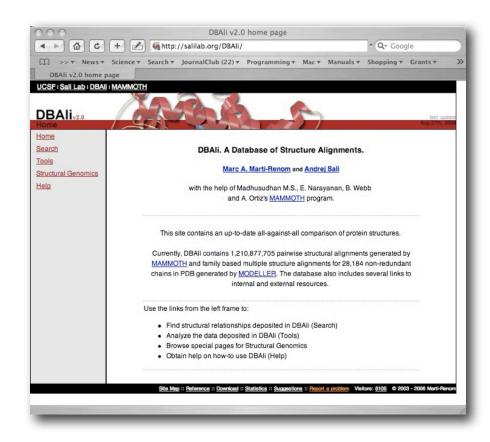
DBAli tools

Mining the protein structural space

Marc A. Marti-Renom

http://bioinfo.cipf.es/squ/


Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

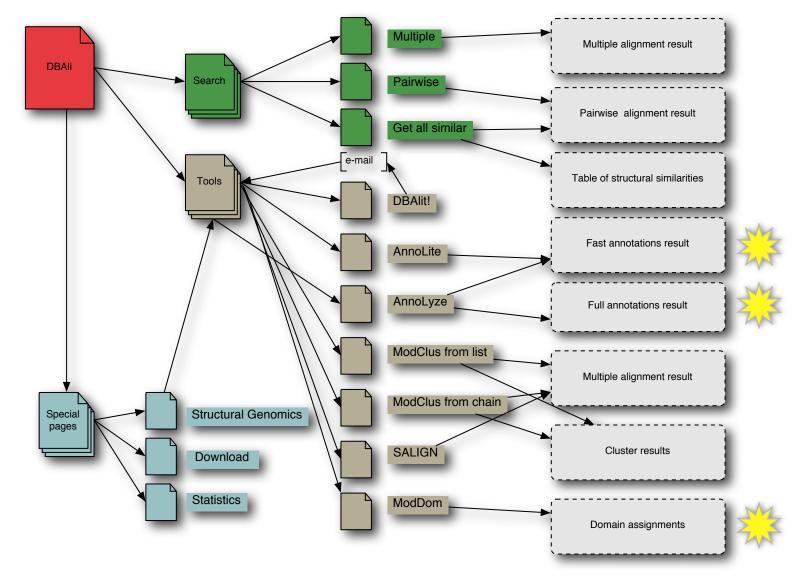
DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/

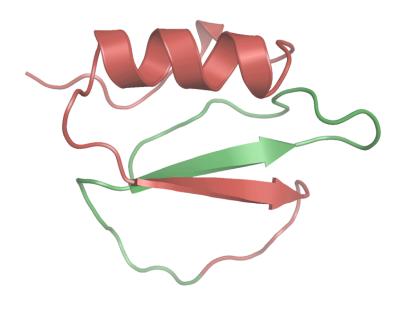
http://www.salilab.org/DBAli/

- √ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families.
- ✓ Easy to navigate
- ✓ Provides tools for structure analysis

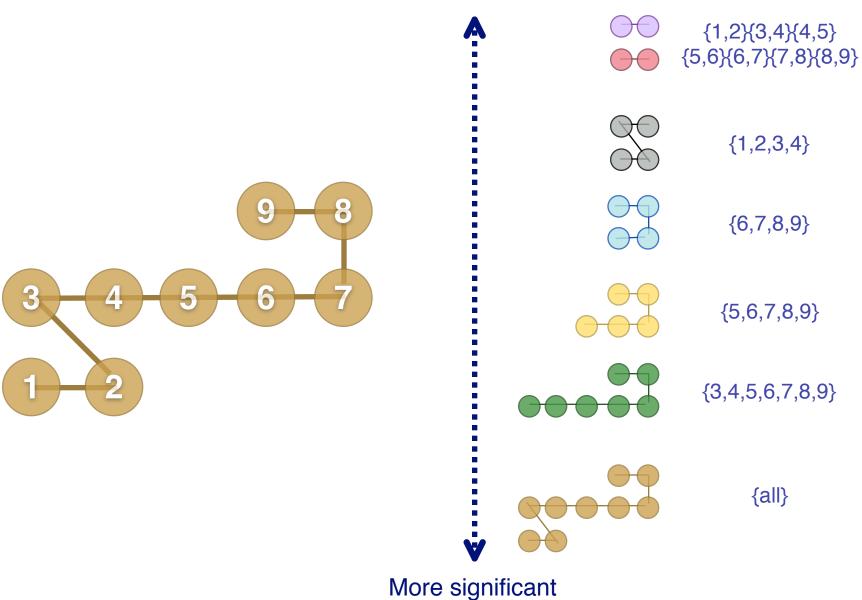
Does not provide a stable classification similar to that of CATH or SCOP

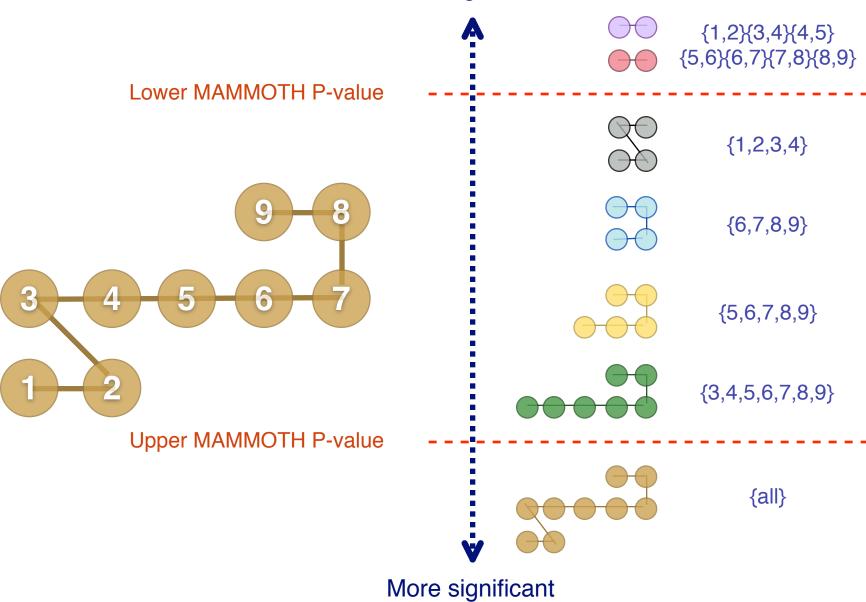

Pairwise structure alignments						
Last update:	March 22nd, 2007					
Number of chains:	89.094					
Number of structure-structure comparisons:						
***************************************	1,460,445,131					
Multiple structure alignmen	nts					
Last update:	January 23rd, 2007					
Number of representative chains:	30,900					
Number of families:	11,615					

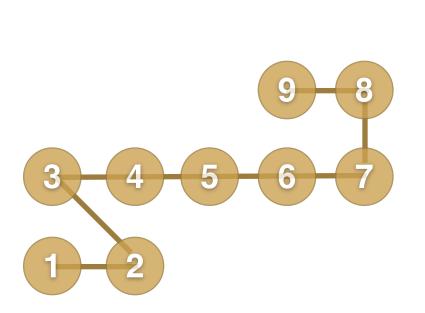
- Uses MAMMOTH for similarity detection
- ✓ VERY FAST!!!
- √ Good scoring system with significance

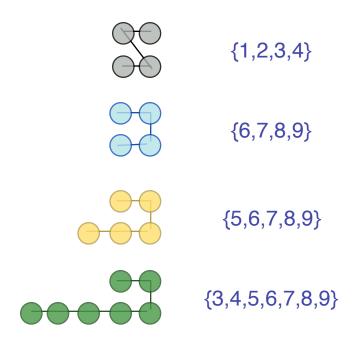

Ortiz AR, (2002) Protein Sci. 11 pp2606

DBAliv2.0 database

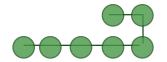

http://bioinfo.cipf.es/squ/services/DBAli/
http://www.salilab.org/DBAli/

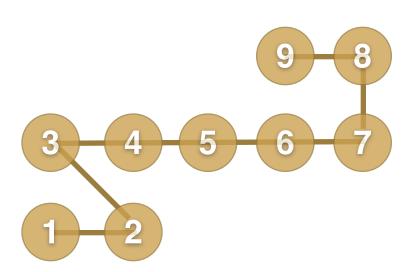

Protein domains/fragments from structure ModDom

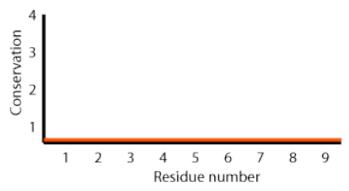


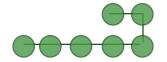

Less significant

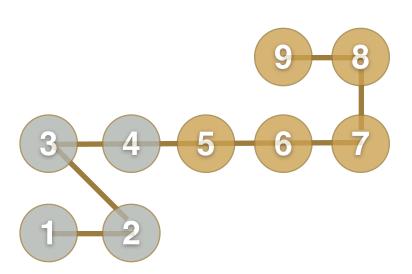
Less significant

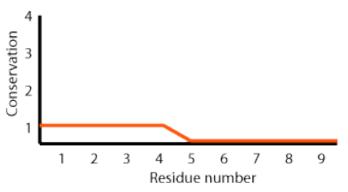


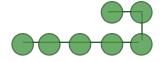


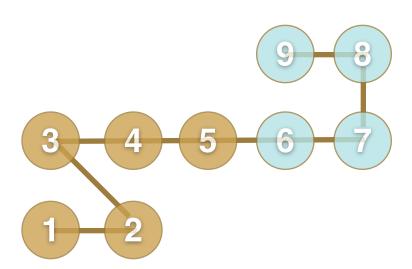


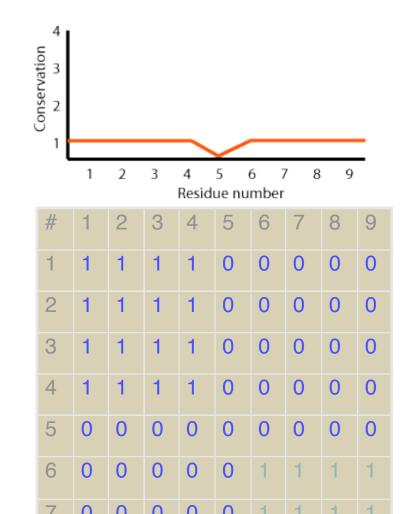


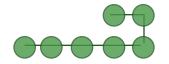

#	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

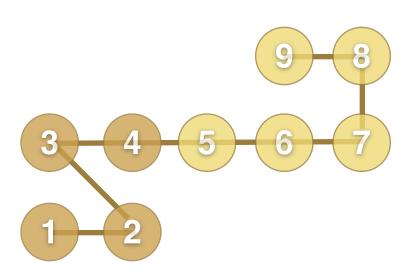


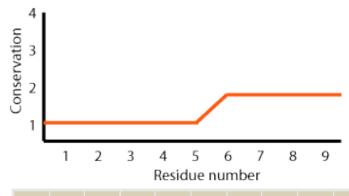


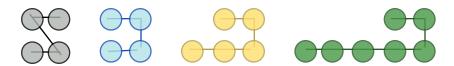

#	1	2	3	4	5	6	7	8	9
1	1	1	1	1	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	1	1	1	1	0	0	0	0	0
4	1	1	1	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

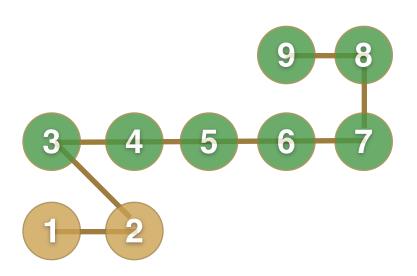


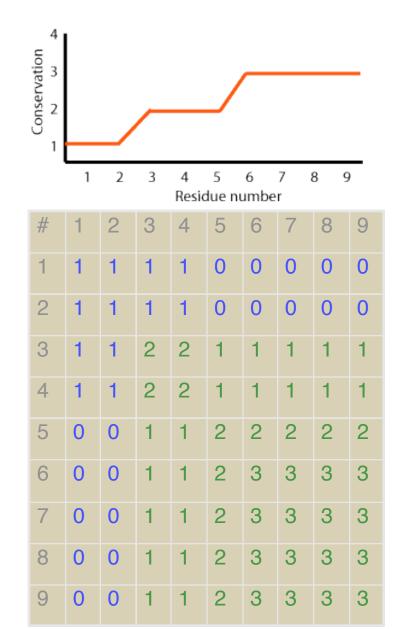


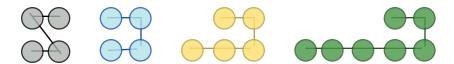


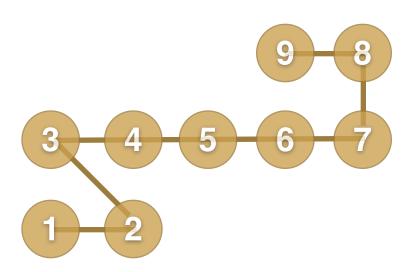


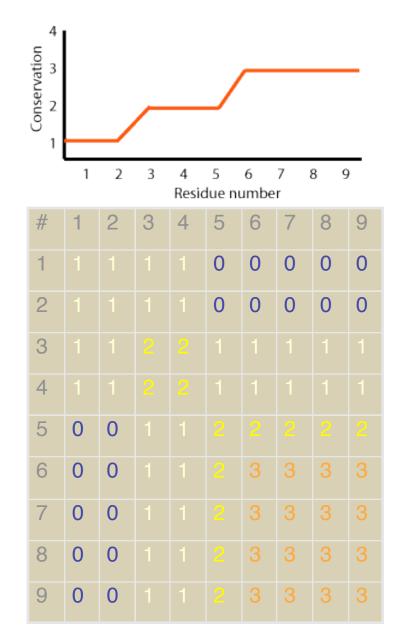


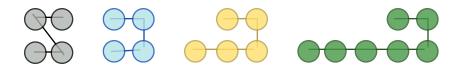




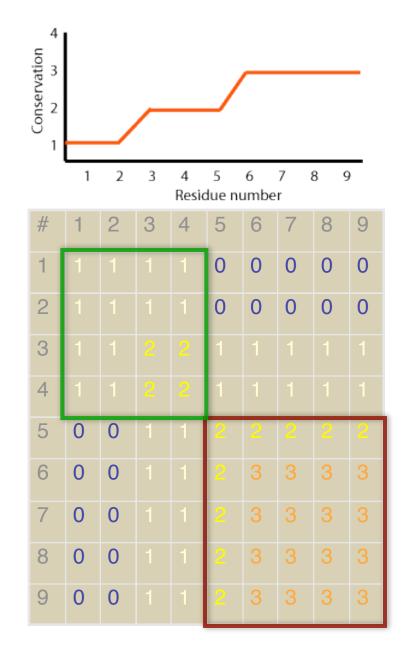



#	1	2	3	4	5	6	7	8	9
1	1	1	1	1	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	1	1	1	1	0	0	0	0	0
4	1	1	1	1	0	0	0	0	0
5	0	0	0	0					
6	0	0	0	0					
7	0	0	0	0					
8	0	0	0	0					
9	0	0	0	0					





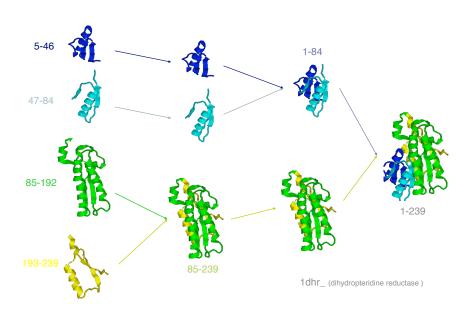




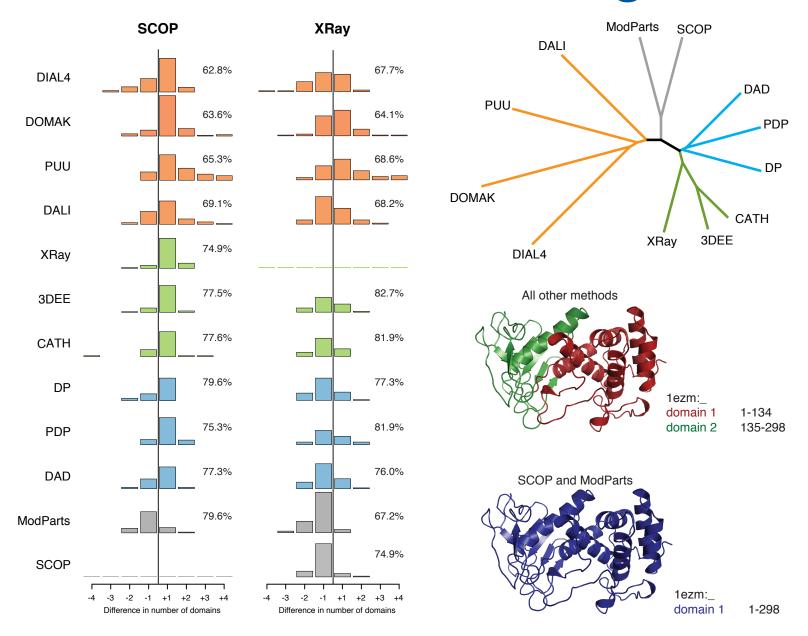
Threshold #3 MCL Cluster level (-I)

Stijn van Dongen (http://micans.org/mcl/)

Domains as recurrent fragments

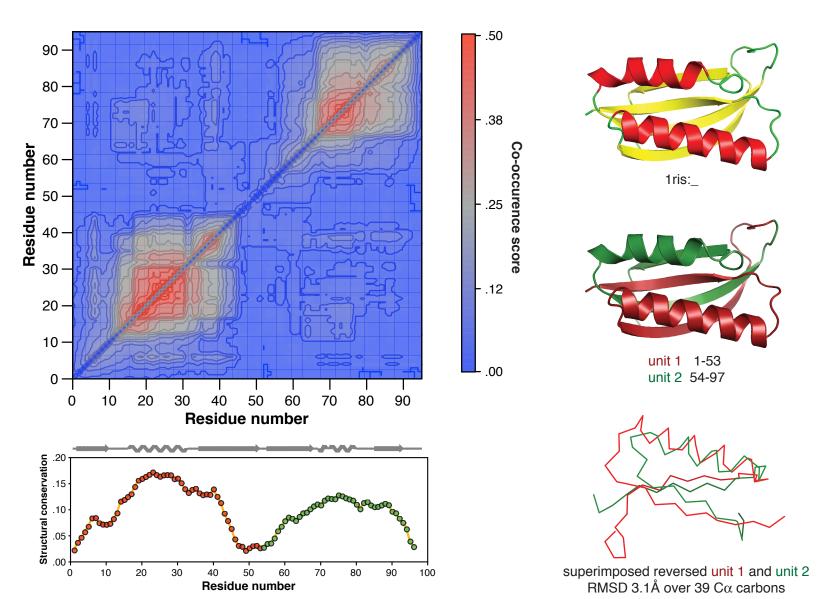

2163 chains from Islam et al. 1995 → 569 Non-redundant <2Å && <30aa diff.

Divide randomly into two sets

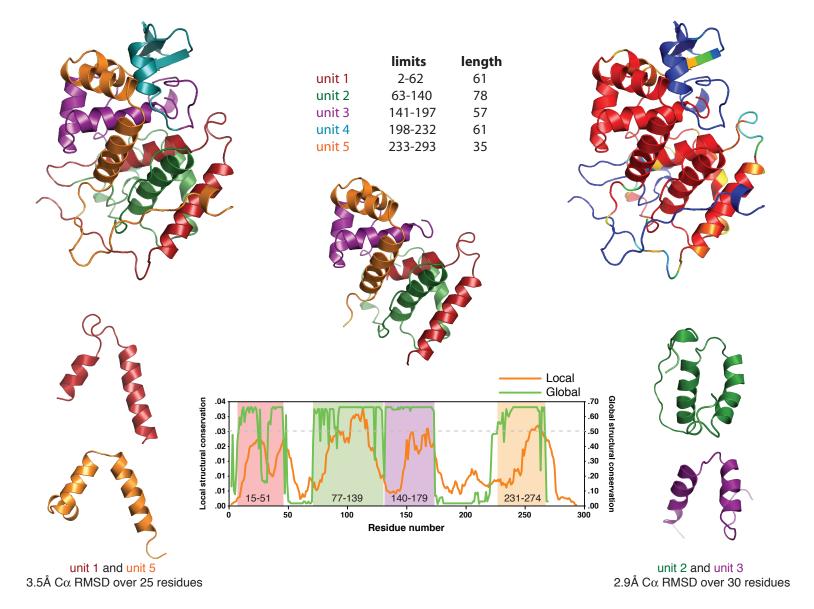

Remove of incomplete or obsolete entries.

Training set → 242 chains Testing set → 234 chains

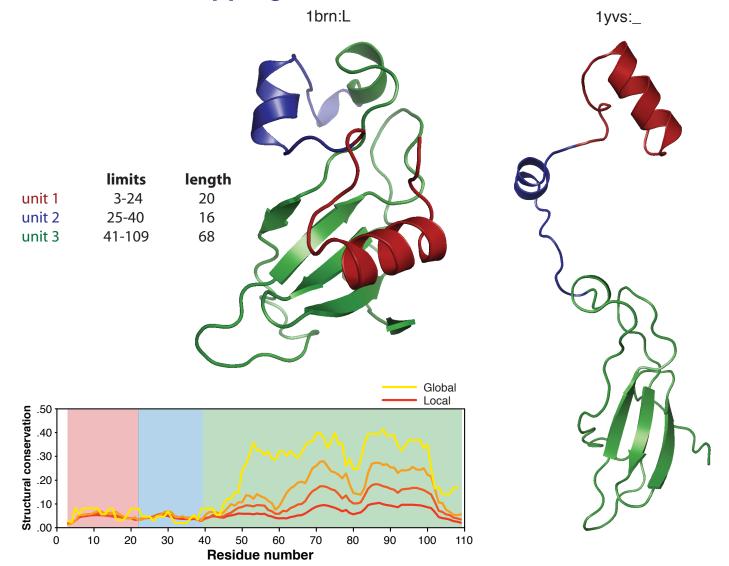
R = Volume/ASA



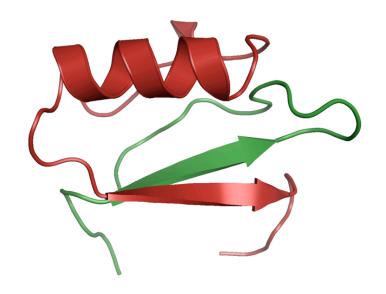
Domains as recurrent fragments


Repetitions as recurrent fragments

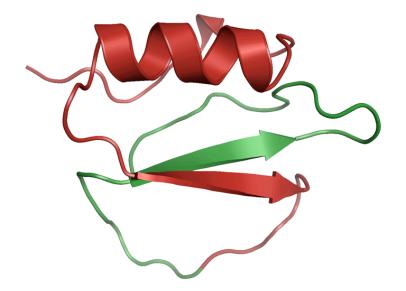
Ribosomal protein S6 (1ris) $\alpha+\beta \rightarrow$ Ferrodoxin Like domain


Repetitions as recurrent fragments

Cytochrome C Peroxidase (2cyp) all- $\alpha \rightarrow ccP$ -like domain

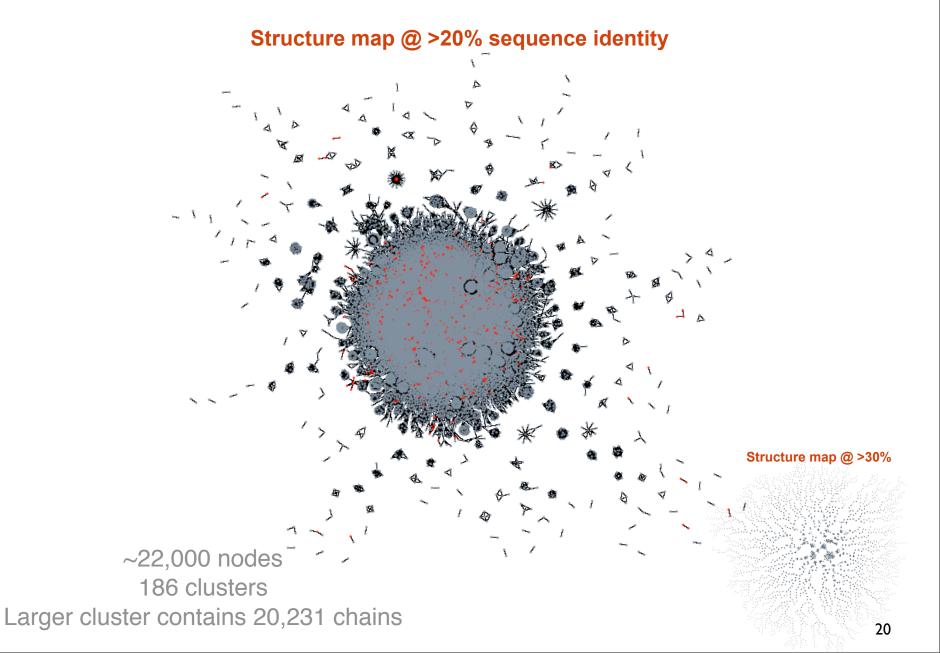

Swapping of recurrent fragments

Barnase Domain-Swapping



Co-folding of recurrent fragments

Chymotrypsin inhibitor 2


1-37 | 38-64

1-40 | 41-64

Neira JL, Davis B, Ladurner AG, Buckle AM, Gay GP, Fersht AR. 1996. Fold Des 1:189-208.
 Ladurner AG, Itzhaki LS, de Prat GG, Fersht AR. 1997. J Mol Biol 273:317-329.

Sequence space .vs. Structure space

Sequence space .vs. Structure space

For many protein structures function is *unknown*

	Structural Genomics*	Traditional methods
Annotaated**	654	28,342
Not Annotaated	506 (43.6%)	6,815 (19,4%)
Total deposited	1,160	35,157

* annotated as STRUCTURAL GENOMICS in the header of the PDB file
**annotated with either CATH, SCOP, Pfam or GO terms in the MSD database
36,317 protein structures, as of August 8th, 2006

For 20% protein structures function is *unknown*

	Structural Genomics*	Traditional methods
Annotaated**	654	28,342
Not Annotaated	506 (43.6%)	6,815 (19,4%)
Total deposited	1,160	35,157

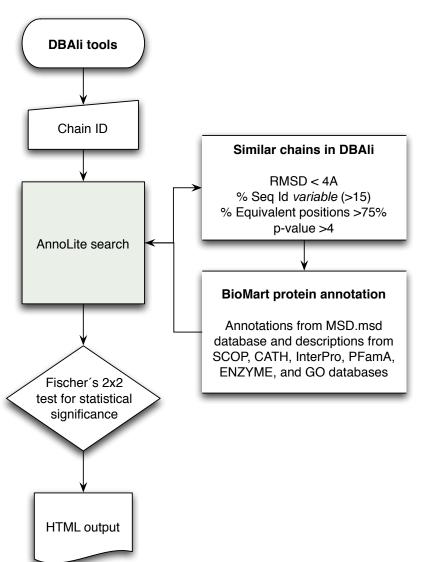
* annotated as STRUCTURAL GENOMICS in the header of the PDB file
**annotated with either CATH, SCOP, Pfam or GO terms in the MSD database
36,317 protein structures, as of August 8th, 2006

CATH: 9 7.5e-99 2.70.100.10 1,4-Beta-D-Glucan Celloblohydrolase

	Con	.P-value	Link	Description
		7.5e-99		1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:		0.00	<u>b.29.1.10</u>	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99 6.0e-51 1.0e-42	IPR001722 IPR008985 IPR000254	Glycoside hydrolase, family 7 Concanavalin A-like lectin/glucanase Cellulose-binding region, fungal
EC Number:	•	1.2e-44 6.0e-41	3.2.1.91 3.2.1.4	Cellulose 1,4-beta-cellobiosidase. Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 4
	•	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🕹
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds 🟅
	•	1.4e-30	0008810	cellulase activity 🕹
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds $ \mathcal{L} $
	•	1.0e+0	0016787	hydrolase activity 🕹
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🕻
	•	1.2e-54	0000272	polysaccharide catabolism 🟅
	•	3.6e-20	0005975	carbohydrate metabolism 🕹
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🕹

- Information annotated in the MSD database.
- High, o medium and low confidence annotations not annotated in the MSD database.
- High, @ medium and @ low confidence annotations already annotated in the MSD database.

Benchmark set


	Number of chains
Initial set*	50,223
FULL annotation**	10,997
Non-redundant set***	1,879

*data from BioMart MSD.3 (release February 2005)

^{**}annotated with CATH, SCOP, Pfam, EC, InterPro, and GO terms in the MSD database

^{**}not two chains can be structurally aligned within 2A, superimposing more than 60% of their C atoms and have a length difference inferior to 30aa

Method

AnnoLite results for chain 1qpi:A based on 44 structural similar chains.

	Conf	f.P-value	Link	Description
CATH:	•	7.5e-99	2.70.100.10	1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:	•	0.00	b.29.1.10	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99	IPR001722	Glycoside hydrolase, family 7
	•	6.0e-51	IPR008985	Concanavalin A-like lectin/glucanase
	•	1.0e-42	IPR000254	Cellulose-binding region, fungal
EC Number:	•	1.2e-44	3.2.1.91	Cellulose 1,4-beta-cellobiosidase.
	•	6.0e-41	3.2.1.4	Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 🕹
	•	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🕹
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds ζ
	•	1.4e-30	0008810	cellulase activity 🕹
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	•	1.0e+0	0016787	hydrolase activity 🕹
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🖚
	•	1.2e-54	0000272	polysaccharide catabolism 🕹
	•	3.6e-20	0005975	carbohydrate metabolism 🕹
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🟅

- Information annotated in the MSD database.
- . High, . medium and . low confidence annotations not annotated in the MSD database.
- High, medium and low confidence annotations already annotated in the MSD database.

Scoring function

Fisher's 2x2 contingency test

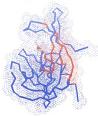
	Non- similar	Similar	Total
Annotated	а	b	a+b
Not Annotated	С	d	c+d
Total	a+c	b+d	n

1b78A SCOP c.51.4.1	Similar	Not similar	Total
Annotated	4	2	6
Not Annotated	0	71,096	71,096
Total	4	71,098	71,102

$$p = \binom{a+b}{a} \binom{c+d}{c} / \binom{n}{a+c}$$
$$= \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$$

$$p = 1.78e^{-19}$$

Sensitivity .vs. Precision


	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
SCOP fold	1e-6	92.7	88.4
CATH fold	1e-3	95.7	90.1
InterPro	1e-3	88.4	78.2
PFam family	1e-4	90.5	82.8
EC number	1e-4	93.3	79.7
GO Molecular Function	1e-1	84.3	80.9
GO Biological Process	1e-3	85.5	74.8
GO Cellular Component	1e-2	77.6	58.6

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$

AnnoLyze

d.113.1.1	23.68	0.948		50 51 52 53 54 55 56 57 58 77 78 79 80 83 84 85 93 95 97 99 134 135 138 142 145
Partner	Av. binding site seq. id.	Av. residue conservation		Residues in predicted binding site (size proportional to the local conservation)
nherited pa	artners:1			
<u>ACY</u>	15.	87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135
<u>80G</u>	20.	00	0.111	19 20 21 48 49 51 96 98 136
	20.			23 29 31 37 44 48 49 83 85 94 96 103 121
				48 49 52 62 63 66 67 113 116

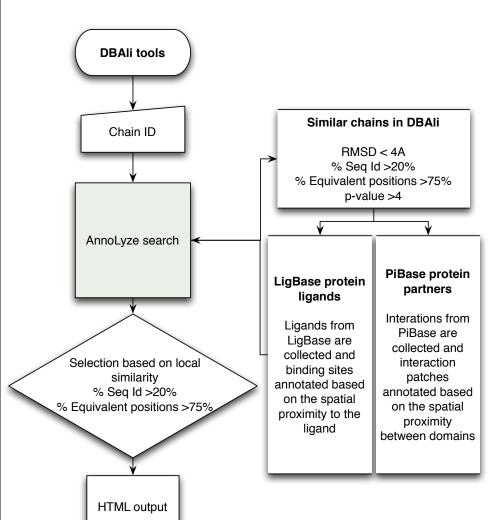
Benchmark

	Number of chains		
Initial set*	78,167		
LigBase**	30,126		
Non-redundant set***	4,948 (8,846 ligands)		

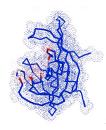
*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)

**annotated with at least one ligand in the LigBase database

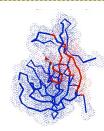
***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


	Number of chains		
Initial set*	78,167		
πBase**	30,425		
Non-redundant set***	4,613 (11,641 partnerships)		

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)

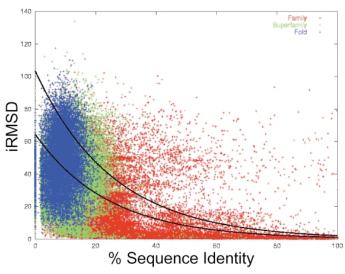

**annotated with at least one partner in the Base database

***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


Method

nherited ligands: 4							
Ligand	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)				
MO2	59.03	0.185	48 49 52 62 63 66 67 113 116				
CRY	20.00	<u>0.111</u>	23 29 31 37 44 48 49 83 85 94 96 103 121				
80G	20.00	<u>0.111</u>	19 20 21 48 49 51 96 98 136				
<u>ACY</u>	15.87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135				

nherited pa	artners:1		
Partner	Av. binding site seq. id.	conservation	Residues in predicted binding site (size proportional to the local conservation)
<u>d.113.1.1</u>	23.68	0.948	19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145



Scoring function

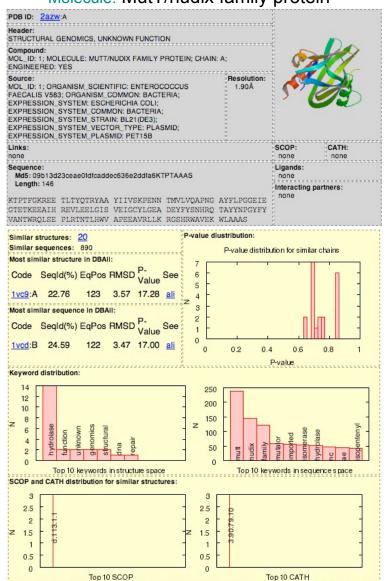
Ligands

100 80 **ATP** Sequence Identity (%) ADP **AMP** 60 GDP GTP 40 20 20 60 80 100 40 Structure Identity (%)

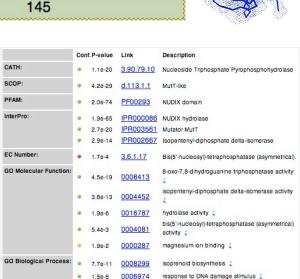
Partners

Aloy et al. (2003) J.Mol.Biol. 332(5):989-98.

Sensitivity .vs. Precision

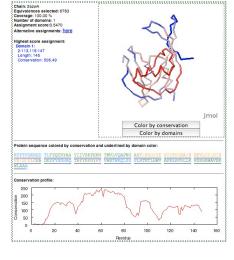

	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)	
Ligands	30%	71.9	13.7	
Partners	40%	72.9	55.7	

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$

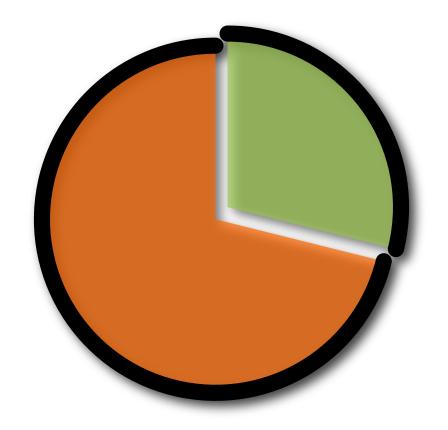

Example (2azwA)

Structural Genomics Unknown Function

Molecule: MutT/nudix family protein



Inherited ligands: 4							
Ligand	Av. bind seq.		Av. residue conservation				
MO2	59.	03	0.185	48 49 52 62 63 66 67 113 116			
CRY	20.	00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121			
8OG	20.	00	0.111	19 20 21 48 49 51 96 98 136			
ACY	15.	87	0.163	<u>0.163</u> 23 29 31 37 44 45 81 83 85 94 96 98 103 121 135			
Inherited pa	artners:1						
Partner	Av. binding site seq. id.	Av. residue conservatio					
<u>d.113.1.1</u>	23.68	0.948		19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145			


DNA replication 4

DNA repair 2

Tropical Disease Initiative (TDI)

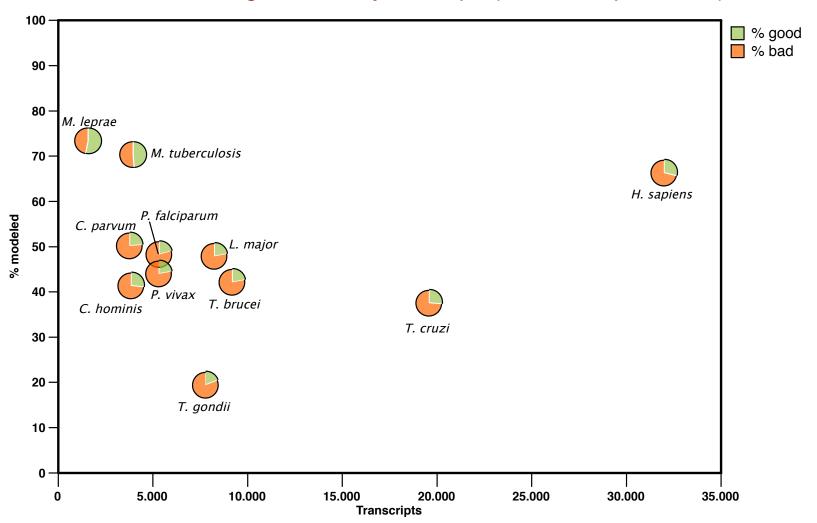
Predicting binding sites in protein structure models.

http://www.tropicaldisease.org

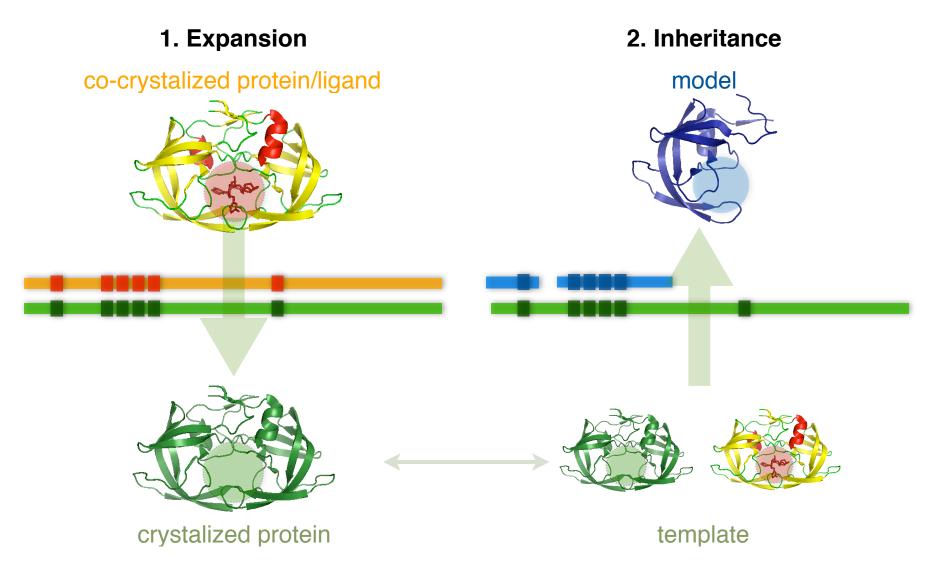
"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486
Tetanus	7,074
Lymphatic filariasis*	5,777
Syphilis	4,200
Trachoma	2,329
Leishmaniasis*	2,090
Ascariasis	1,817
Schistosomiasis*	1,702
Trypanosomiasis*	1,525

Trichuriasis	1,006
Japanese encephalitis	709
Chagas Disease*	667
Dengue*	616
Onchocerciasis*	484
Leprosy*	199
Diphtheria	185
Poliomyelitise	151
Hookworm disease	59

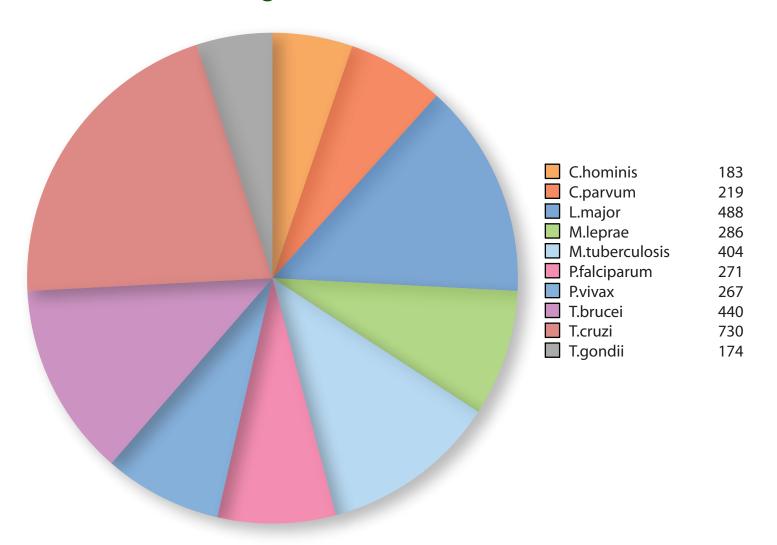

Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life year in 1000's.


^{*} Officially listed in the WHO Tropical Disease Research disease portfolio.

Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)



Comparative docking

Distribution of models with inherited ligands

from 3,882 "good" models using a 90% / 90% "inherited" cut-offs

Summary table

models with inherited ligands

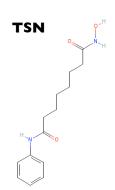
from 16,284 good models, 295 inherited a ligand/substance with at least one compound already approved by FDA and ready to be used from ZINC

	Transcripts	Good	Ligands	Lipinski	Lipinski+ZINC	FDA+ZINC
C. hominis	3,886	886	183	131	28	12 (10)
C. parvum	3,806	949	219	145	30	12 (10)
L. major	8,274	1,845	488	334	84	44 (34)
M. leprae	1,605	1,321	286	189	39	29 (25)
M. tuberculosis	3,991	2,887	404	285	71	44 (37)
P. falciparum	5,363	1,057	271	191	48	20 (16)
P. vivax	5,342	1,042	267	177	37	18 (15)
T. brucei	921	1,795	440	309	94	46 (36)
T. cruzi	19,607	3,915	730	493	127	62 (52)
T. gondii	7,793	587	174	124	28	8 (7)
TOTAL	60,588	16,284	3,462	2,378	586	295 (242)

Example of inheritance (expansion)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

Template 1t64A a human HDAC8 protein.

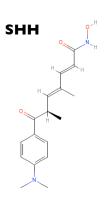


	Origen	Formula	Name	Cov.	Seq, Id. (%)
ZN	X-ray	Zn ²⁺	Zinc ion		
NA	X-ray	Na ⁺	Sodium ion		
CA	X-ray	Ca ²⁺	Calcium ion		
TSN	X-ray	C ₁₇ H ₂₂ N ₂ O ₃	Trichostatin A		
ѕнн	Expanded	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	83.8

Example of inheritance (inheritance)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

	Formula	Name	Cov.	Seq, Id. (%)	Residues
TSN	C ₁₇ H ₂₂ N ₂ O ₃	Trichostatin A	100.00	90.9	90 131 132 140 141 167
sнн	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	90.9	169 256 263 293 295

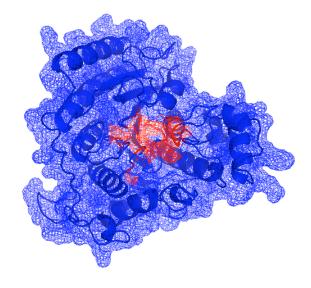


suberoylanilide hydroxamic acid

Pharmacological Action:

Anti-Inflammatory Agents, Non-Steroidal
Antineoplastic Agents
Enzyme Inhibitors
Anticarcinogenic Agents

Inhibits histone deacetylase I and 3


trichostatin A

Pharmacological Action:

Antibiotics, Antifungal
Enzyme Inhibitors
Protein Synthesis Inhibitors

chelates zinc ion in the active site of histone deacetylases, resulting in preventing histone unpacking so DNA is less available for transcription

	LmjF21.0680.1.pdb
Template	It64A
Seq. Id (%)	38.00
MPQS	1.47

Example of inheritance (CDD-Roos-literature)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

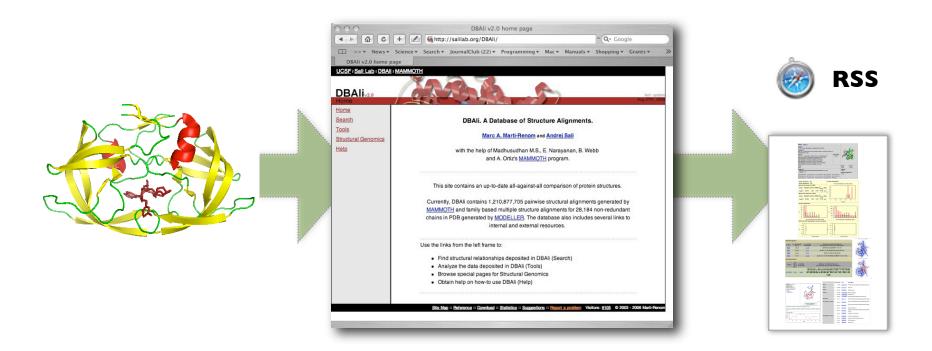
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray*†, Anne M. Gurnett*, Robert W. Myers*, Paula M. Dulski*, Tami M. Crumley*, John J. Allocco*, Christine Cannova*, Peter T. Meinke‡, Steven L. Colletti‡, Maria A. Bednarek‡, Sheo B. Singh§, Michael A. Goetz§, Anne W. Dombrowski§, Jon D. Polishook§, and Dennis M. Schmatz*

Departments of *Parasite Biochemistry and Cell Biology, [‡]Medicinal Chemistry, and [§]Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065


Antimicrobial Agents and Chemotherapy, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435-1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Vol. 48, No. 4

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

DBAli future work

http://bioinfo.cipf.es/squ/services/DBAli/
http://www.salilab.org/DBAli/

Acknowledgments

COMPARATIVE MODELING Andrej Sali

M. S. Madhusudhan **Narayanan Eswar** Min-Yi Shen

Ursula Pieper

Ben Webb

Maya Topf

MODEL ASSESSMENT

David Eramian Min-Yi Shen Damien Devos

FUNCTIONAL ANNOTATION Andrea Rossi Fred Davis

FUNDING

Prince Felipe Research Center Marie Curie Reintegration Grant STREP EU Grant

MODEL ASSESSMENT

Francisco Melo (CU)
Alejandro Panjkovich (CU)

STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB) NY-SGXRC

MAMMOTH Angel R. Ortiz

FUNCTIONAL ANNOTATION
Fatima Al-Shahrour
Joaquin Dopazo

BIOLOGY

Jeff Friedman (RU)
James Hudsped (RU)
Partho Ghosh (UCSD)
Alvaro Monteiro (Cornell U)
Stephen Krilis (St.George H)

Tropical Disease Initiative Stephen Maurer (UC Berkeley) Arti Rai (Duke U) Andrej Sali (UCSF) Ginger Taylor (TSL)

CCPR Functional Proteomics

Patsy Babbitt (UCSF)
Fred Cohen (UCSF)
Ken Dill (UCSF)
Tom Ferrin (UCSF)
John Irwin (UCSF)
Matt Jacobson (UCSF)
Tack Kuntz (UCSF)
Andrej Sali (UCSF)
Brian Shoichet (UCSF)
Chris Voigt (UCSF)

FVΔ

Burkhard Rost (Columbia U) Alfonso Valencia (CNB/UAM)

CAMP

Xavier Aviles (UAB)
Hans-Peter Nester (SANOFI)
Ernst Meinjohanns (ARPIDA)
Boris Turk (IJS)
Markus Gruetter (UE)
Matthias Wilmanns (EMBL)
Wolfram Bode (MPG)

http://bioinfo.cipf.es/sgu/