Comparative Protein Structure Prediction

Marc A. Marti-Renom

http://bioinfo.cipf.es/squ/

Structural Genomics Unit **Bioinformatics Department**

DISCLAIMER!

Name	Type ^a	World Wide Web address \underline{b}
DATABASES		
CATH	S	http://www.biochem.ucl.ac.uk/bsm/cath/
DBAli	S	http://www.salilab.org/DBAli/
GenBank	S	http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html
GeneCensus	S	http://bioinfo.mbb.yale.edu/genome
MODBASE	S	http://salilab.org/modbase/
MSD	S	http://www.rcsb.org/databases.html
NCBI	S	http://www.ncbi.nlm.nih.gov/
PDB	S	http://www.rcsb.org/pdb/
PSI	S	http://www.nigms.nih.gov/psi/
Sacch3D	S	http://genome-www.stanford.edu/Sacch3D/
SCOP	S	http://scop.mrc-Imb.cam.ac.uk/scop/
TIGR	S	http://www.tigr.org/tdb/mdb/mdbcomplete.html
TrEMBL	S	http://srs.ebi.ac.uk/
FOLD ASSIGNM	ENT	
123D	S	http://123d.ncifcrf.gov/
3D-PSSM	S	http://www.sbg.bio.ic.ac.uk/~3dpssm/
BIOINBGU	S	http://www.cs.bgu.ac.il/~bioinbgu/
BLAST	S	http://www.ncbi.nlm.nih.gov/BLAST/
DALI	S	http://www2.ebi.ac.uk/dali/
FASS	S	http://bioinformatics.burnham-inst.org/FFAS/index.html
FastA	S	http://www.ebi.ac.uk/fasta3/
FRSVR	S	http://fold.doe-mbi.ucla.edu/
FUGUE	S	http://www-cryst.bioc.cam.ac.uk/~fugue/
LOOPP	S	http://ser-loopp.tc.cornell.edu/cbsu/loopp.htm

http://bioinfo.cipf.es/sgu/?page=resources

Summary

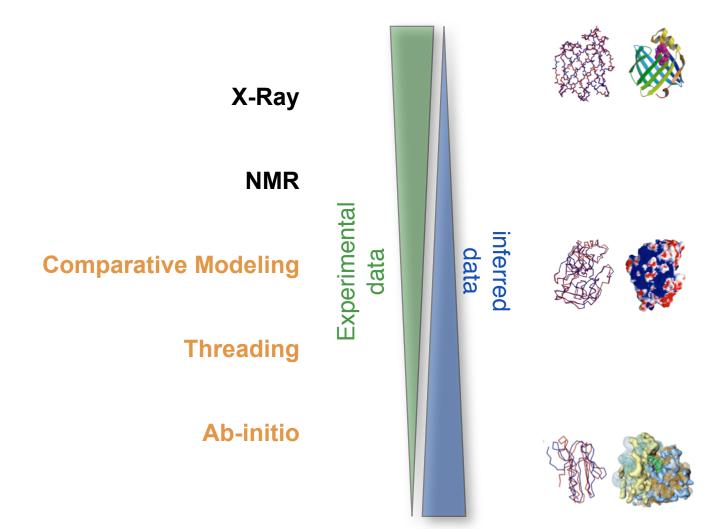
- INTRO
- Structural Space
- Profile-Profile & MOULDER
- Function from models

MODELLER tutorial/example

Nomenclature

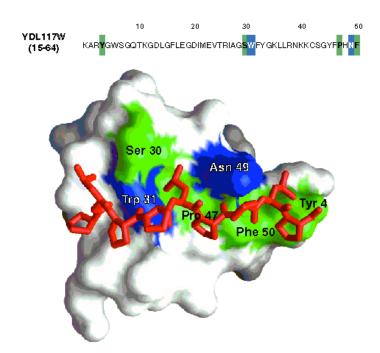
Homology: Sharing a common ancestor, may have similar or dissimilar functions

Similarity: Score that quantifies the degree of relationship between two sequences.


Identity: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

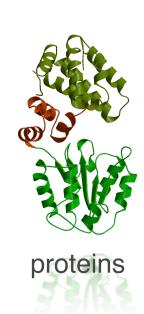
Template: 3D structure/s to be used during protein structure prediction.


Model: Predicted 3D structure of the target sequence.

protein prediction .vs. protein determination

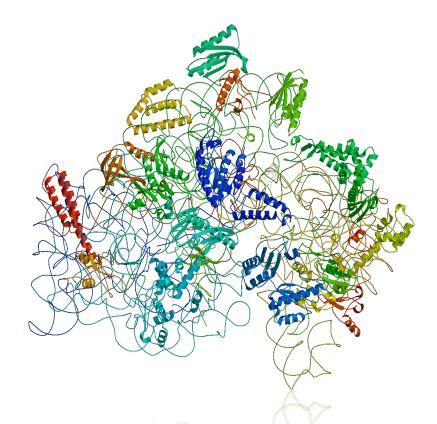
Why is it useful to know the structure of a protein, not only its sequence?

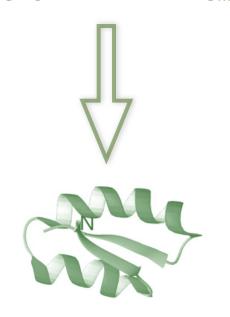
- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

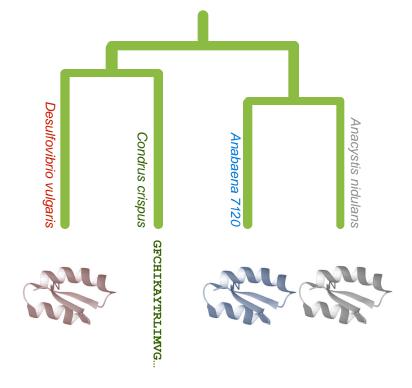


In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.

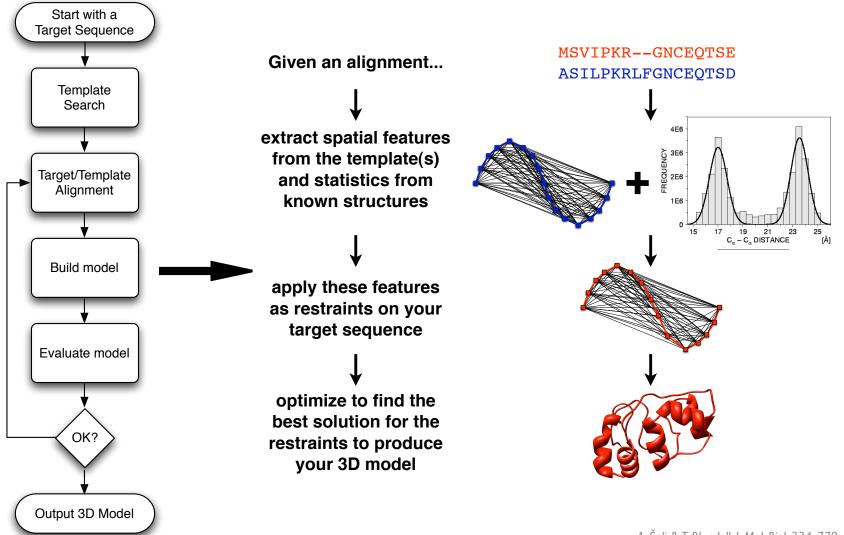

From domains to assemblies


~2.5 domains in a protein a few domain partners per domain


assemblies

Principles of protein structure

GFCHIKAYTRLIMVG...



Folding (physics) *Ab initio* prediction

Evolution (rules)
Threading
Comparative Modeling

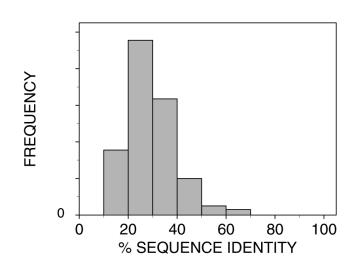
Comparative modeling by satisfaction of spatial restraints MODELLER

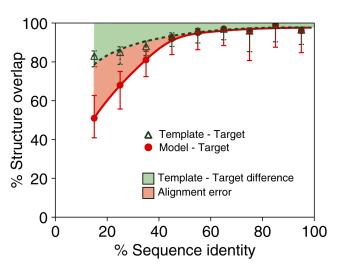
A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Comparative modeling by satisfaction of spatial restraints Types of errors and their impact

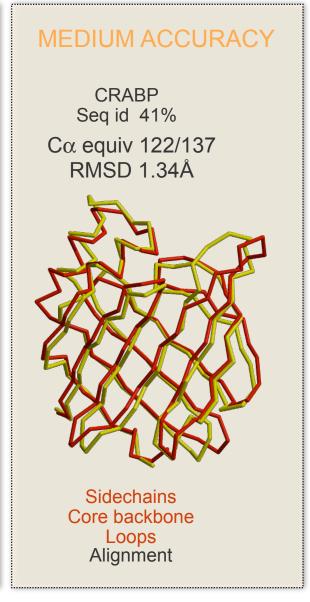
Wrong fold

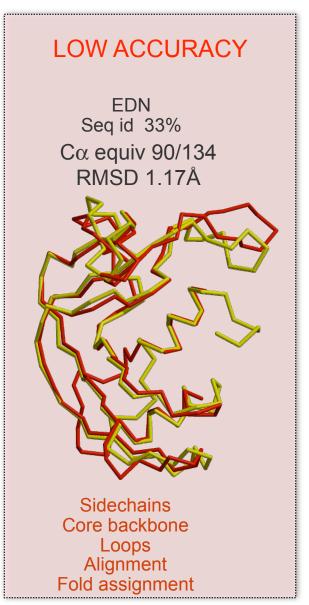
Miss alignments

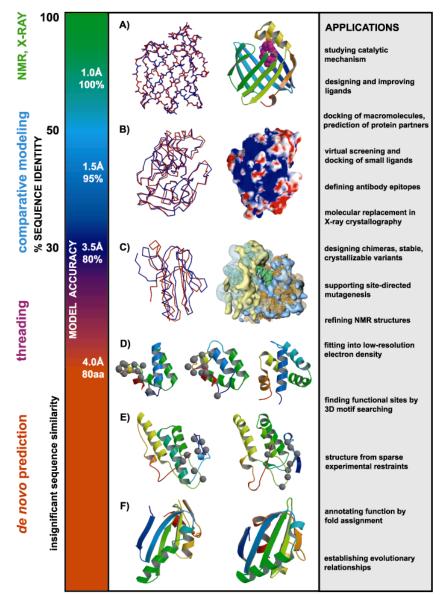

Loop regions

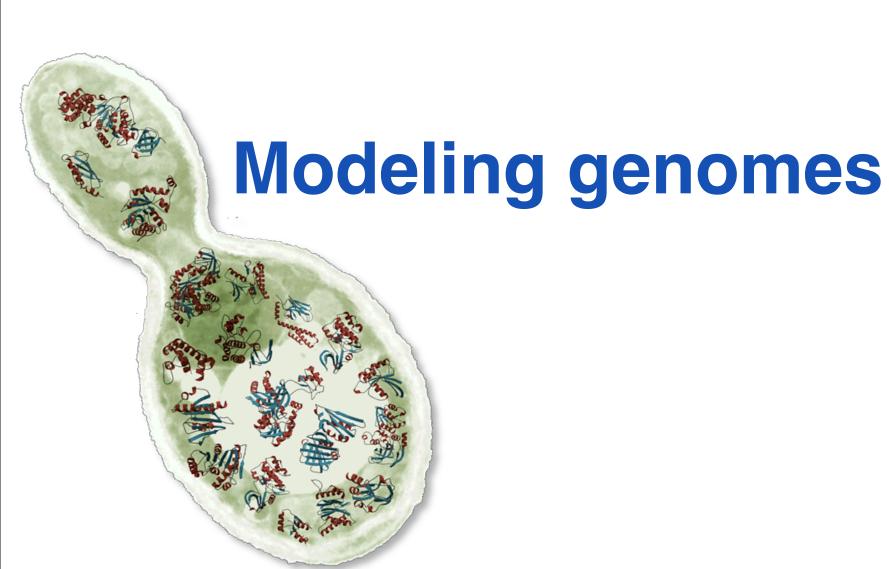


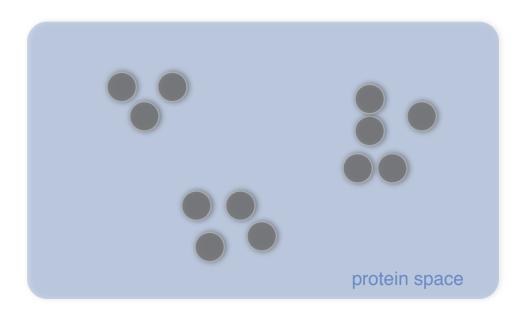
Rigid body distortions


Side-chain packing

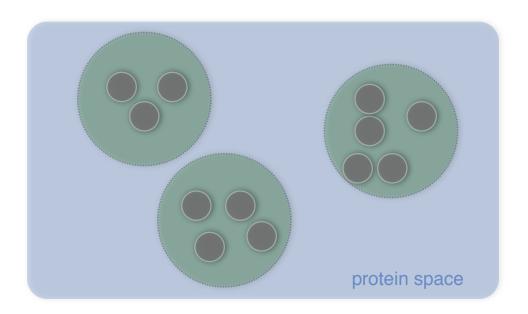



Model Accuracy


HIGH ACCURACY NM23 Seq id 77% Cα equiv 147/148 RMSD 0.41Å **Sidechains** Core backbone Loops X-RAY / MODEL

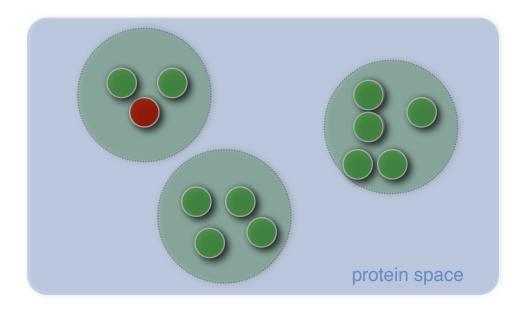

Utility of protein structure models, despite errors

Characterize most protein sequences based on related known structures


- 1. The number of "families" is much smaller than the number of proteins.
 - 2. **Any one** of the members of a family is **fine**.

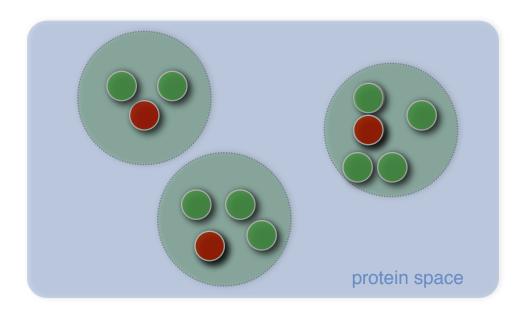
There are ~16,000 families (90%) @ 30% sequence identity cutoff

Characterize most protein sequences based on related known structures


- 1. The number of "families" is much smaller than the number of proteins.
 - 2. **Any one** of the members of a family is **fine**.

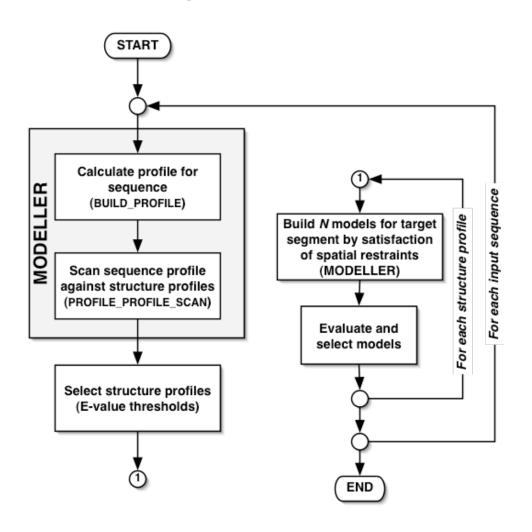
There are ~16,000 families (90%) @ 30% sequence identity cutoff

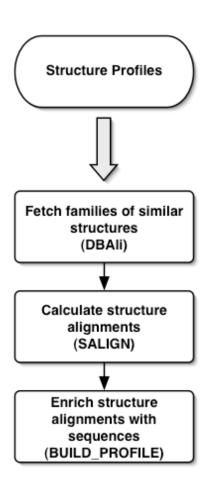
Characterize most protein sequences based on related known structures


- 1. The number of "families" is much smaller than the number of proteins.
 - 2. **Any one** of the members of a family is **fine**.

There are ~16,000 families (90%) @ 30% sequence identity cutoff

Characterize most protein sequences based on related known structures

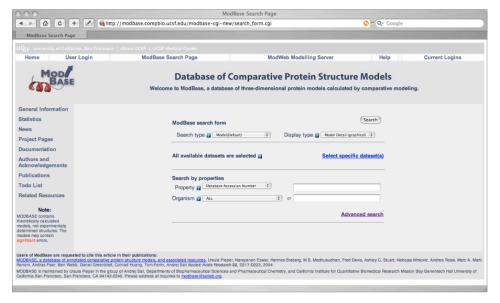

- 1. The number of "families" is much smaller than the number of proteins.
 - 2. **Any one** of the members of a family is **fine**.



There are ~16,000 families (90%) @ 30% sequence identity cutoff

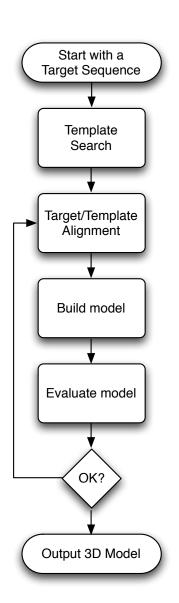
MODPIPE2.0

Large-Scale Protein Structure Modeling


Eswar et.al., (2003) Nucl.Acids.Res. 31(13)

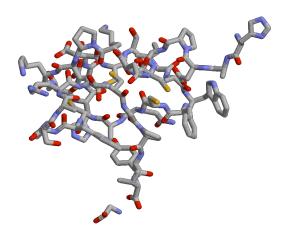
ModBase Statistics

Large-scale modeling of the TrEMBL-SWISSPROT databases

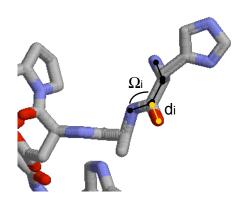

http://www.salilab.org/modbase/

Sequences (total)	2,186,210
Sequences (modeled)	1,340,687
Models	4,580,270

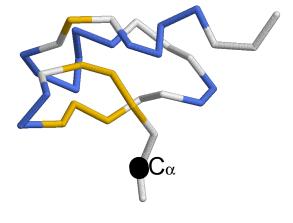
Structure-Structure alignments

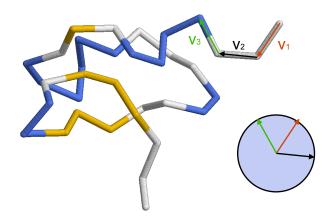


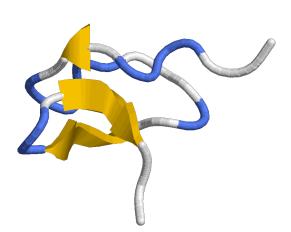
As any other bioinformatics problem...

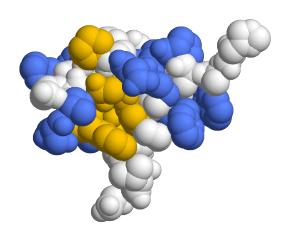

- Representation
- Scoring
- Optimizer

Representation


Structures


All atoms and coordinates


Dihedral space or distance space

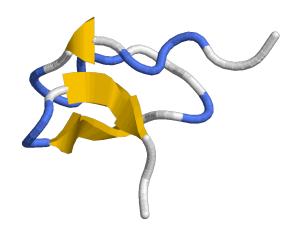

Reduced atom representation

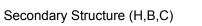
Vector representation

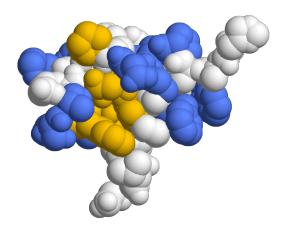
Secondary Structure

Accessible surface (and others)

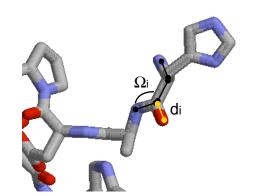
Scoring


Raw scores

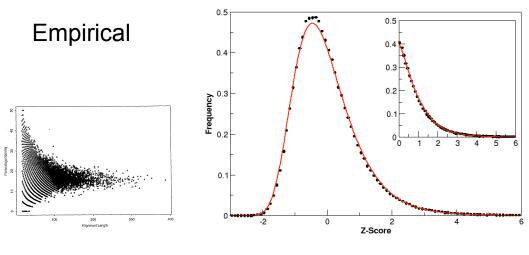

	С	S	T	P	A	G	N	D	E	Q	Н	R	K	М	I	L	v	F	Y	w
С	9	-1	-1	-3	0	-3	-3	-3	-4	-3	-3	-3	-3	-1	-1	-1	-1	-2	-2	-2
S	-1	4	1	-1	1	0	1	0	0	0	-1	-1	0	-1	-2	-2	-2	-2	-2	-3
Т	-1	1	4	1	-1	1	0	1	0	0	0	-1	0	-1	-2	-2	-2	-2	-2	-3
P	-3	-1	1	7	-1	-2	-1	-1	-1	-1	-2	-2	-1	-2	-3	-3	-2	-4	-3	-4
A	0	1	-1	-1	4	0	-1	-2	-1	-1	-2	-1	-1	-1	-1	-1	-2	-2	-2	-3
G	-3	0	1	-2	0	6	-2	-1	-2	-2	-2	-2	-2	-3	-4	-4	0	-3	-3	-2
N	-3	1	0	-2	-2	0	6	1	0	0	-1	0	0	-2	-3	-3	-3	-3	-2	-4
D	-3	0	1	-1	-2	-1	1	6	2	0	-1	-2	-1	-3	-3	-4	-3	-3	-3	-4
E	-4	0	0	-1	-1	-2	0	2	5	2	0	0	1	-2	-3	-3	-3	-3	-2	-3
Q	-3	0	0	-1	-1	-2	0	0	2	5	0	1	1	0	-3	-2	-2	-3	-1	-2
Н	-3	-1	0	-2	-2	-2	1	1	0	0	8	0	-1	-2	-3	-3	-2	-1	2	-2
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5	2	-1	-3	-2	-3	-3	-2	-3
K	-3	0	0	-1	-1	-2	0	-1	1	1	-1	2	5	-1	-3	-2	-3	-3	-2	-3
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5	1	2	-2	0	-1	-1
I	-1	-2	-2	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4	2	- 1	0	-1	-3
L	-1	-2	-2	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4	3	0	-1	-2
V	-1	-2	-2	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4	-1	-1	-3
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6	3	1
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	2
W	-2	-3	-3	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11


Aminoacid substitutions

$$RMSD = \sqrt{\sum (x_i - \overline{X})^2}$$


Root Mean Square Deviation

Accessible surface (B,A [%])

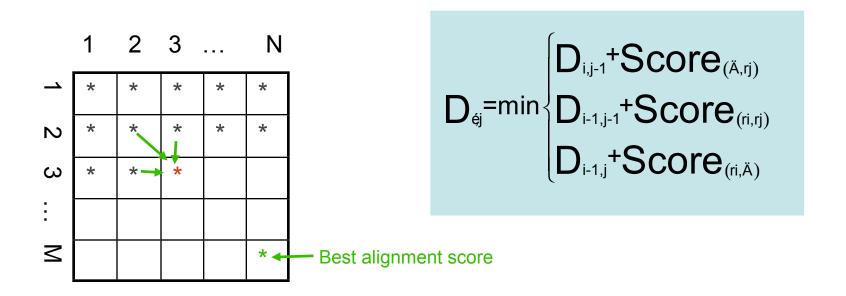


Angles or distances

Scoring

Significance of an alignment (score)

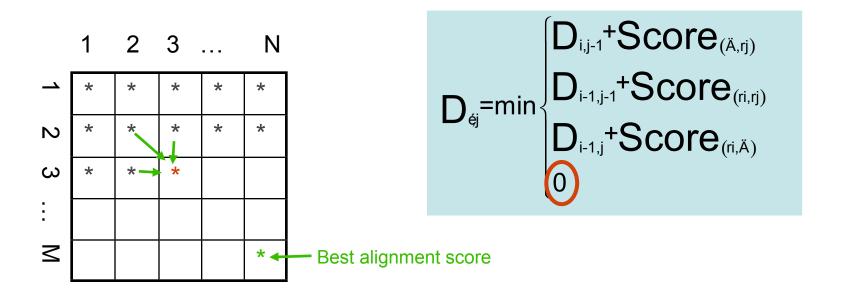
Probability that the optimal alignment of two random sequences/structures of the same length and composition as the aligned sequences/structures have at least as good a score as the evaluated alignment.


Sometimes approximated by Z-score (normal distribution).

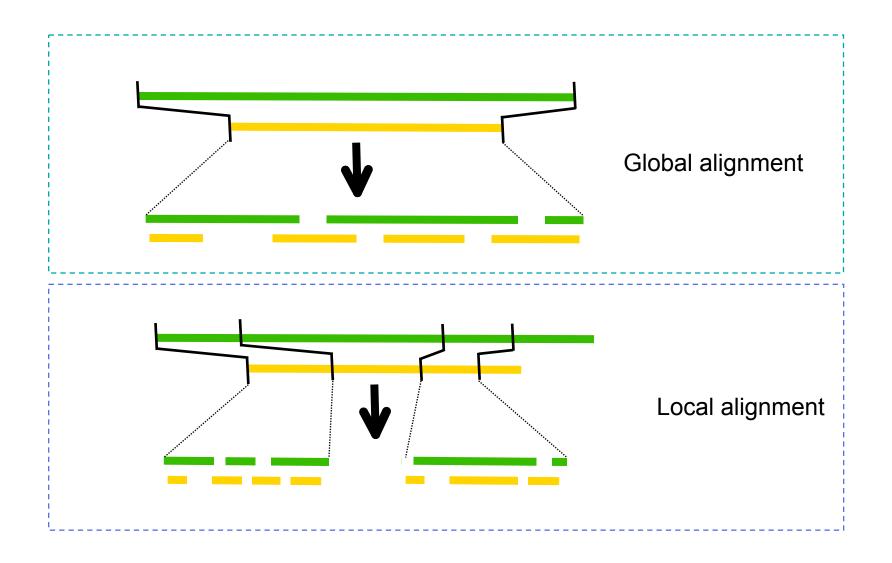
Analytic
$$P(s) = e^{-\lambda (s-\mu)}$$

$$P(s \ge x) = 1 - \exp(e^{-\lambda (s-\mu)})$$

Global dynamic programming alignment



Backtracking to get the best alignment

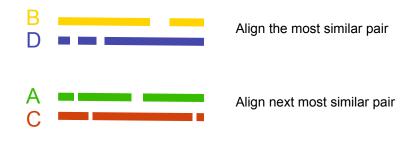

Global dynamic programming alignment

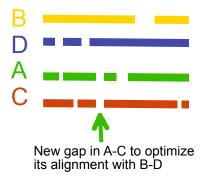
Backtracking to get the best alignment

Global .vs. local alignment

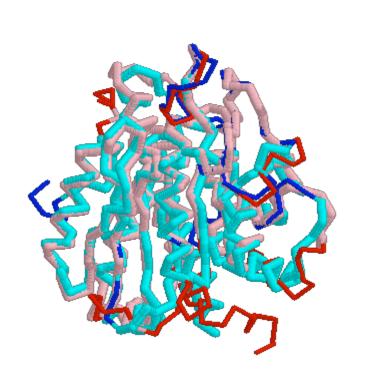
Multiple alignment

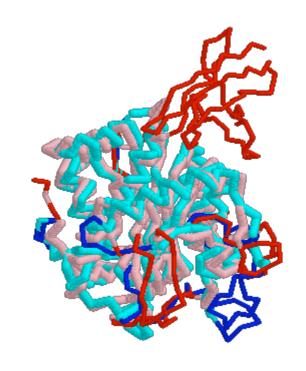
Pairwise alignments


Example - 4 sequences A, B, C, D.


6 pairwise comparisons then cluster analysis

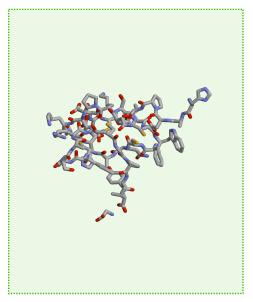
Multiple alignments

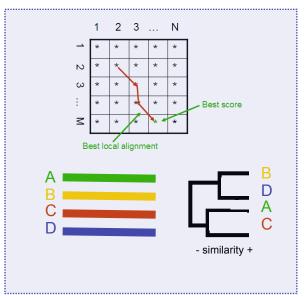

Following the tree from step 1

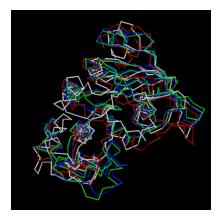


Align B-D with A-C

Coverage .vs. Accuracy

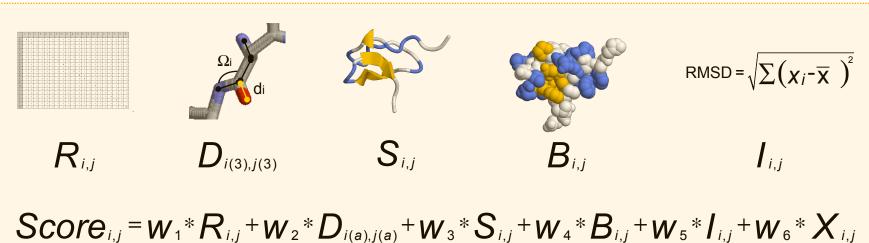


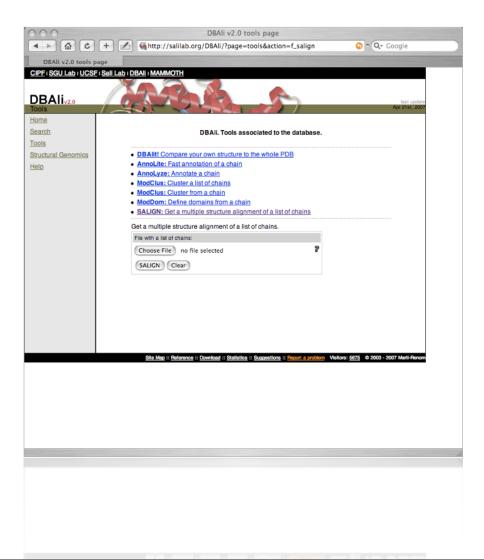

Same RMSD ~ 2.5Å


Coverage ~90% Cα

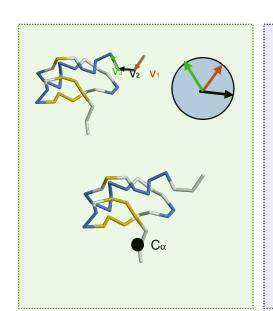
Coverage ~75% Cα

Sequence-Structure alignment by properties conservation (SALIGN-MODELLER)

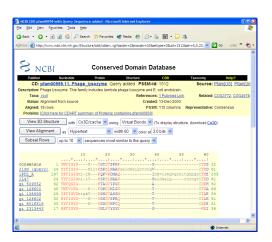



- ✓ Uses all available structural information
- ✓ Provides the optimal alignment

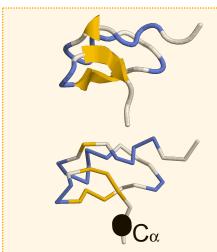
Computationally expensive

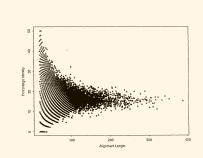


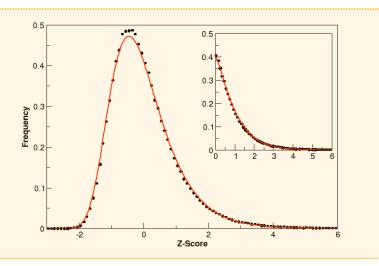
Structural alignment by properties conservation (SALIGN-MODELLER)


http://www.salilab.org/DBAli

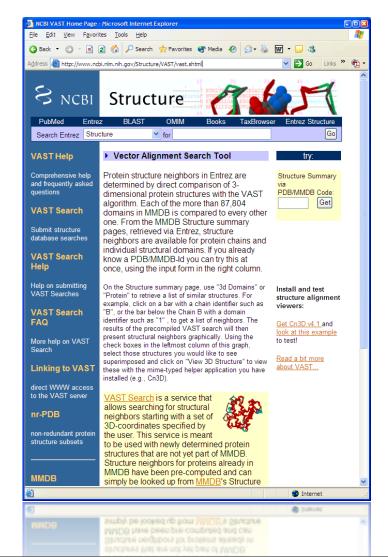
Vector Alignment Search Tool (VAST)



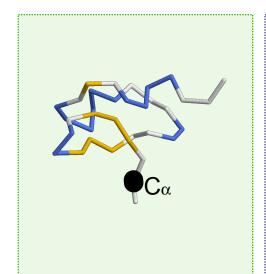

- Graph theory search of similar SSE
- Refining by Monte Carlo at all atom resolution


√ Good scoring system with significance

Reduces the protein representation



$$RMSD = \sqrt{\sum (x_i - \overline{X})^2}$$

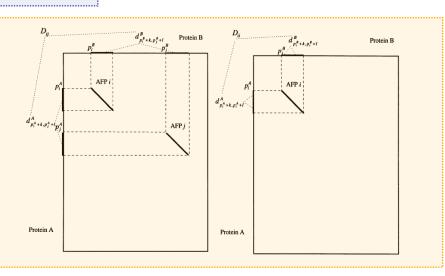


Vector Alignment Search Tool (VAST)

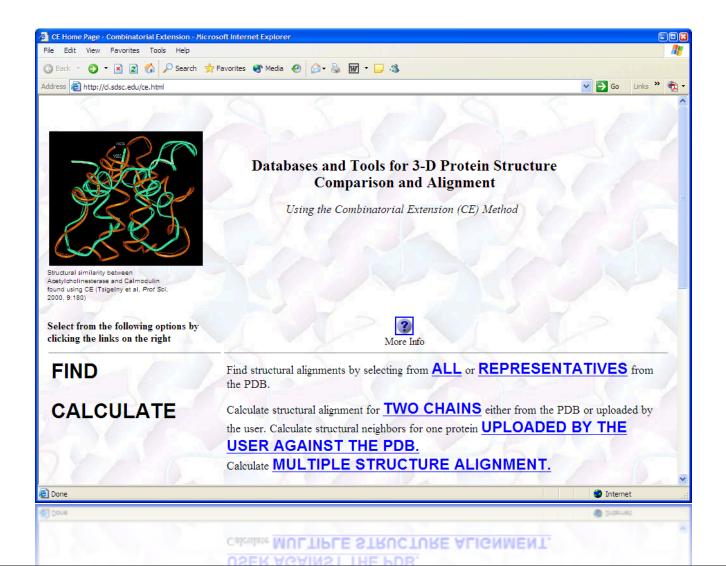

http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml

Incremental combinatorial extension (CE)

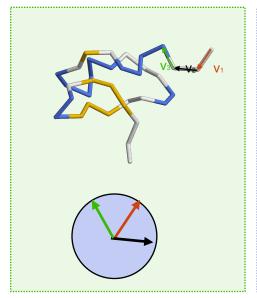
- Exhaustive combination of fragments
- Longest combination of AFPs
- Heuristic similar to PSI-BLAST

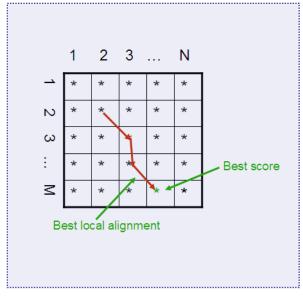

- ✓ FAST!
- ✓ Good quality of local alignments

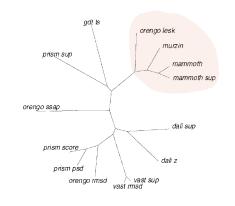
Complicated scoring and heuristics


8 residues peptides

$$RMSD = \sqrt{\sum (x_i - \overline{x})^2}$$



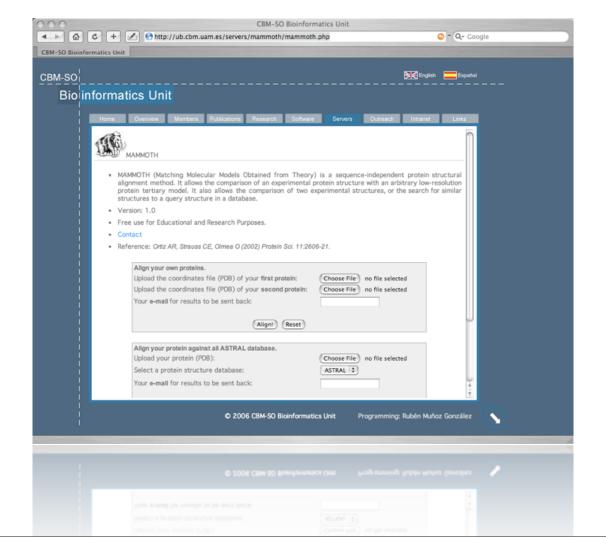

Incremental combinatorial extension (CE)


http://cl.sdsc.edu/ce.html

Matching molecular models obtained from theory (MAMMOTH)

- √ VERY FAST!
- √ Good scoring system with significance

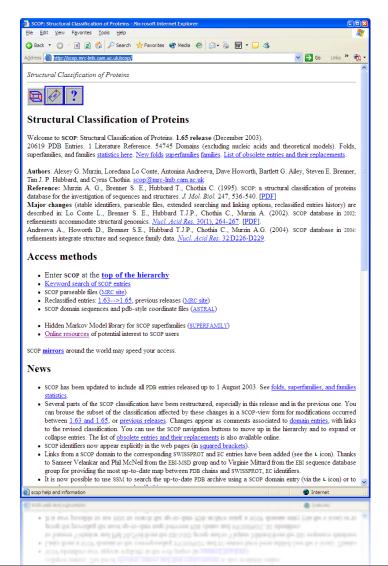
Reduces the protein representation


$$URMS^{R} = \sqrt{2.0 - \frac{2.84}{\sqrt{n}}}$$

$$S_{AB} = \frac{(URMS^{R} - URMS^{AB})D}{URMS^{R}}$$

$$O(00)$$

Matching molecular models obtained from theory (MAMMOTH)


http://ub.cbm.uam.es/servers/mammoth/

Classification of the structural space

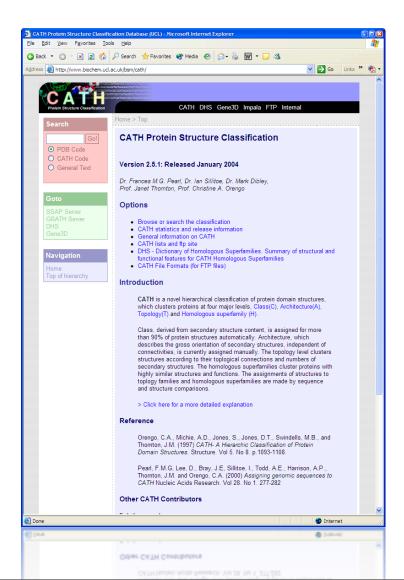
SCOP_{1.71} database

http://scop.mrc-lmb.cam.ac.uk/scop/

- ✓ Largely recognized as "standard of gold"
- ✓ Manually classification
- ✓ Clear classification of structures in:

CLASS FOLD SUPER-FAMILY FAMILY

√ Some large number of tools already available

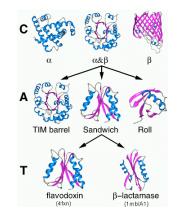

Manually classification Not 100% up-to-date Domain boundaries definition

Class	Number of folds	Number of superfamilies	Number of families
All alpha proteins	226	392	645
All beta proteins	149	300	594
Alpha and beta proteins (a/b)	134	221	661
Alpha and beta proteins (a+b)	286	424	753
Multi-domain proteins	48	48	64
Membrane and cell surface proteins	49	90	101
Small proteins	79	114	186
Total	971	1589	3004

Murzin A. G., el at. (1995). J. Mol. Biol. 247, 536-540.

CATH_{3.1.0} database

http://www.cathdb.info

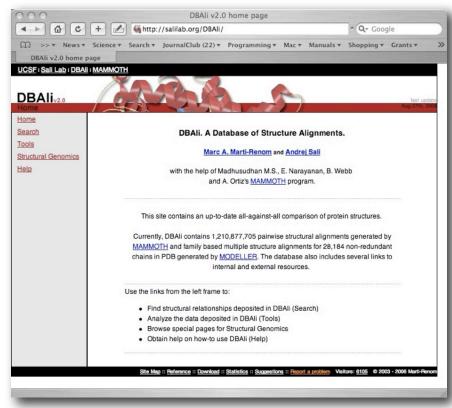

Uses FSSP for superimposition

- √ Recognized as "standard of gold"
- √ Semi-automatic classification
- ✓ Clear classification of structures in:

CLASS
ARCHITECTURE
TOPOLOGY
HOMOLOGOUS SUPERFAMILIES

- √ Some large number of tools already available
- ✓ Easy to navigate

Semi-automatic classification Domain boundaries definition



	0		3	0		0	D
5	305	652	1850	2329	3001	5587	19729
20	191	415	1860	2531	3846	6503	25537
14	496	922	3922	5303	6659	12998	47193
1	92	102	162	200	275	403	1426
40	1084	2091	7794	10363	13781	25491	93885
	5 20 14 1	5 305 20 191 14 496 1 92	5 305 652 20 191 415 14 496 922 1 92 102	5 305 652 1850 20 191 415 1860 14 496 922 3922 1 92 102 162	5 305 652 1850 2329 20 191 415 1860 2531 14 496 922 3922 5303 1 92 102 162 200	5 305 652 1850 2329 3001 20 191 415 1860 2531 3846 14 496 922 3922 5303 6659 1 92 102 162 200 275	5 305 652 1850 2329 3001 5587 20 191 415 1860 2531 3846 6503 14 496 922 3922 5303 6659 12998 1 92 102 162 200 275 403

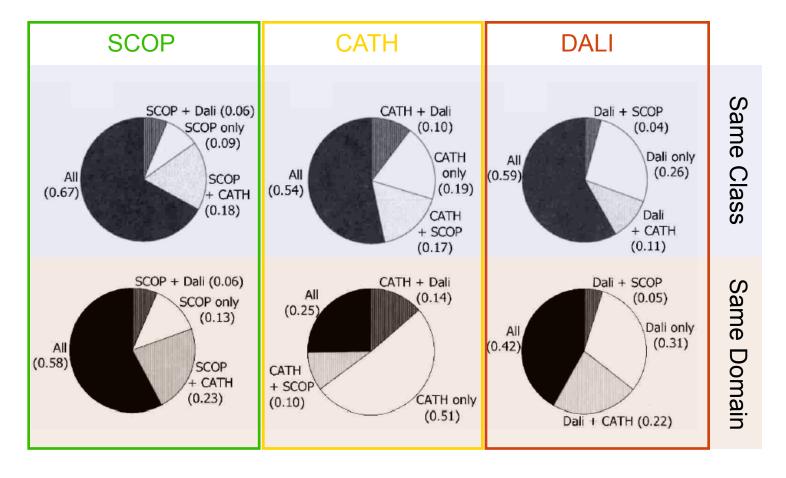
DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/

http://www.salilab.org/DBAli/

- Uses MAMMOTH for similarity detection
- √ VERY FAST!!!
- √ Good scoring system with significance

Ortiz AR, (2002) Protein Sci. 11 pp2606

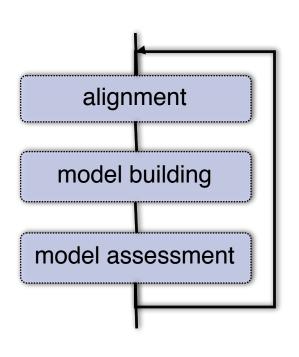

- √ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families.
- ✓ Easy to navigate
- ✓ Provides tools for structure analysis

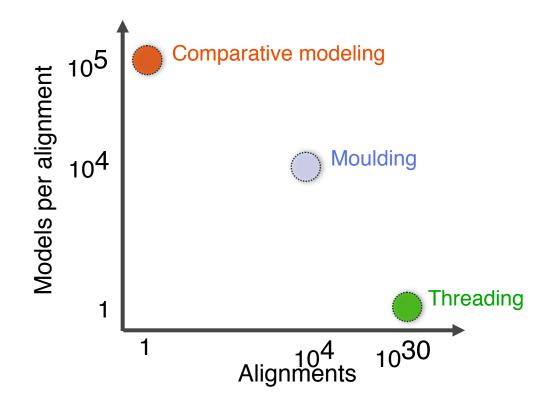
Does not provide a stable classification similar to that of CATH or SCOP

Pairwise structure alignments						
Last update:	February 15th, 2007					
Number of chains:	88,276					
Number of structure-structure comparisons:*	1,425,479,365					
Multiple structure alignments						
Last update:	January 23rd, 2007					
Number of representative chains:	30,900					
Number of families:	11,615					

Classification of the structural space Not an easy task!

Domain definition AND domain classification





John, Sali (2003). NAR pp31 3982

Moulding: iterative alignment, model building, model assessment

Genetic algorithm operators

```
Single point cross-over
                                                 ...TSSQ-NMK-LGVFWGY...
...TSSQ—NMKLGVFWGY——...
...V—SŠCN——GDLHMKVGV...
                                                 ...V—SŠCNGDLHMKV——GV...
                                                 ...TSSONMKLGVFWGY---...
...TSSQNMK——LGVFWGY...
                                                 ...VSSCN—GDLHMKVGV...
...VSSCNGDLHMKV——GV...
     Gap insertion
                                                 ...TSSQN—MKLGVFWGY...
...VSSCNGDLHMKVG—V...
  ...TSSONMKLGVFWGY...
...VSSCNGDLHMKVGV...
                                                  ...-T-SSONMKLGVFWGY...
                                                  ...VSSCNGDLHMKVGV--...
       Gap shift
                                                  ...T—S—SQNMKLGVFWGY...
                                                  ...VSSCNGDLHMKVGV--...
 ...T—SSONMKLGVFWGY...
...VSSCNGDLHMKVGV—...
                                                  ...—TSSONMKLGVFWGY...
                                                  ...VSSCNGDLHMKVGV—...
                                                  ...TS-SQNMKLGVFWGY...
                                                  ...VSSCNGDLHMKVGV-
         Also, "two point crossover" and "gap deletion".
```

Composite model assessment score

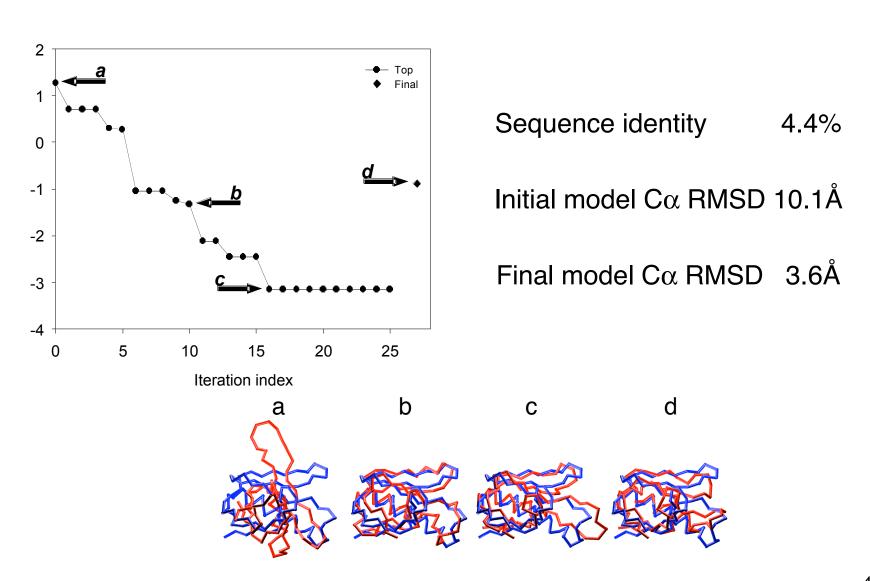
Weighted linear combination of several scores:

- Pair (P_D) and surface (P_S) statistical potentials;
- Structural compactness (S_C);
- Harmonic average distance score (H_a);
- Alignment score (A_S).

$$Z = 0.17 Z(P_P) + 0.02 Z(P_S) + 0.10 Z(S_C) + 0.26 Z(H_a) + 0.45 (A_S)$$

```
Z(score) = (score- \mu)/σ

\mu ... average score of all models


\sigma ... standard deviation of the scores
```

Benchmark with the "very difficult" test set

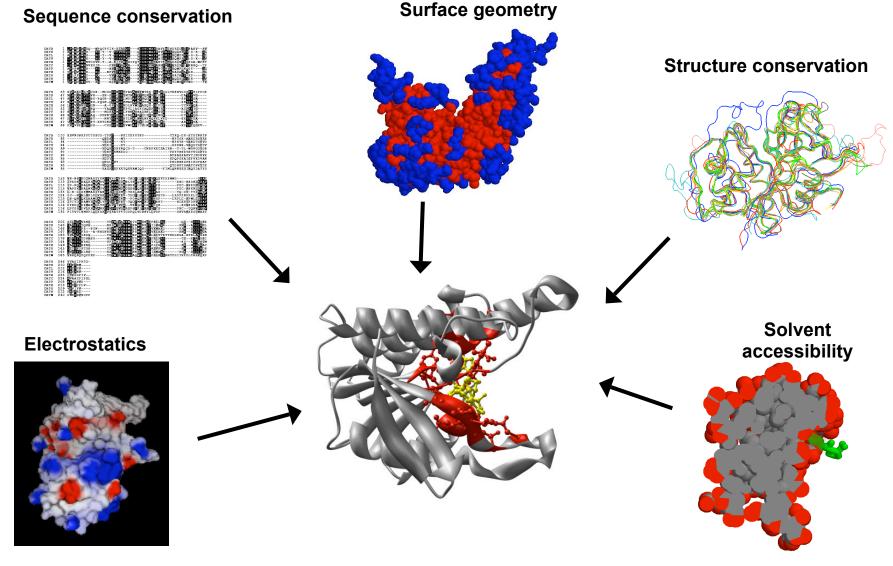
D. Fischer threading test set of 68 structural pairs (a subset of 19)

			Initial pr	ediction	Final p	rediction	Best pr	ediction
Target -template	Sequence identity [%]	Coverage [% aa]	Cα RMSD [Å]	CE overlap [%]	Cα RMSD [A]	CE overlap [%]	Cα RMSD [A]	CE overlap [%]
1ATR-1ATN	13.8	94.3	19.2	20.2	18.8	20.2	17.1	24.6
1BOV-1LTS	4.4	83.5	10.1	29.4	3.6	79.4	3.1	92.6
1CAU-1CAU	18.8	96.7	11.7	15.6	10.0	27.4	7.6	47.4
1COL-1CPC	11.2	81.4	8.6	44.0	5.6	58.6	4.8	59.3
1LFB-1HOM	17.6	75.0	1.2	100.0	1.2	100.0	1.1	100.0
1NSB-2SIM	10.1	89.2	13.2	20.2	13.2	20.1	12.3	26.8
1RNH-1HRH	26.6	91.2	13.0	21.2	4.8	35.4	3.5	57.5
1YCC-2MTA	14.5	55.1	3.4	72.4	5.3	58.4	3.1	75.0
2AYH-1SAC	8.8	78.4	5.8	33.8	5.5	48.0	4.8	64.9
2CCY-1BBH	21.3	97.0	4.1	52.4	3.1	73.0	2.6	77.0
2PLV-1BBT	20.2	91.4	7.3	58.9	7.3	58.9	6.2	60.7
2POR-2OMF	13.2	97.3	18.3	11.3	11.4	14.7	10.5	25.9
2RHE-1CID	21.2	61.6	9.2	33.7	7.5	51.1	4.4	71.1
2RHE-3HLA	2.4	96.0	8.1	16.5	7.6	9.4	6.7	43.5
3ADK-1GKY	19.5	100.0	13.8	26.6	11.5	37.7	7.7	48.1
3HHR-1TEN	18.4	98.9	7.3	60.9	6.0	66.7	4.9	79.3
4FGF-81IB	14.1	98.6	11.3	24.0	9.3	30.6	5.4	41.2
6XIA-3RUB	8.7	44.1	10.5	14.5	10.1	11.0	9.0	34.3
9RNT-2SAR	13.1	88.5	5.8	41.7	5.1	51.2	4.8	69.0
AVERAGE	14.2	85.2	9.6	36.7	7.7	44.8	6.3	57.8

Application to a difficult modeling case1BOV-1LTS

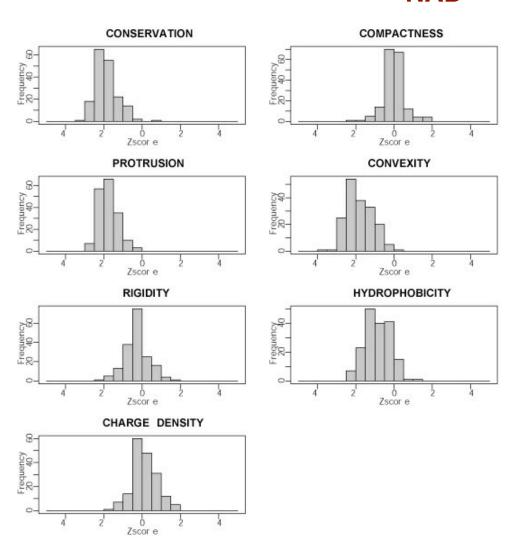
For many protein structures function is *unknown*

	Structural Genomics*	Traditional methods
Annotaated**	654	28,342
Not Annotaated	506 (43.6%)	6,815 (19,4%)
Total deposited	1,160	35,157


* annotated as STRUCTURAL GENOMICS in the header of the PDB file **annotated with either CATH, SCOP, Pfam or GO terms in the MSD database 36,317 protein structures, as of August 8th, 2006

For 20% protein structures function is *unknown*

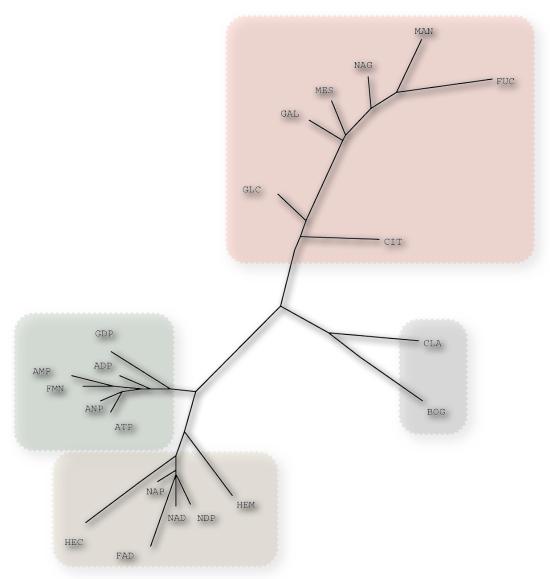
	Structural Genomics*	Traditional methods
Annotaated**	654	28,342
Not Annotaated	506 (43.6%)	6,815 (19,4%)
Total deposited	1,160	35,157


* annotated as STRUCTURAL GENOMICS in the header of the PDB file **annotated with either CATH, SCOP, Pfam or GO terms in the MSD database 36,317 protein structures, as of August 8th, 2006

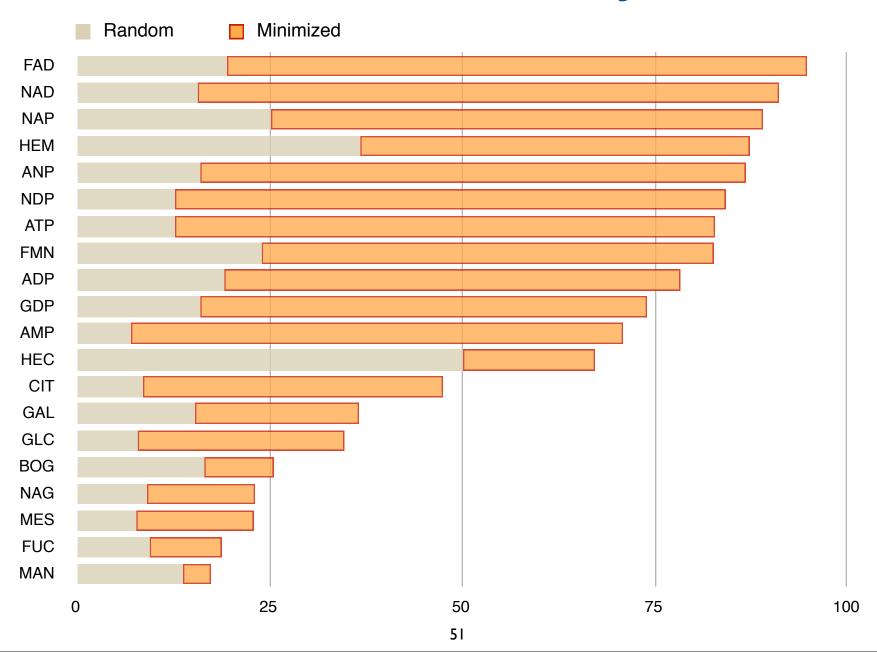
Representation

Scoring

NAD

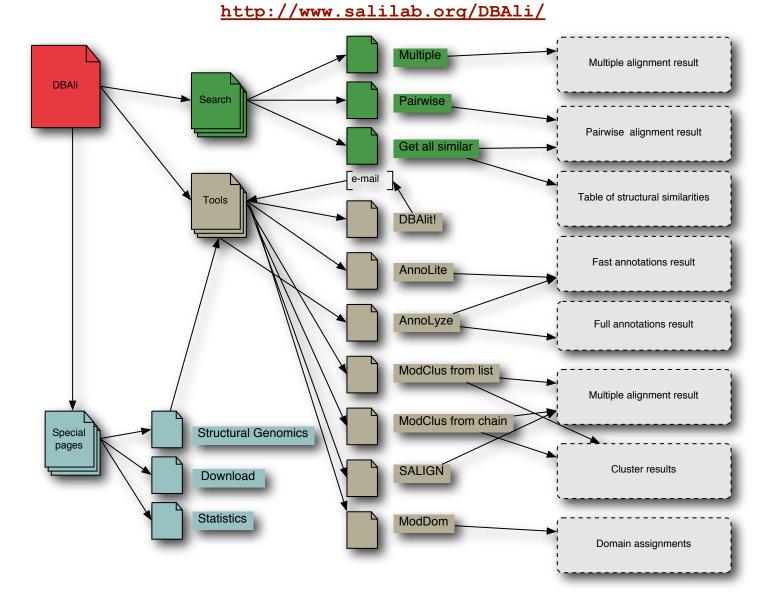

$$\longrightarrow w_k = \frac{1}{M} \sum_{\alpha=1}^M \tilde{f}_k^{(\alpha)}$$

M = number of proteins in training set

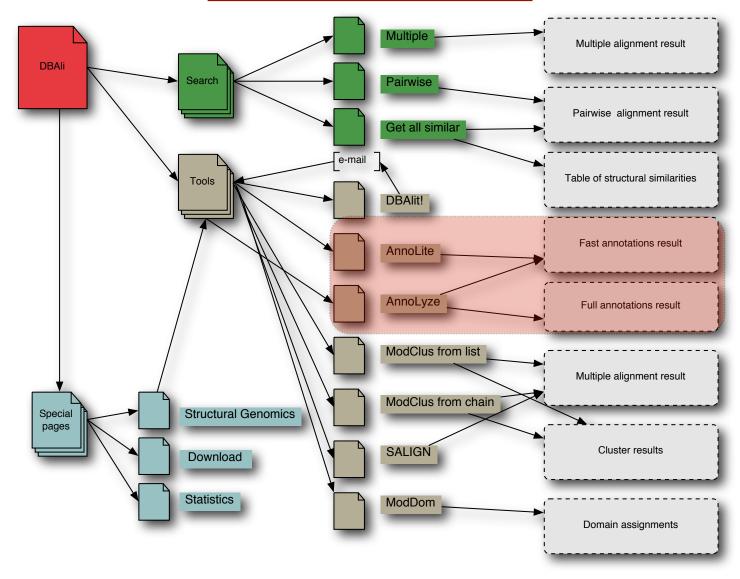

Ligand fingerprints

					<u> </u>			
	Compactness	Conservation	Charge density	B-factor	Protrusion coefficient	Convexity score	Hydrophobicity	
ADP	-1.266	-2.009	0.447	-0.414	-1.521	-1.388	-0.118	
AMP	-1.62	-1.962	0.341	-0.381	-1.909	-1.944	-0.518	
ANP	-1.007	-2.227	0.176	-0.392	-1.706	-1.595	-0.14	
ATP	-1.122	-2.156	0.228	-0.274	-1.845	-1.768	0.038	
BOG	-2.067	-0.012	0.552	-0.465	-0.356	-0.49	-0.781	
CIT	-2.948	-1.58	0.563	-0.527	-0.922	-0.838	-0.113	
FAD	0.505	-2.108	0.366	-0.702	-1.735	-1.725	-0.75	
FMN	-1.132	-1.98	0.382	-0.387	-1.803	-1.886	-0.695	
FUC	-3.43	0.016	-0.295	-0.123	0.002	0.132	0.459	
GAL	-3.186	-0.538	-0.234	-0.068	-0.906	-0.987	0.298	
GDP	-1.061	-1.471	0.409	-0.81	-1.472	-1.423	0.182	
GLC	-2.813	-1.247	-0.207	-0.399	-1.247	-1.337	-0.089	
HEC	-0.172	-0.912	0.286	-0.325	-1.153	-1.27	-1.282	
HEM	-0.651	-1.571	0.683	-0.51	-1.797	-1.937	-1.47	
MAN	-3.72	0.131	0.105	-0.52	-0.605	-0.509	0.405	
MES	-3.049	-0.24	-0.338	-0.479	-0.714	-0.926	0.296	
NAD	-0.005	-1.852	0.156	-0.232	-1.775	-1.804	-0.858	
NAG	-3.419	-0.46	-0.126	-0.154	-0.341	-0.523	-0.078	
NAP	-0.009	-1.898	0.612	-0.321	-1.587	-1.656	-0.336	
NDP	0.217	-1.741	0.535	-0.312	-1.463	-1.562	-0.498	

Ligand fingerprints


Prediction accuracy

DBAliv2.0 database


http://bioinfo.cipf.es/squ/services/DBAli/

DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/

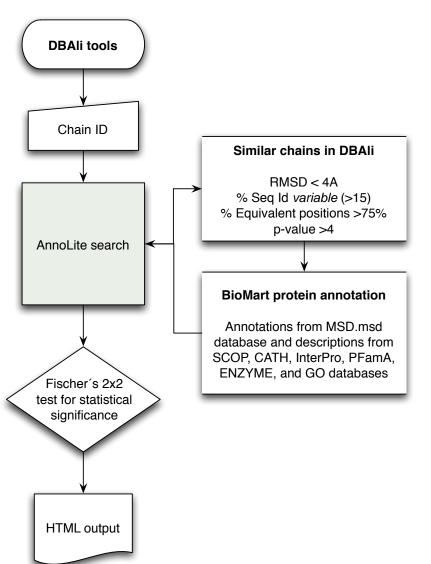
http://www.salilab.org/DBAli/

AnnoLite

	Con	.P-value	Link	Description
		7.5e-99		1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:		0.00	<u>b.29.1.10</u>	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99	IPR001722	Glycoside hydrolase, family 7
	•	6.0e-51	IPR008985	Concanavalin A-like lectin/glucanase
		1.0e-42	IPR000254	Cellulose-binding region, fungal
EC Number:	•	1.2e-44	3.2.1.91	Cellulose 1,4-beta-cellobiosidase.
	•	6.0e-41	3.2.1.4	Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 🟅
	•	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🟅
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds ζ
	•	1.4e-30	0008810	cellulase activity 🕹
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds $\boldsymbol{\zeta}$
	•	1.0e+0	0016787	hydrolase activity 🐍
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🟅
	•	1.2e-54	0000272	polysaccharide catabolism 🕹
	•	3.6e-20	0005975	carbohydrate metabolism 🕹
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🟅

- Information annotated in the MSD database.
- . High, . medium and . low confidence annotations not annotated in the MSD database.
- High, @ medium and @ low confidence annotations already annotated in the MSD database.

Benchmark set


	Number of chains
Initial set*	50,223
FULL annotation**	10,997
Non-redundant set***	1,879

*data from BioMart MSD.3 (release February 2005)

^{**}annotated with CATH, SCOP, Pfam, EC, InterPro, and GO terms in the MSD database

^{**}not two chains can be structurally aligned within 2A, superimposing more than 60% of their C atoms and have a length difference inferior to 30aa

Method

AnnoLite results for chain 1 gpi: A based on 44 structural similar chains.

	Conf	.P-value	Link	Description
CATH:	•	7.5e-99	2.70.100.10	1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:	•	0.00	b.29.1.10	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99	IPR001722	Glycoside hydrolase, family 7
	•	6.0e-51	IPR008985	Concanavalin A-like lectin/glucanase
	•	1.0e-42	IPR000254	Cellulose-binding region, fungal
EC Number:	•	1.2e-44	3.2.1.91	Cellulose 1,4-beta-cellobiosidase.
	•	6.0e-41	3.2.1.4	Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 🖚
	•	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🟅
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds ζ
	•	1.4e-30	0008810	cellulase activity 🕹
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds 🟅
	•	1.0e+0	0016787	hydrolase activity 🛴
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🟅
	•	1.2e-54	0000272	polysaccharide catabolism 🟅
	•	3.6e-20	0005975	carbohydrate metabolism 🟅
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🟅

- Information annotated in the MSD database.
- . High, . medium and . low confidence annotations not annotated in the MSD database.
- High, medium and low confidence annotations already annotated in the MSD database.

Scoring function

Fisher's 2x2 contingency test

	Non- similar	Similar	Total
Annotated	а	b	a+b
Not Annotated	С	d	c+d
Total	a+c	b+d	n

1b78A SCOP c.51.4.1	Similar	Not similar	Total
Annotated	4	2	6
Not Annotated	0	71,096	71,096
Total	4	71,098	71,102

$$p = \binom{a+b}{a} \binom{c+d}{c} / \binom{n}{a+c}$$
$$= \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$$

$$p = 1.78e^{-19}$$

Sensitivity .vs. Precision

	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
SCOP fold	1e-6	92.7	88.4
CATH fold	1e-3	95.7	90.1
InterPro	1e-3	88.4	78.2
PFam family	1e-4	90.5	82.8
EC number	1e-4	93.3	79.7
GO Molecular Function	1e-1	84.3	80.9
GO Biological Process	1e-3	85.5	74.8
GO Cellular Component	1e-2	77.6	58.6

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$

AnnoLyze

d.113.1.1	23.68	0.948	19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145		
Partner	Av. binding site seq. id.	Av. residue conservation		Residues in predicted binding site (size proportional to the local conservation)	
nherited pa	artners:1				
<u>ACY</u>	15.	87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135	
<u>80G</u>	20.	00	0.111	19 20 21 48 49 51 96 98 136	
	20.			23 29 31 37 44 48 49 83 85 94 96 103 121	
				48 49 52 62 63 66 67 113 116	

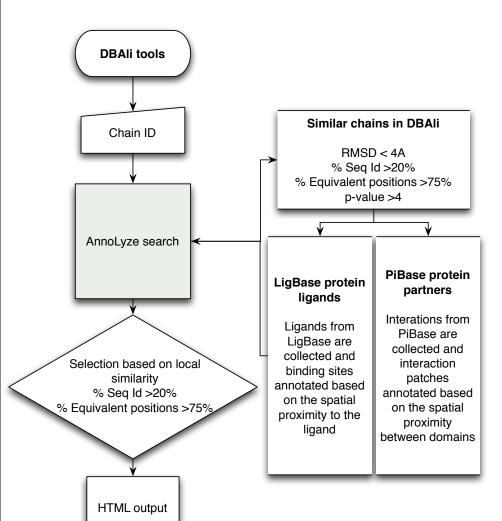
Benchmark

	Number of chains
Initial set*	78,167
LigBase**	30,126
Non-redundant set***	4,948 (8,846 ligands)

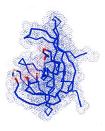
*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)

**annotated with at least one ligand in the LigBase database

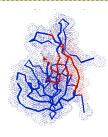
***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


	Number of chains
Initial set*	78,167
πBase**	30,425
Non-redundant set***	4,613 (11,641 partnerships)

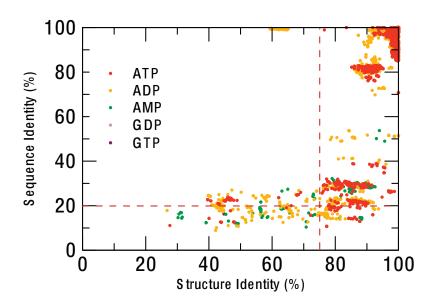
*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)


**annotated with at least one partner in the Base database

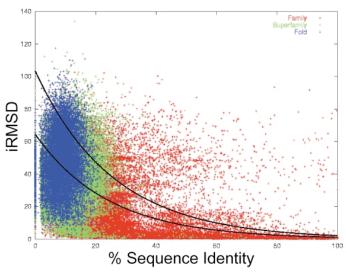
***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


Method

nherited ligands: 4					
Ligand	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)		
MO2	59.03	0.185	48 49 52 62 63 66 67 113 116		
CRY	20.00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121		
80G	20.00	<u>0.111</u>	19 20 21 48 49 51 96 98 136		
ACY	15.87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135		



nherited pa	artners:1		
Partner	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)
<u>d.113.1.1</u>	23.68	0.948	19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145



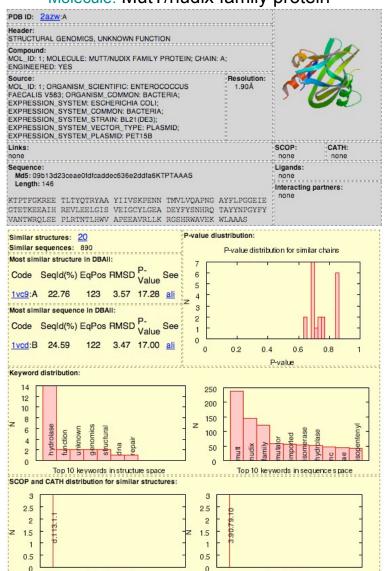
Scoring function

Ligands

Partners

Aloy et al. (2003) J.Mol.Biol. 332(5):989-98.

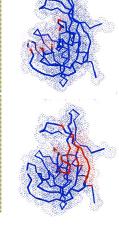
Sensitivity .vs. Precision

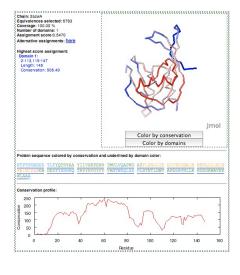

	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
Ligands	30%	71.9	13.7
Partners	40%	72.9	55.7

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$

Example (2azwA)

Structural Genomics Unknown Function

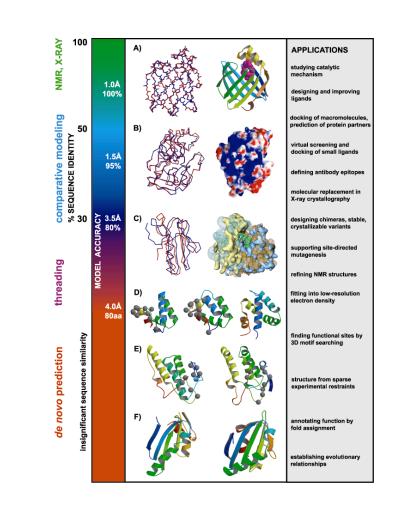

Molecule: MutT/nudix family protein

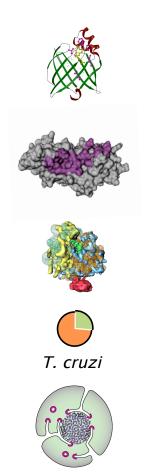


Top 10 CATH

Top 10 SCOP

<u>d.113.1.1</u>	seq. id.	0.948		19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145		
Partner	Av. binding site	Av. residue		Residues in predicted binding site (size proportional to the local conservation)		
Inherited partners:1						
<u>ACY</u>	15.	87	0.163	<u>0.163</u> 23 29 31 37 44 45 81 83 85 94 96 98 103 121 135		
80G	20.	00	0.111	19 20 21 48 49 51 96 98 136		
CRY	20.	00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121		
MO2	59.	03	0.185	48 49 52 62 63 66 67 113 116		
Ligand			Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)		

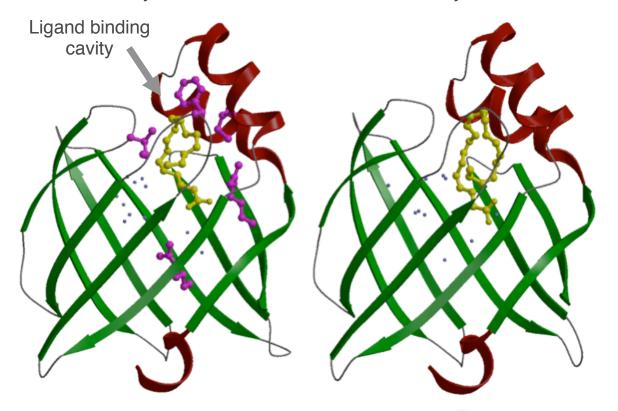




	Conf. P-value	Link	Description
CATH:	• 1.1e-20	3.90.79.10	Nucleoside Triphosphate Pyrophosphohydrolase
SCOP:	• 4.2e-29	<u>d.113.1.1</u>	MutT-like
PFAM:	· 2.0e-74	PF00293	NUDIX domain
InterPro:	1.96-65	IPR000086	NUDIX hydrolase
	2.7e-20	IPR003561	Mutator MutT
	2.96-14	IPR002667	Isopentenyi-diphosphate delta-isomerase
EC Number:	• 1.7e-4	3.6.1.17	Bis(5'-nucleosyl)-tetraphosphatase (asymmetrical).
GO Molecular Function:	4.5e-19	0008413	8-oxo-7,8-dihydroguanine triphosphatase activity $\stackrel{\checkmark}{\leftarrow}$
	• 3.8e-13	0004452	isopentenyi-diphosphate delta-isomerase activity $\boldsymbol{\xi}$
	· 1.9e-6	0016787	hydrolase activity 🛴
	• 5.4e-3	0004081	bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) activity ζ
	· 1.9e-2	0000287	magnesium ion binding 🟅
GO Biological Process:	• 7.7e-11	0008299	isoprenoid biosynthesis 🗧
	• 1.5e-5	0006974	response to DNA damage stimulus 🛴
	• 1.7e-5	0006260	DNA replication 4
	2.46-5	0006281	DNA repair 2

Can we use models to infer function?

What is the physiological ligand of Brain Lipid-Binding Protein?


Predicting features of a model that are not present in the template

BLBP/oleic acid

BLBP/docosahexaenoic acid

Cavity is not filled

Cavity is filled

- 1. BLBP binds fatty acids.
 - 2. Build a 3D model.
- 3. Find the fatty acid that fits most snuggly into the ligand binding cavity.

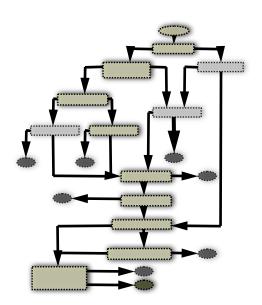
Structural analysis of missense mutations in human BRCA1 BRCT domains

Nebojsa Mirkovic, Marc A. Marti-Renom, Barbara L. Weber, Andrej Sali and Alvaro N.A. Monteiro

Cancer Research (June 2004). 64:3790-97

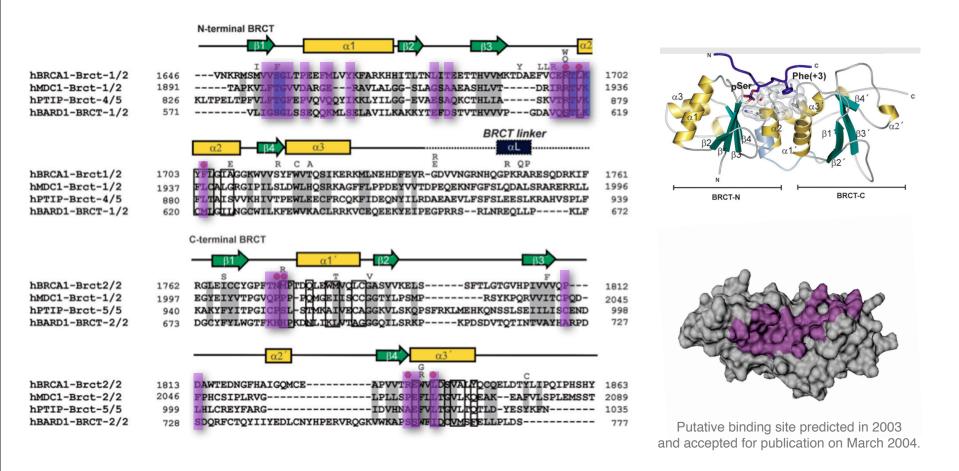
Cannot measure the functional impact of every possible SNP at all positions in each protein! Thus, prediction based on general principles of protein structure is needed.

Missense mutations in BRCT domains by function

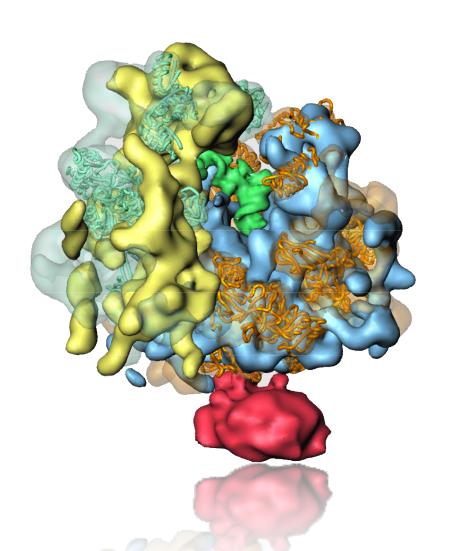

cancer not cancer associate associated

?

no transcription activation


transcription activation

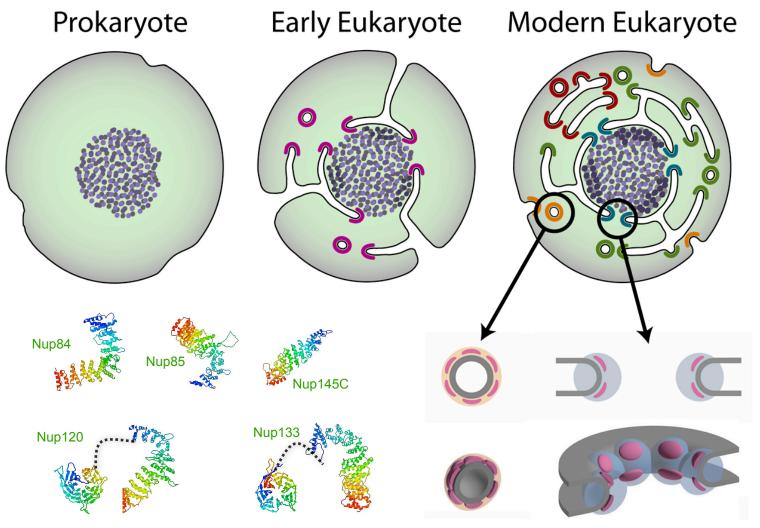
M1652K F1761S L1705PS L1657P C1697R M1775E 1715NS1 E1660G R1699W M1775K H1686Q A1708E 722FF17 L1780P S1715R R1699Q 34LG173 **I1807S** K1702E P1749R V1833E 8EG1743 M1775R Y1703HF A1843T RA1752 1704S PF1761I V1665M D1692N G1706A M1652I D1733G A1669S M1775V P1806A R1751P C1787S W1718S A1823T R1751Q G1788D V1833M V1653M T1720A L1664P G1788V W1837R W1730S R1758G F1734S G1803A W1837G T1685A L1764P V1804D S1841N E1735K T1685I **I1766S** V1736A V1808A A1843P M1689R P1771L G1738R V1809A T1852S D1692Y D1739E V1809F T1773S P1856T F1695L V1810G D1739G P1776S P1859R V1696L Q1811R D1739Y **D1778N** R1699L P1812S V1741G D1778G G1706E N1819S H1746N D1778H W1718C M1783T


?

Putative binding site on BRCA1

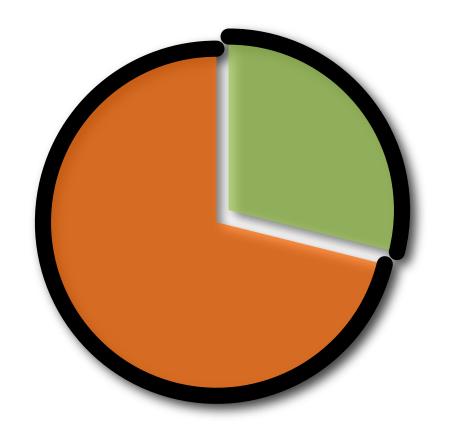
Williams *et al.* 2004 Nature Structure Biology. **June 2004 11**:519 Mirkovic *et al.* 2004 Cancer Research. **June 2004 64**:3790

S. cerevisiae ribosome



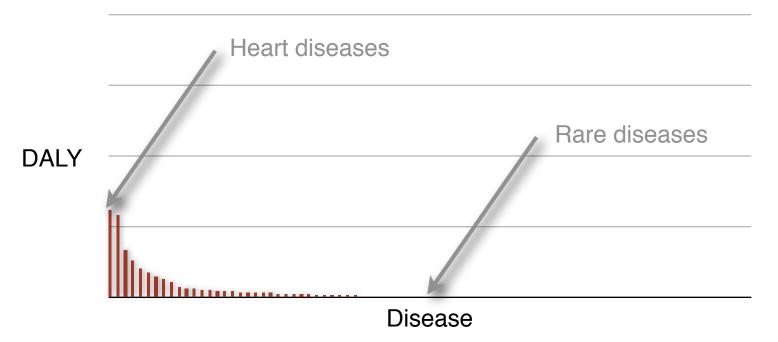
Fitting of comparative models into 15Å cryo-electron density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.


The modeled fraction of the proteins ranges from 34-99%.

The Nucleopore complex Cell evolution (?)

Tropical Disease Initiative (TDI)

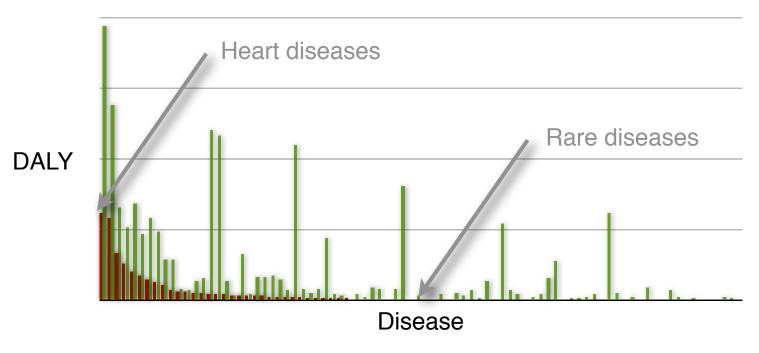

Predicting binding sites in protein structure models.

http://www.tropicaldisease.org

Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004


DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004

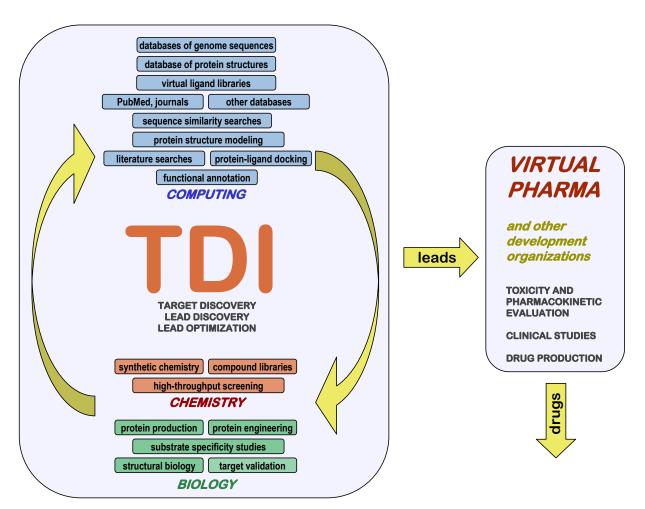
DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

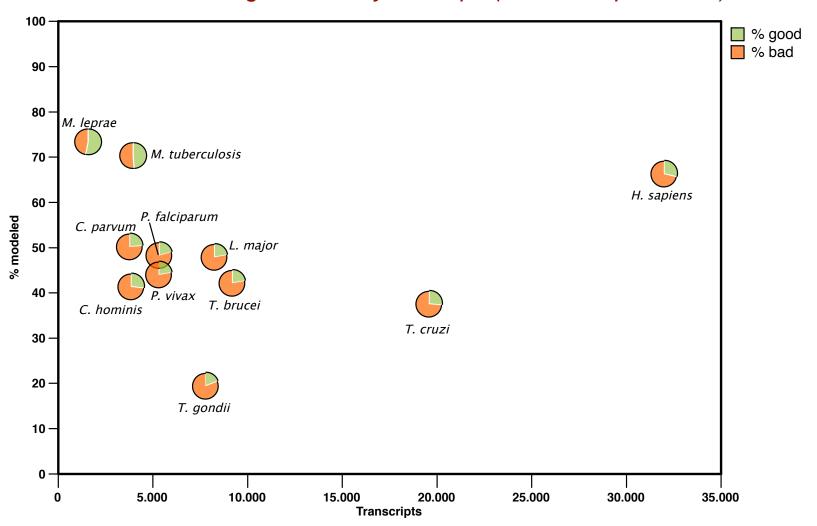
"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486
Tetanus	7,074
Lymphatic filariasis*	5,777
Syphilis	4,200
Trachoma	2,329
Leishmaniasis*	2,090
Ascariasis	1,817
Schistosomiasis*	1,702
Trypanosomiasis*	1,525

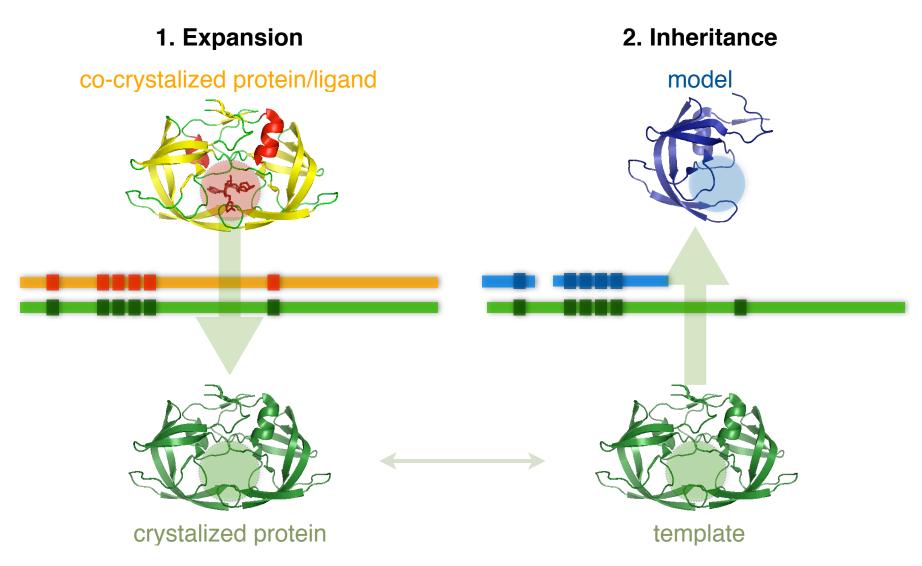

Trichuriasis	1,006
Japanese encephalitis	709
Chagas Disease*	667
Dengue*	616
Onchocerciasis*	484
Leprosy*	199
Diphtheria	185
Poliomyelitise	151
Hookworm disease	59

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life year in 1000's.

* Officially listed in the WHO Tropical Disease Research disease portfolio.


TDI flowchart

http://www.tropicaldisease.org



Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)

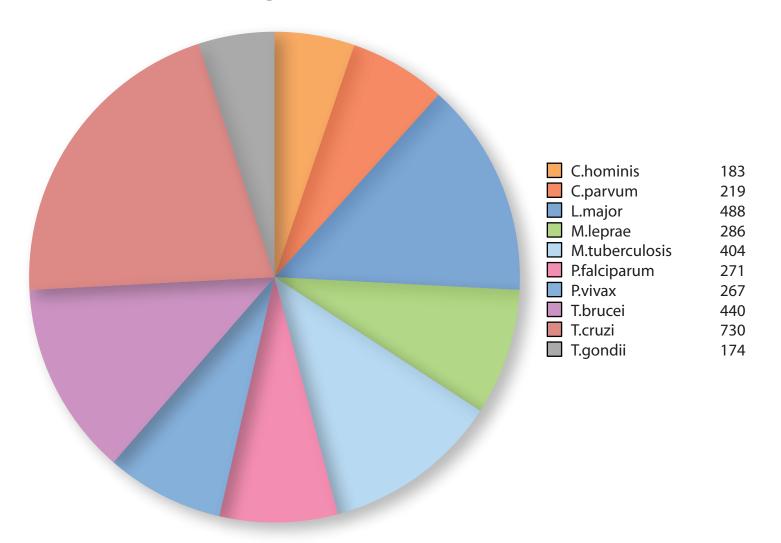
Comparative docking

Ligand "expanded" space

from 6,859 templates used in "good" models

Expansion cut-off	Templates	Expanded	Unique		
30%	4,639	64,800	3,178		
50%	4,242	37,945	3,030		
70%	3,323	20,603	2,786		

Ligand "inherited" space


second cut-offs

Using a 70% "expansion" cut-off

Inheritance cut-offs	Models	Inherited	Unique
90% / 70%	5,181	23,286	1,137
90% / 80%	4,383	17,842	1,027
90% / 90%	3,462	11,803	827

Distribution of models with inherited ligands

from 3,882 "good" models using a 90% / 90% "inherited" cut-offs

Summary table

models with inherited ligands

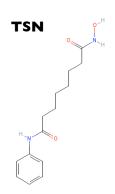
from 16,284 good models, 295 inherited a ligand/substance with at least one compound already approved by FDA and ready to be used from ZINC

	Transcripts	Good	Ligands	Lipinski	Lipinski+ZINC	FDA+ZINC
C. hominis	3,886	886	183	131	28	12 (10)
C. parvum	3,806	949	219	145	30	12 (10)
L. major	8,274	1,845	488	334	84	44 (34)
М. Іергае	1,605	1,321	286	189	39	29 (25)
M. tuberculosis	3,991	2,887	404	285	71	44 (37)
P. falciparum	5,363	1,057	271	191	48	20 (16)
P. vivax	5,342	1,042	267	177	37	18 (15)
T. brucei	921	1,795	440	309	94	46 (36)
T. cruzi	19,607	3,915	730	493	127	62 (52)
T. gondii	7,793	587	174	124	28	8 (7)
TOTAL	60,588	16,284	3,462	2,378	586	295 (242)

Example of inheritance (expansion)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

Template 1t64A a human HDAC8 protein.

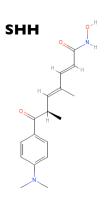


	Origen	Formula	Name	Cov.	Seq, Id. (%)	
ZN	X-ray	Zn ²⁺	Zinc ion			
NA	X-ray	Na ⁺	Sodium ion			
CA	X-ray	Ca ²⁺	Calcium ion			
TSN	X-ray	C ₁₇ H ₂₂ N ₂ O ₃	Trichostatin A			
ѕнн	Expanded	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	83.8	

Example of inheritance (inheritance)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

	Formula	Name	Cov.	Seq, Id. (%)	Residues
TSN	C ₁₇ H ₂₂ N ₂ O ₃	Trichostatin A	100.00	90.9	90 131 132 140 141 167
sнн	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	90.9	169 256 263 293 295



suberoylanilide hydroxamic acid

Pharmacological Action:

Anti-Inflammatory Agents, Non-Steroidal
Antineoplastic Agents
Enzyme Inhibitors
Anticarcinogenic Agents

Inhibits histone deacetylase I and 3


trichostatin A

Pharmacological Action:

Antibiotics, Antifungal
Enzyme Inhibitors
Protein Synthesis Inhibitors

chelates zinc ion in the active site of histone deacetylases, resulting in preventing histone unpacking so DNA is less available for transcription

	LmjF21.0680.1.pdb
Template	It64A
Seq. Id (%)	38.00
MPQS	1.47

Example of inheritance (CDD-Roos-literature)

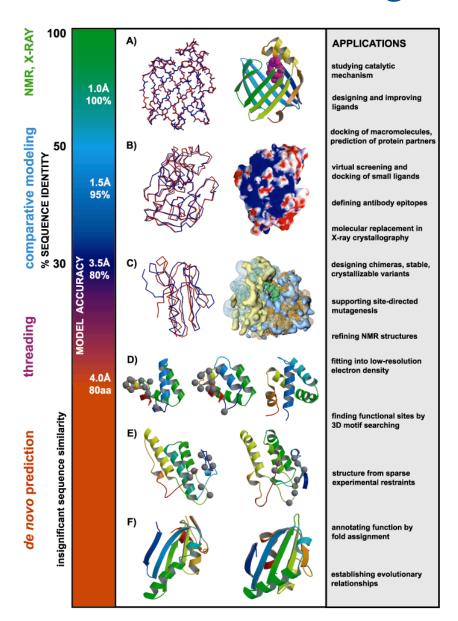
LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray*†, Anne M. Gurnett*, Robert W. Myers*, Paula M. Dulski*, Tami M. Crumley*, John J. Allocco*, Christine Cannova*, Peter T. Meinke‡, Steven L. Colletti‡, Maria A. Bednarek‡, Sheo B. Singh§, Michael A. Goetz§, Anne W. Dombrowski§, Jon D. Polishook§, and Dennis M. Schmatz*


Departments of *Parasite Biochemistry and Cell Biology, ‡Medicinal Chemistry, and §Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065

Antimicrobial Agents and Chemotherapy, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Vol. 48, No. 4

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

"take home" message

Comparative Protein Structure PredictionMODELLER tutorial

\$>mod9v1 model.py

Marc A. Marti-Renom

http://bioinfo.cipf.es/squ/

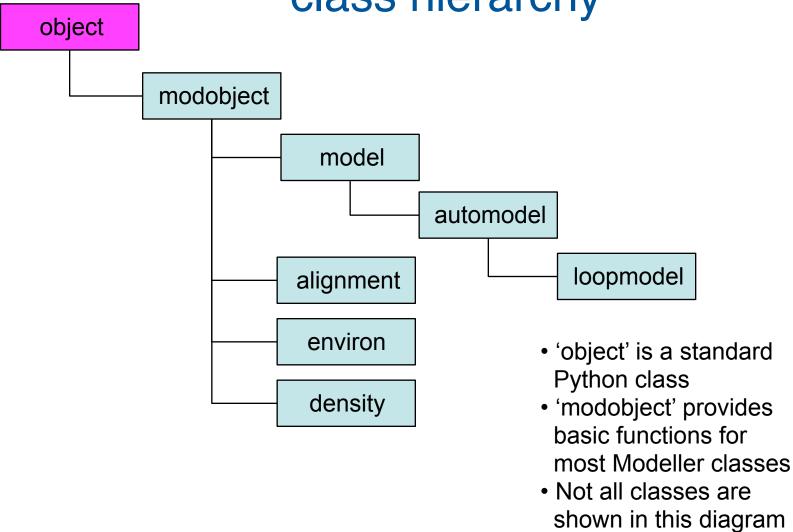
Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

Obtaining MODELLER and related information

- MODELLER (9v1) web page
- http://www.salilab.org/modeller/
- http://www.salilab.org/modeller/tutorial
 - Download Software (Linux/Windows/Mac/Solaris)
 - HTML Manual
 - **♦ Join Mailing List**

Using MODELLER

- ♦ No GUI! ⊗
- Controlled by command file 88
- Script is written in PYTHON language
- You may know Python language is simple <a>©


MODELLER 9v1

Python interface

- Modeller Python interface uses classes, e.g.:
 - 'alignment' holds and manipulates aligned sequences
 - 'model' holds and manipulates protein models
 - 'environ' keeps the configuration of the environment
 - 'profile' holds and manipulates sequence profiles
 - 'sequence_db' is for sequence databases
- These behave just like ordinary Python classes, but Modeller Fortran code is linked to them
- The Modeller data is automatically freed when the Python object is deleted (explicitly or implicitly)

MODELLER 8

class hierarchy

Using MODELLER

- ♦ INPUT:
 - Target Sequence (FASTA/PIR format)
 - Template Structure (PDB format)
 - Python file
- OUTPUT:
 - Target-Template Alignment
 - Model in PDB format
 - Other data

Modeling of BLBP Input

- Target: Brain lipid-binding protein (BLBP)
- ♦ BLBP sequence in PIR (Modeller) format:

```
>P1;blbp
sequence:blbp::::::
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSID
DRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
loq.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
loq.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(qap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file 1 hms 1)
aln.append model(mdl, align codes=11hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Output

```
>P1;1hms
structureX:1hms: 1 :: 131 :: undefined:undefined:-1.00:-1.00
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp: :: :: : 0.00: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Output

```
>P1;1hms

structureX:1hms: 1 :: 131 :: undefined:undefined:-1.00:-1.00

VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA

DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*

>P1;blbp

sequence:blbp: :: :: : 0.00: 0.00

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI

DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Output

STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                                  # request verbose output
env = environ()
                                   # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms',
                                          # codes of the templates
             sequence = 'blbp')
                                            # code of the target
a.starting model= 1
                                  # index of the first model
                                   # index of the last model
a.ending model = 1
                                   # (determines how many models to calculate)
                                    do the actual homology modelling
a.make()
```

STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                            # request verbose output
                                  # create a new MODELLER environment
env = environ()
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms',
                                         # codes of the templates
             sequence = 'blbp')
                                           # code of the target
a.starting model= 1
                                 # index of the first model
a.ending model = 1
                                  # index of the last model
                                  # (determines how many models to calculate)
                                   # do the actual homology modelling
```

STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

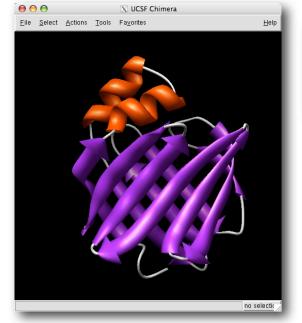
```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                      # request verbose output
env = environ()
                                 # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
            alnfile = 'blbp-1hms.ali', # alignment filename
            knowns = '1hms',
                                        # codes of the templates
             sequence = 'blbp')
                                  # code of the target
                               # index of the first model
a.starting model= 1
a.ending model = 1
                                 # index of the last model
                                 # (determines how many models to calculate)
                                   do the actual homology modelling
a.make()
```

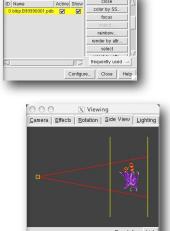
STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

PDB file

Can be viewed with Chimera

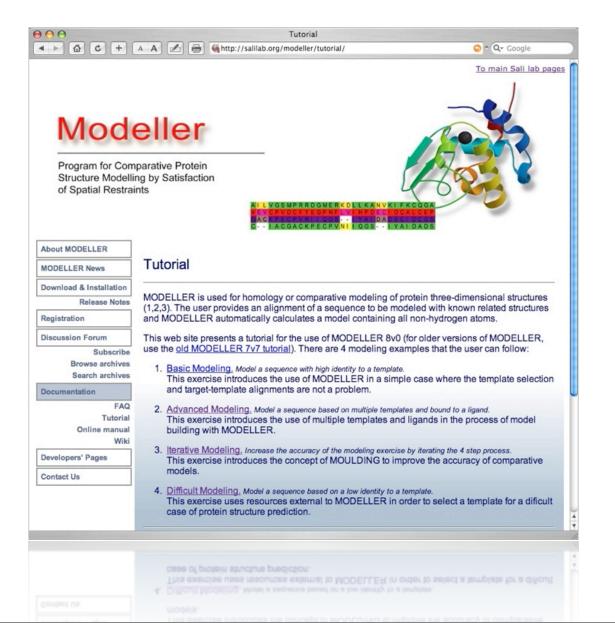

http://www.cgl.ucsf.edu/chimera/


Rasmol

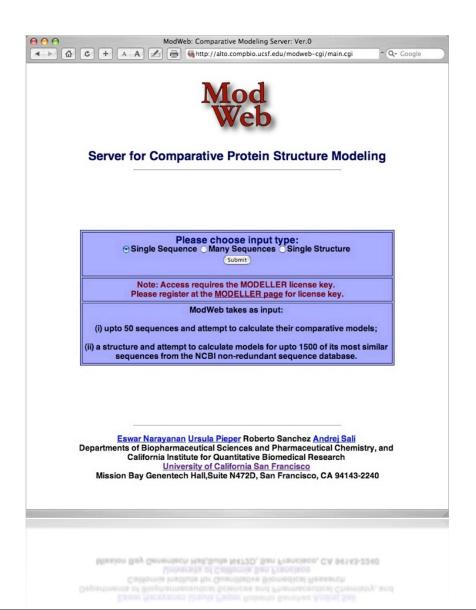
http://www.openrasmol.org

PyMol

http://pymol.sourceforge.net/

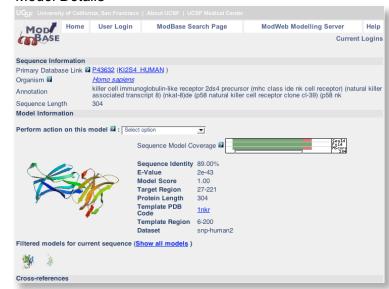


Model file →


blbp.B9990001.pdb

http://www.salilab.org/modeller/tutorial/

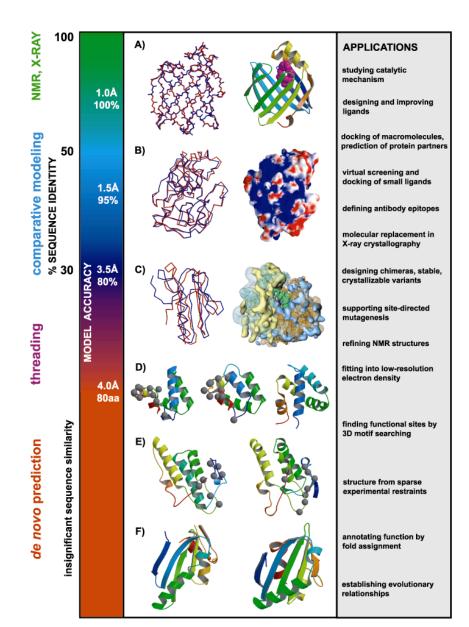
http://salilab.org/modweb


MODBASE

http://salilab.org/modbase

Search Page

Model Details


Sequence Overview

SegId Fold MScore	hypothetical protein	Pseudomonas aeruginosa	3738
SeqId Fold MScore	hypothetical protein	Escherichia coli	1140
SegId Fold MScore	hypothetical protein spr1965	Streptococcus pneumoniae, Streptococcus pneumoniae <u>R6</u>	1038

Model Overview

S. S	• 🗆	Q8G8C7	hypothetical protein	Pseudomonas aeruginosa	4996	2089-2158	70	37.00	7e-14	1.00	1dnyA	8-78
***	•	Q8G8C7	hypothetical protein	Pseudomonas aeruginosa	4996	492-1017	526	36.00	1e-82	1.00	1amuA	19-529
	• 🗆	Q8G9W1	hypothetical protein	Escherichia coli	1140	349-1135	787	35.00	0	1.00	1r9dA	6-783

>>> TAKE HOME MESSAGE <<<

Acknowledgments

COMPARATIVE MODELING Andrej Sali

M. S. Madhusudhan

Narayanan Eswar

Min-Yi Shen

Ursula Pieper

Ben Webb

Maya Topf

MODEL ASSESSMENT

David Eramian Min-Yi Shen

Damien Devos

FUNCTIONAL ANNOTATION Andrea Rossi

FUNDING

Fred Davis

Prince Felipe Research Center Marie Curie Reintegration Grant

STREP EU Grant

MODEL ASSESSMENT

Francisco Melo (CU) Alejandro Panjkovich (CU)

STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB) NY-SGXRC

MAMMOTH

Angel R. Ortiz

FUNCTIONAL ANNOTATION

Fatima Al-Shahrour Joaquin Dopazo

BIOLOGY

Jeff Friedman (RU)

James Hudsped (RU)

Partho Ghosh (UCSD)

Alvaro Monteiro (Cornell U)

Stephen Krilis (St.George H)

Tropical Disease Initiative

Stephen Maurer (UC Berkeley)

Arti Rai (Duke U)

Andrej Sali (UCSF)

Ginger Taylor (TSL)

Barri Bunin (CDD)

CCPR Functional Proteomics

Patsy Babbitt (UCSF)

Fred Cohen (UCSF)

Ken Dill (UCSF)

Tom Ferrin (UCSF)

John Irwin (UCSF)

Matt Jacobson (UCSF)

Tack Kuntz (UCSF)

Andrej Sali (UCSF)

Brian Shoichet (UCSF)

Chris Voigt (UCSF)

FVΔ

Burkhard Rost (Columbia U) Alfonso Valencia (CNB/UAM)

CAMP

Xavier Aviles (UAB)

Hans-Peter Nester (SANOFI)

Ernst Meinjohanns (ARPIDA)

Boris Turk (IJS)

Markus Gruetter (UE)

Matthias Wilmanns (EMBL)

Volfram Bode (MPG)