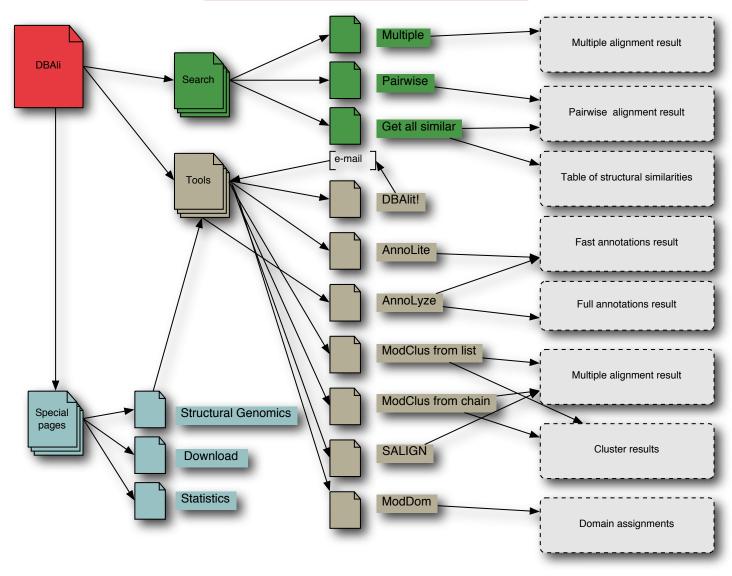
http://www.salilab.org/DBAli/

- Uses MAMMOTH for similarity detection
- ✓ VERY FAST!!!
- √ Good scoring system with significance

Ortiz AR, (2002) Protein Sci. 11 pp2606

- √ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families.
- ✓ Easy to navigate
- ✓ Provides tools for structure analysis

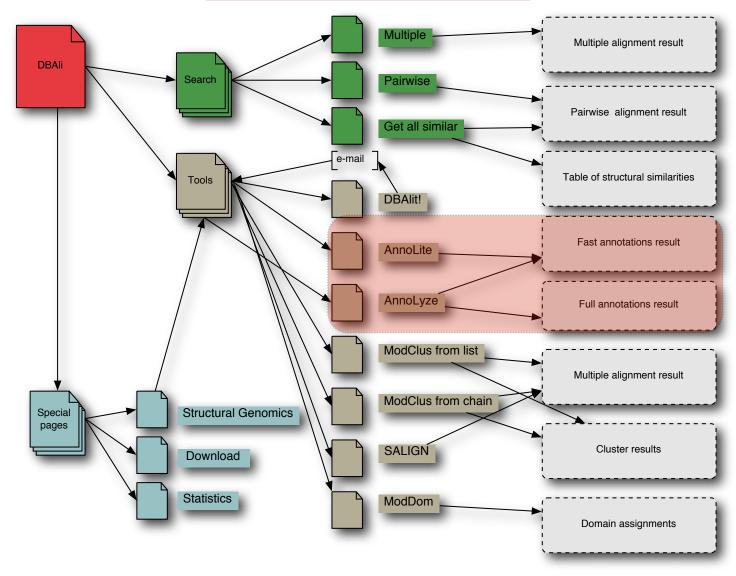
Does not provide a stable classification similar to that of CATH or SCOP


Pairwise structure alignme	ents
Last update:	November 6th, 2006
Number of chains:	84,180
Number of structure-structure comparisons:*	1,316,585,828
Multiple structure alignme	ents
Last update:	November 6th, 2006
Number of representative chains:	30,150
Number of families:	11,405

Marti-Renom et al. 2001. Bioinformatics. 17, 746
Marti-Renom et al. 2006 Submitted.

DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/


http://www.salilab.org/DBAli/

DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/

http://www.salilab.org/DBAli/

For many protein structures function is *unknown*

	Structural Genomics*	Traditional methods
Annotaated**	654	28,342
Not Annotaated	506 (43.6%)	6,815 (19,4%)
Total deposited	1,160	35,157

* annotated as STRUCTURAL GENOMICS in the header of the PDB file **annotated with either CATH, SCOP, Pfam or GO terms in the MSD database 36,317 protein structures, as of August 8th, 2006

For 20% protein structures function is *unknown*

	Structural Genomics*	Traditional methods
Annotaated**	654	28,342
Not Annotaated	506 (43.6%)	6,815 (19,4%)
Total deposited	1,160	35,157

* annotated as STRUCTURAL GENOMICS in the header of the PDB file **annotated with either CATH, SCOP, Pfam or GO terms in the MSD database 36,317 protein structures, as of August 8th, 2006

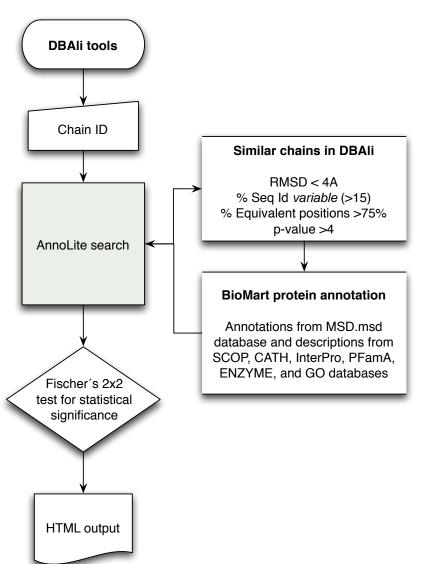
AnnoLite

AnnoLite results for chain 1 opi: A based on 44 structural similar chains.

		7.5e-99		1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:		0.00	b.29.1.10	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99	IPR001722	Glycoside hydrolase, family 7
		6.0e-51	IPR008985	Concanavalin A-like lectin/glucanase
	•	1.0e-42	IPR000254	Cellulose-binding region, fungal
EC Number:	•	1.2e-44	3.2.1.91	Cellulose 1,4-beta-cellobiosidase.
	•	6.0e-41	3.2.1.4	Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 🕹
	•	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🟅
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds $\ \zeta$
	•	1.4e-30	0008810	cellulase activity 🕹
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds $ \zeta $
	•	1.0e+0	0016787	hydrolase activity 🐍
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🐍
	•	1.2e-54	0000272	polysaccharide catabolism 🟅
	•	3.6e-20	0005975	carbohydrate metabolism 💪
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🕹

- Information annotated in the MSD database.
- . High, . medium and . low confidence annotations not annotated in the MSD database.
- High, @ medium and @ low confidence annotations already annotated in the MSD database.

Benchmark set


	Number of chains
Initial set*	50,223
FULL annotation**	10,997
Non-redundant set***	1,879

*data from BioMart MSD.3 (release February 2005)

^{**}annotated with CATH, SCOP, Pfam, EC, InterPro, and GO terms in the MSD database

^{**}not two chains can be structurally aligned within 2A, superimposing more than 60% of their C atoms and have a length difference inferior to 30aa

Method

AnnoLite results for chain 1 gpi: A based on 44 structural similar chains.

	Conf	.P-value	Link	Description
CATH:	•	7.5e-99	2.70.100.10	1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:	•	0.00	b.29.1.10	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99	IPR001722	Glycoside hydrolase, family 7
		6.0e-51	IPR008985	Concanavalin A-like lectin/glucanase
	•	1.0e-42	IPR000254	Cellulose-binding region, fungal
EC Number:	•	1.2e-44	3.2.1.91	Cellulose 1,4-beta-cellobiosidase.
	•	6.0e-41	3.2.1.4	Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 🖚
	•	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🟅
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds ζ
	•	1.4e-30	0008810	cellulase activity 🕹
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds $ \zeta $
	•	1.0e+0	0016787	hydrolase activity 🛴
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🟅
	•	1.2e-54	0000272	polysaccharide catabolism 🟅
	•	3.6e-20	0005975	carbohydrate metabolism 🟅
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🟅

- Information annotated in the MSD database.
- High, o medium and low confidence annotations not annotated in the MSD database.
- High, medium and low confidence annotations already annotated in the MSD database.

Scoring function

Fisher's 2x2 contingency test

	Non- similar	Similar	Total
Annotated	а	b	a+b
Not Annotated	С	d	c+d
Total	a+c	b+d	n

1b78A SCOP c.51.4.1	Similar	Not similar	Total
Annotated	4	2	6
Not Annotated	0	71,096	71,096
Total	4	71,098	71,102

$$p = \binom{a+b}{a} \binom{c+d}{c} / \binom{n}{a+c}$$
$$= \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$$

$$p = 1.78e^{-19}$$

Sensitivity .vs. Precision

	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
SCOP fold	1e-6	92.7	88.4
CATH fold	1e-3	95.7	90.1
InterPro	1e-3	88.4	78.2
PFam family	1e-4	90.5	82.8
EC number	1e-4	93.3	79.7
GO Molecular Function	1e-1	84.3	80.9
GO Biological Process	1e-3	85.5	74.8
GO Cellular Component	1e-2	77.6	58.6

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$

AnnoLyze

<u>d.113.1.1</u>	23.68	0.948		50 51 52 53 54 55 56 57 58 77 78 79 80 83 84 85 93 95 97 99 134 135 138 142 145
Partner	Av. binding site seq. id.	Av. residue conservatio		Residues in predicted binding site (size proportional to the local conservation)
nherited pa	artners:1			
<u>ACY</u>	15.	87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135
<u>80G</u>	20.	00	0.111	19 20 21 48 49 51 96 98 136
	20.			23 29 31 37 44 48 49 83 85 94 96 103 121
				48 49 52 62 63 66 67 113 116

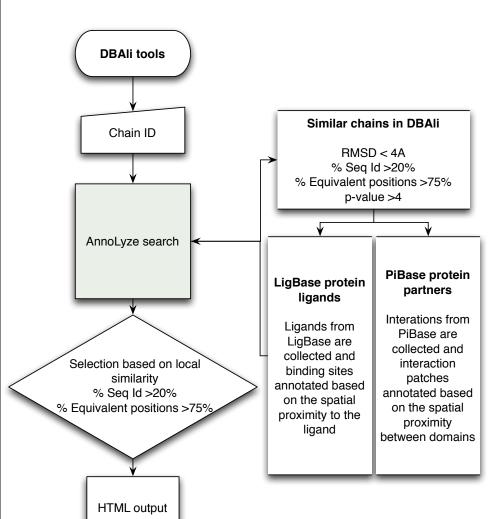
Benchmark

	Number of chains
Initial set*	78,167
LigBase**	30,126
Non-redundant set***	4,948 (8,846 ligands)

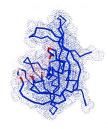
*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)

**annotated with at least one ligand in the LigBase database

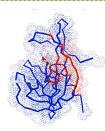
***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


	Number of chains
Initial set*	78,167
πBase**	30,425
Non-redundant set***	4,613 (11,641 partnerships)

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)

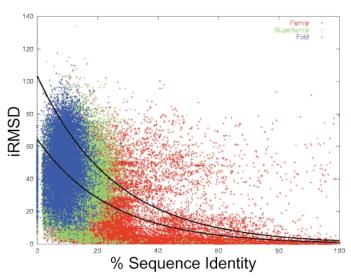

**annotated with at least one partner in the Base database

***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


Method

Inherited ligands: 4							
Ligand	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)				
MO2	59.03	0.185	48 49 52 62 63 66 67 113 116				
CRY	20.00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121				
80G	20.00	<u>0.111</u>	19 20 21 48 49 51 96 98 136				
<u>ACY</u>	15.87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135				

herited pa	ertners:1		
Partner	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)
<u>1.113.1.1</u>	23.68	0.948	19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145



Scoring function

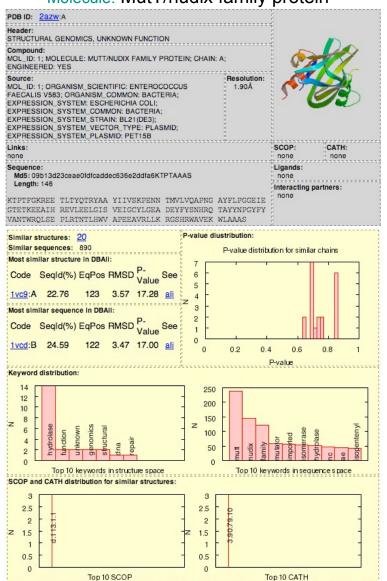
Ligands

100 80 **ATP** Sequence Identity (%) ADP **AMP** 60 GDP GTP 40 20 20 60 80 100 40 Structure Identity (%)

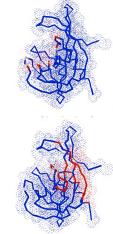
Partners

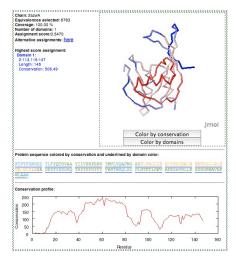
Aloy et al. (2003) J.Mol.Biol. 332(5):989-98.

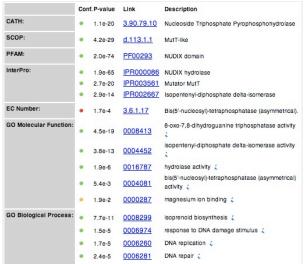
Sensitivity .vs. Precision


	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
Ligands	30%	71.9	13.7
Partners	40%	72.9	55.7

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$


Example (2azwA)


Structural Genomics Unknown Function


Molecule: MutT/nudix family protein

nherited li	gands: 4					
Ligand	Av. binding site seq. id.		Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)		
MO2	59.	.03 <u>0.185</u>		48 49 52 62 63 66 67 113 116		
CRY	20.	00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121		
80G	20.	00	0.111	19 20 21 48 49 51 96 98 136		
ACY	15.	87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135		
Inherited partners:1						
Partner	Av. binding site seq. id.	Av. residu conservati		Residues in predicted binding site (size proportional to the local conservation)		
<u>d.113.1.1</u>	23.68	0.948		19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145		

Acknowledgments

COMPARATIVE MODELING Andrej Sali

M. S. Madhusudhan Narayanan Eswar Min-Yi Shen

Ursula Pieper

Ben Webb Maya Topf

MODEL ASSESSMENT

David Eramian Min-Yi Shen Damien Devos

FUNCTIONAL ANNOTATION Andrea Rossi Fred Davis

FUNDING

Prince Felipe Research Center Marie Curie Reintegration Grant STREP EU Grant

MODEL ASSESSMENT

Francisco Melo (CU) Alejandro Panjkovich (CU)

STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB) NY-SGXRC

MAMMOTH Angel R. Ortiz

FUNCTIONAL ANNOTATION Fatima Al-Shahrour

Joaquin Dopazo

BIOLOGY

Jeff Friedman (RU)
James Hudsped (RU)
Partho Ghosh (UCSD)
Alvaro Monteiro (Cornell U)
Stephen Krilli (St.George H)

Tropical Disease Initiative

Stephen Maurer (UC Berkeley) Arti Rai (Duke U) Andrej Sali (UCSF) Thomas Kepler (Duke U) Ginger Taylor (TSL)

CCPR Functional Proteomics

Patsy Babbitt (UCSF)
Fred Cohen (UCSF)
Ken Dill (UCSF)
Tom Ferrin (UCSF)
John Irwin (UCSF)
Matt Jacobson (UCSF)
Tack Kuntz (UCSF)
Andrej Sali (UCSF)
Brian Shoichet (UCSF)
Chris Voigt (UCSF)

FVΔ

Burkhard Rost (Columbia U) Alfonso Valencia (CNB/UAM)

CAMP

Xavier Aviles (UAB)
Hans-Peter Nester (SANOFI)
Ernst Meinjohanns (ARPIDA)
Boris Turk (IJS)
Markus Gruetter (UE)
Matthias Wilmanns (EMBL)
Wolfram Bode (MPG)