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Summary



Nomenclature
• Homology: Sharing a common ancestor, may have similar or 

dissimilar functions

• Similarity: Score that quantifies the degree of relationship between 
two sequences.

• Identity: Fraction of identical aminoacids between two aligned 
sequences (case of similarity).

• Target: Sequence corresponding to the protein to be modeled. 

• Template: 3D structure/s to be used during protein structure prediction.

• Model: Predicted 3D structure of the target sequence.
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protein prediction .vs. protein determination
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Why is it useful to know the structure of a protein, 
not only its sequence?

The biochemical function (activity) of a protein is defined by its interactions with other 
molecules. 

The biological function is in large part a consequence of these interactions.

The 3D structure is more informative than sequence because interactions are determined 
by residues that are close in space but are frequently distant in sequence.

In addition, since evolution tends to conserve 
function and function depends more directly on 
structure than on sequence, structure is more 

conserved in evolution than sequence.

The net result is that patterns in space are 
frequently more recognizable than patterns 

in sequence.
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From domains to assemblies
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proteins

domains

assemblies

~2.5 domains in a protein
a few domain partners per domain

Russell etal. Curr Opin Struct Biol 14, 313, 2004.



Principles of protein structure

A
nabaena 7120

A
nacystis nidulans

C
ondrus crispus

D
esulfovibrio vulgaris

Evolution (rules)
Threading 

Comparative Modeling

Folding (physics)
Ab initio prediction

D. Baker & A. Sali. Science 294, 93, 2001.
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Comparative modeling by satisfaction of spatial restraints 
MODELLER

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.
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Start with a 
Target Sequence

Template 
Search

Target/Template 
Alignment

Build model

Evaluate model

OK?

Output 3D Model

MSVIPKR--GNCEQTSE

ASILPKRLFGNCEQTSD
Given an alignment...

extract spatial features

from the template(s)

and statistics from

known structures

apply these features

as restraints on your 

target sequence

optimize to find the 

best solution for the

restraints to produce 

your 3D model



Comparative modeling by satisfaction of spatial restraints 
Types of errors and their impact
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Wrong fold

Miss alignments

Loop regions

Rigid body distortions

Side-chain packing

Marti-Renom etal. Ann Rev Biophys Biomol Struct (2000) 29, 291

0



Model Accuracy

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

MEDIUM ACCURACY LOW ACCURACYHIGH ACCURACY

NM23
Seq id  77%

CRABP
Seq id  41%

EDN
Seq id  33%

X-RAY /  MODEL

Sidechains
Core backbone

Loops

Cα equiv 147/148
RMSD 0.41Å

Sidechains
Core backbone

Loops
Alignment

Cα equiv 122/137
RMSD 1.34Å

Sidechains
Core backbone

Loops
Alignment

Fold assignment

Cα equiv 90/134
RMSD 1.17Å
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Utility of protein structure models, despite errors

12 D. Baker & A. Sali. Science 294, 93, 2001.



Modeling genomes
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Structural Genomics

There are ~16,000 families (90%)
@ 30% sequence identity cutoff 

Sali. Nat. Struct. Biol. 5, 1029, 1998.
Sali et al. Nat. Struct. Biol., 7, 986, 2000.

Sali. Nat. Struct. Biol. 7, 484, 2001.
Baker & Sali. Science 294, 93, 2001.

Vitkup et al. Nat. Struct. Biol. 8, 559, 2001

1. The number of “families” is much smaller than the number of proteins.
2. Any one of the members of a family is fine.

Characterize most protein sequences based on related known structures

protein space
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MODPIPE2.0 
Large-Scale Protein Structure Modeling

Eswar et.al., (2003) Nucl.Acids.Res. 31(13)
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ModBase Statistics
Large-scale modeling of the TrEMBL-SWISSPROT databases

Sequences (total) 2,186,210

Sequences (modeled) 1,340,687

Models 4,580,270

http://www.salilab.org/modbase/

University of California
San Francisco

Pieper et al. NAR 34, D291 (2006)

16

http://www.salilab.org/modbase/
http://www.salilab.org/modbase/


Structure-Structure alignments

As any other bioinformatics problem…

 - Representation
 - Scoring
 - Optimizer

Start with a 
Target Sequence

Template 
Search

Target/Template 
Alignment

Build model

Evaluate model

OK?

Output 3D Model



Representation

Structures

All atoms and coordinates

Secondary Structure Accessible surface (and others)

v1v2
v3

Vector representation

Ωi

di

Dihedral space or distance space

Cα

Reduced atom representation



Scoring

Raw scores

Secondary Structure (H,B,C) Accessible surface (B,A [%])

Ωi

di

         Angles or distances

Aminoacid substitutions

( )2
RMSD = -xix∑

Root Mean Square Deviation



Scoring 
Significance of an alignment (score)

Probability that the optimal alignment of two random 
sequences/structures of the same length and composition as the 
aligned sequences/structures have at least as good a score as the 
evaluated alignment.

Sometimes 
approximated
by Z-score (normal
distribution).

Empirical

Analytic

Karlin and Altschul, 1990 PNAS 87, pp2264

( )
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Optimizer

Global dynamic programming alignment
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M
Sq/St 2
Sq/St 1
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Best alignment score

Backtracking to get the best alignment

Needleman and Wunsch (1970) J. Mol Biol, 3 pp443
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Optimizer 
Global .vs. local alignment

Global alignment

Local alignment



Optimizer 
Multiple alignment

Pairwise alignments

Example – 4 sequences A, B, C, D.

6 pairwise comparisons
then cluster analysis

 - similarity +

A
B
C
D

B
D
A
C

Multiple alignments
Following the tree from step 1

Align the most similar pair

B 
D
A
C

B
D

A
C

Align next most similar pair

New gap in A-C to optimize
its alignment with B-D

Align B-D with A-C



Coverage .vs. Accuracy

Same RMSD ~ 2.5Å

Coverage ~90% Cα Coverage ~75% Cα



Sequence-Structure alignment by properties 
conservation (SALIGN-MODELLER)

,i jR ,i jS

Ωi

di

(3), (3)i jD ,i jB

( )2
RMSD = -xix∑

,i jI

 - similarity +

A
B
C
D

B
D
A
C   Uses all available structural information

  Provides the optimal alignment

 Computationally expensive

Madhusudhan et al. in preparation

1 , 2 ( ), ( ) 3 4 , 5 , 6 ,, ,i j i a j a i j i j i ji j i jScore Sw R w D w w B w I w X= ∗ + ∗ + ∗ + ∗ + ∗ + ∗



Structural alignment by properties conservation 
(SALIGN-MODELLER)
http://www.salilab.org/DBAli

http://alto.compbio.ucsf.edu/salign-cgi/index.cgi
http://alto.compbio.ucsf.edu/salign-cgi/index.cgi


Vector Alignment Search Tool (VAST)

v1v2v3

  Good scoring system with significance

 Reduces the protein representation

( )2
RMSD = -xix∑

•  Graph theory search
of similar SSE

•  Refining by Monte 
Carlo

at all atom resolution 

Cα

Cα

Gibrat JF et al. (1996) Curr Opin Struct Biol 3 pp377



Vector Alignment Search Tool (VAST)
http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml

http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml


Incremental combinatorial extension (CE)

Cα

•  Exhaustive combination
     of fragments

•  Longest combination of
    AFPs

•  Heuristic similar to 
    PSI-BLAST

di

( )2
RMSD = -xix∑

8 residues peptides

  FAST!
  Good quality of local alignments

 Complicated scoring and heuristics

Shindyalov IN, amd Bourne PE. (1998) Protein Eng. 9 pp739



Incremental combinatorial extension (CE)
http://cl.sdsc.edu/ce.html

http://cl.sdsc.edu/ce.html
http://cl.sdsc.edu/ce.html


Matching molecular models obtained 
from theory (MAMMOTH)

v1v2v3

2.842.0R

nURMS = −

( )R AB

RAB

URMS URMS D
S URMS

−
=

  VERY FAST!
  Good scoring system with significance

 Reduces the protein representation

Ortiz AR, (2002) Protein Sci. 11 pp2606 



Matching molecular models obtained 
from theory (MAMMOTH)

http://ub.cbm.uam.es/servers/mammoth/

http://ub.cbm.uam.es/servers/mammoth/mammoth
http://ub.cbm.uam.es/servers/mammoth/mammoth


Classification of the structural space

33



SCOP1.71 database
http://scop.mrc-lmb.cam.ac.uk/scop/

Murzin A. G.,el at. (1995). J. Mol. Biol. 247, 536-540.

  Largely recognized as “standard of gold”
  Manually classification
  Clear classification of structures in:

CLASS 
FOLD
SUPER-FAMILY
FAMILY

  Some large number of tools already available

 Manually classification
 Not 100% up-to-date
 Domain boundaries definition

Class Number 
of folds

Number of 
superfamilies

Number of 
families

All alpha proteins 226 392 645

All beta proteins 149 300 594

Alpha and beta proteins (a/b) 134 221 661

Alpha and beta proteins (a+b) 286 424 753

Multi-domain proteins 48 48 64

Membrane and cell surface 
proteins

49 90 101

Small proteins 79 114 186

Total 971 1589 3004
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CATH3.1.0 database
http://www.cathdb.info

Orengo, C.A., et al. (1997)  Structure. 5. 1093-1108.

  Recognized as “standard of gold”
  Semi-automatic classification
  Clear classification of structures in:

CLASS 
ARCHITECTURE
TOPOLOGY
HOMOLOGOUS SUPERFAMILIES

  Some large number of tools already available
  Easy to navigate

 Semi-automatic classification
 Domain boundaries definition

Uses FSSP for superimposition
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DBAliv2.0 database
http://bioinfo.cipf.es/sgu/services/DBAli/

http://www.salilab.org/DBAli/

Marti-Renom et al. 2001. Bioinformatics. 17, 746

  Fully-automatic
  Data is kept up-to-date with PDB releases
  Tools for “on the fly” classification of families.
  Easy to navigate
  Provides tools for structure analysis

 Does not provide a stable classification similar to 
 that of CATH or SCOP

Uses MAMMOTH for similarity detection
  VERY FAST!!!
  Good scoring system with significance

Ortiz AR, (2002) Protein Sci. 11 pp2606 
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Classification of the structural space
Not an easy task!

Day, et al. (2003) Protein Sciences, 12 pp2150

Domain definition AND domain classification

37
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MOULDER

John, Sali (2003). NAR pp31 3982



Moulding: iterative alignment, 
model building, model assessment

model building

alignment

model assessment

model building

alignment

model assessment

Comparative modeling

Threading

Moulding

Alignments 

M
od

el
s 

pe
r a

lig
nm

en
t

1 104 1030

105

1

104
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Genetic algorithm operators

 Also, “two point crossover” and “gap deletion”.

Single point cross-over
   …TSSQ–NMKLGVFWGY–––…
   …V–SSCN–––GDLHMKVGV…

     
   …TSSQNMK–––LGVFWGY…
   …VSSCNGDLHMKV–––GV…

…TSSQ–NMK–––LGVFWGY…
…V–SSCNGDLHMKV–––GV…

  
…TSSQNMKLGVFWGY–––…
…VSSCN–––GDLHMKVGV…

  

Gap insertion
   …TSSQNMKLGVFWGY…                                        
   …VSSCNGDLHMKVGV…    

        

…TSSQN––MKLGVFWGY…
…VSSCNGDLHMKVG––V…

   

Gap shift
   …T––SSQNMKLGVFWGY…                                        
   …VSSCNGDLHMKVGV––…

        

…–T–SSQNMKLGVFWGY…                                        
…VSSCNGDLHMKVGV––…

…T–S–SQNMKLGVFWGY…                                        
…VSSCNGDLHMKVGV––…

…––TSSQNMKLGVFWGY…                                        
…VSSCNGDLHMKVGV––… 

   
…TS––SQNMKLGVFWGY…                                        
…VSSCNGDLHMKVGV––… 

41



Composite model assessment score

Weighted linear combination of several scores:

•Pair (Pp) and surface (Ps) statistical potentials;

•Structural compactness (Sc);

•Harmonic average distance score (Ha);

•Alignment score (As). 

Z(score) = (score- µ)/σ
    µ … average score of all models
    σ … standard deviation of the scores

Z = 0.17 Z(PP) + 0.02 Z(PS) + 0.10 Z(SC) + 0.26 Z(Ha) + 0.45 (AS)

42



Target -template
Sequence 

identity
[%]

Coverage
[% aa]

Initial prediction Final prediction Best prediction

Cα RMSD
[Å]

CE 
overlap

[%]
Cα 

RMSD
[Å]

CE 
overlap

[%]
Cα 

RMSD
[Å]

CE 
overlap

[%]

1ATR-1ATN 13.8 94.3 19.2 20.2 18.8 20.2 17.1 24.6

1BOV-1LTS 4.4 83.5 10.1 29.4 3.6 79.4 3.1 92.6

1CAU-1CAU 18.8 96.7 11.7 15.6 10.0 27.4 7.6 47.4

1COL-1CPC 11.2 81.4 8.6 44.0 5.6 58.6 4.8 59.3

1LFB-1HOM 17.6 75.0 1.2 100.0 1.2 100.0 1.1 100.0

1NSB-2SIM 10.1 89.2 13.2 20.2 13.2 20.1 12.3 26.8

1RNH-1HRH 26.6 91.2 13.0 21.2 4.8 35.4 3.5 57.5

1YCC-2MTA 14.5 55.1 3.4 72.4 5.3 58.4 3.1 75.0

2AYH-1SAC 8.8 78.4 5.8 33.8 5.5 48.0 4.8 64.9

2CCY-1BBH 21.3 97.0 4.1 52.4 3.1 73.0 2.6 77.0

2PLV-1BBT 20.2 91.4 7.3 58.9 7.3 58.9 6.2 60.7

2POR-2OMF 13.2 97.3 18.3 11.3 11.4 14.7 10.5 25.9

2RHE-1CID 21.2 61.6 9.2 33.7 7.5 51.1 4.4 71.1

2RHE-3HLA 2.4 96.0 8.1 16.5 7.6 9.4 6.7 43.5

3ADK-1GKY 19.5 100.0 13.8 26.6 11.5 37.7 7.7 48.1

3HHR-1TEN 18.4 98.9 7.3 60.9 6.0 66.7 4.9 79.3

4FGF-81IB 14.1 98.6 11.3 24.0 9.3 30.6 5.4 41.2

6XIA-3RUB 8.7 44.1 10.5 14.5 10.1 11.0 9.0 34.3

9RNT-2SAR 13.1 88.5 5.8 41.7 5.1 51.2 4.8 69.0

AVERAGE 14.2 85.2 9.6 36.7 7.7 44.8 6.3 57.8

Benchmark with the “very difficult” test set
D. Fischer threading test set of 68 structural pairs (a subset of 19)
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a                 b                 c                   d

Sequence identity          4.4%

Initial model Cα RMSD 10.1Å

Final model Cα RMSD   3.6Å

Application to a difficult modeling case
 1BOV-1LTS

Iteration index

0 5 10 15 20 25

Statistical potential score
        [arbitrary units]

-4

-3

-2

-1

0

1

2
Top
Final

a

b

c

d

Iteration index

0 5 10 15 20 25

Statistical potential score
        [arbitrary units]

-4

-3

-2

-1

0
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2
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a

b

c

d
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Protein function from structure
ab-initio localization of binding sites

Rossi, et al. Protein Science, 15, 2366 (2006)



For many protein structures 
function is unknown

Structural 
Genomics*

Traditional 
methods

Annotated** 654 28,342

Not 
Annotated 506 (43.6%) 6,815 (19,4%)

Total 
deposited 1,160 35,157

* annotated as STRUCTURAL GENOMICS in the header of the PDB file
**annotated with either CATH, SCOP, Pfam or GO terms in the MSD database

36,317 protein structures, as of August 8th, 2006
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Structure conservation

Solvent 
accessibility

Surface geometrySequence conservation

Electrostatics

47

Representation



M = number of proteins in training set

48

Scoring
NAD



Compactness Conservation Charge density B-factor Protrusion 
coefficient

Convexity score Hydrophobicity

ADP -1.266 -2.009 0.447 -0.414 -1.521 -1.388 -0.118

AMP -1.62 -1.962 0.341 -0.381 -1.909 -1.944 -0.518

ANP -1.007 -2.227 0.176 -0.392 -1.706 -1.595 -0.14

ATP -1.122 -2.156 0.228 -0.274 -1.845 -1.768 0.038

BOG -2.067 -0.012 0.552 -0.465 -0.356 -0.49 -0.781

CIT -2.948 -1.58 0.563 -0.527 -0.922 -0.838 -0.113

FAD 0.505 -2.108 0.366 -0.702 -1.735 -1.725 -0.75

FMN -1.132 -1.98 0.382 -0.387 -1.803 -1.886 -0.695

FUC -3.43 0.016 -0.295 -0.123 0.002 0.132 0.459

GAL -3.186 -0.538 -0.234 -0.068 -0.906 -0.987 0.298

GDP -1.061 -1.471 0.409 -0.81 -1.472 -1.423 0.182

GLC -2.813 -1.247 -0.207 -0.399 -1.247 -1.337 -0.089

HEC -0.172 -0.912 0.286 -0.325 -1.153 -1.27 -1.282

HEM -0.651 -1.571 0.683 -0.51 -1.797 -1.937 -1.47

MAN -3.72 0.131 0.105 -0.52 -0.605 -0.509 0.405

MES -3.049 -0.24 -0.338 -0.479 -0.714 -0.926 0.296

NAD -0.005 -1.852 0.156 -0.232 -1.775 -1.804 -0.858

NAG -3.419 -0.46 -0.126 -0.154 -0.341 -0.523 -0.078

NAP -0.009 -1.898 0.612 -0.321 -1.587 -1.656 -0.336

NDP 0.217 -1.741 0.535 -0.312 -1.463 -1.562 -0.498

Ligand fingerprints

49



Ligand fingerprints
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MAN
FUC
MES
NAG
BOG
GLC
GAL
CIT

HEC
AMP
GDP
ADP
FMN
ATP
NDP
ANP
HEM
NAP
NAD
FAD

0 25 50 75 100

Random Minimized

Prediction accuracy
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Protein function from structure
Comparative annotation. AnnoLite and AnnoLyze.

Marti-Renom et al. BMC Bioinformatics (2007) in press



DBAli

Search

Tools

Special 

pages
Structural Genomics

Download

Statistics

Pairwise

Get all similar

DBAlit!

AnnoLite

AnnoLyze

ModClus from list

ModClus from chain

SALIGN

ModDom

Pairwise  alignment result

Table of structural similarities

Multiple alignment result

Domain assignments

Full annotations result

Fast annotations result

Cluster results

e-mail

Multiple
Multiple alignment result

53

DBAliv2.0 database
http://bioinfo.cipf.es/sgu/services/DBAli/

http://www.salilab.org/DBAli/

http://salilab.org/DBAli/
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http://salilab.org/DBAli/


DBAli

Search

Tools

Special 

pages
Structural Genomics

Download

Statistics

Pairwise

Get all similar

DBAlit!

AnnoLite

AnnoLyze

ModClus from list

ModClus from chain

SALIGN

ModDom

Pairwise  alignment result

Table of structural similarities

Multiple alignment result

Domain assignments

Full annotations result

Fast annotations result

Cluster results

e-mail

Multiple
Multiple alignment result

53

DBAliv2.0 database
http://bioinfo.cipf.es/sgu/services/DBAli/

http://www.salilab.org/DBAli/

http://salilab.org/DBAli/
http://salilab.org/DBAli/
http://salilab.org/DBAli/
http://salilab.org/DBAli/


AnnoLite

54



Benchmark set

55

AnnoLite

Number of chains

Initial set* 50,223

FULL annotation** 10,997

Non-redundant set*** 1,879
*data from BioMart  MSD.3 (release February 2005)

**annotated with CATH, SCOP, Pfam, EC, InterPro, and GO terms in the MSD database
**not two chains can be structurally aligned  within 2A, superimposing more than 60% of 

their Cα atoms and have a length difference inferior to 30aa  



Method
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AnnoLite

HTML output

AnnoLite search

Fischer´s 2x2

test for statistical 

significance

Similar chains in DBAli

RMSD < 4A

% Seq Id variable (>15)

% Equivalent positions >75%

p-value >4

Chain ID

BioMart protein annotation

Annotations from MSD.msd 

database and descriptions from 

SCOP, CATH, InterPro, PFamA, 

ENZYME, and GO databases

DBAli tools



Scoring function
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AnnoLite

Non-
similar Similar Total

Annotated a b a+b

Not 
Annotated c d c+d

Total a+c b+d n

1b78A
SCOP

c.51.4.1
Similar Not 

similar Total

Annotated 4 2 6

Not 
Annotated 0 71,096 71,096

Total 4 71,098 71,102

p = 1.78e-19

Fisher’s 2x2 contingency test 



Optimal cut-off Sensitivity (%)
Recall or TPR Precision (%)

SCOP fold 1e-6 92.7 88.4

CATH fold 1e-3 95.7 90.1

InterPro 1e-3 88.4 78.2

PFam family 1e-4 90.5 82.8

EC number 1e-4 93.3 79.7

GO Molecular Function 1e-1 84.3 80.9

GO Biological Process 1e-3 85.5 74.8

GO Cellular Component 1e-2 77.6 58.6

58

Sensitivity .vs. Precision

Precision = TP
TP + FP

Sensitivity = TP
TP + FN

AnnoLite



AnnoLyze
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Benchmark
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AnnoLyze

Number of chains
Initial set* 78,167
LigBase** 30,126

Non-redundant set*** 4,948 (8,846 ligands)

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)
**annotated with at least one ligand in the LigBase database

***not two chains can be structurally aligned  within 3A, superimposing more than 75% of their Cα atoms, result 
in a sequence alignment  with more than 30% identity, and have a length difference inferior to 50aa  

Number of chains
Initial set* 78,167
πBase** 30,425

Non-redundant set*** 4,613 (11,641 partnerships)

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)
**annotated with at least one partner in the πBase database

***not two chains can be structurally aligned  within 3A, superimposing more than 75% of their Cα atoms, result 
in a sequence alignment  with more than 30% identity, and have a length difference inferior to 50aa  



Method
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HTML output

AnnoLyze search

Selection based on local 

similarity

% Seq Id >20%

% Equivalent positions >75%

Similar chains in DBAli

RMSD < 4A

% Seq Id >20%

% Equivalent positions >75%

p-value >4

Chain ID

LigBase protein 

ligands

Ligands from 

LigBase are 

collected and 

binding sites 

annotated based 

on the spatial 

proximity to the 

ligand

DBAli tools

PiBase protein 

partners

Interations from 

PiBase are 

collected and 

interaction 

patches 

annotated based 

on the spatial 

proximity 

between domains

AnnoLyze



Scoring function
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AnnoLyze

Aloy et al. (2003) J.Mol.Biol. 332(5):989-98.

interactions are mainly due to the artifacts men-
tioned above (e.g. crystal packing and homo-
multimers). Fusions, on the other hand, are rarely
similar: only 783 out of 24,049 (or 35 out of 468 for
the different fold subset) have iRMSD values
below 5, and we could find no clear relationship
between sequence and interaction similarity. This
suggests that one should also exercise caution
when inferring a domain–domain interaction
between separate proteins based on a similar pair
of domains in a single polypeptide (e.g. see Aloy
et al.28), particularly when identities are low. This
has some bearing on the proposal to use gene
fusion events to predict protein–protein
interactions,29 or fused domain combinations in a
structural genomics initiative to uncover 3D
structures for interacting domains.30 A few
examples of fusions are also discussed below.

Studying specific interactions

The general trends can give a guide to the degree
of sequence similarity needed to be confident in a

similar interaction. However, it is also often
informative to consider a specific interaction, as
would arise in modelling or other studies
involving a few protein families. For some
domain–domain interactions, the data in Figure 2
show that interactions are preserved even at very
low sequence identities, whereas for others the
situation is reversed. For example, if one considers
PID , 20% for the P-loop ATPase superfamily
(c.37.1) interacting with the ubiquitin-like super-
family (d.15.1) all four interactions (c-Raf1 RBD,
1c1y; RalGDS, 1lfd; PI3K, 1he8; kinase byr2, 1k8r)
are similar (iRMSD , 7 Å). In contrast, the five
interactions between the P-loop ATPases and PH
domains (b.55.1; 2 interactions in Dbs, 1kz7; GEF
of TIAM1, 1foe; Nup358, 1rrp), only two of the
eight interactions with PID , 20% have
iRMSD , 10 Å, with the others showing great
differences, iRMSD as high as 18 Å with clearly
different binding surfaces.
There are obviously too many different interact-

ing domain pairs to discuss in detail. However, it
is possible to plot iRMSD versus sequence identity

Figure 2. Plots showing interaction RMSD (iRMSD) versus percentage sequence identity (PID). (A) All the inter-
actions coloured according to their SCOP classification: Family in red, Superfamily in Green and Fold in blue. (B) The
same for the different fold subset. Inset plots the interactions derived from the Pfam/PDB intersection. (C) All the
interactions coloured according to whether or not the domains are in the same polypeptide chain: intermolecular in
red, intramolecular in green and fusions in blue. (D) The same for the different fold subset. Curves show the 90th
and 80th percentiles (i.e. 90% and 80% of the data below the curve). The gap between PID ¼ 0 and 1 is because the
number of structurally equivalent residues is often much smaller than 100, making values between 0 and 1 rare.

Protein Interaction Versus Sequence Divergence 993Ligands Partners
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Sensitivity .vs. Precision
Optimal cut-off Sensitivity (%)

Recall or TPR
Precision (%)

Ligands 30% 71.9 13.7

Partners 40% 72.9 55.7

Precision = TP
TP + FP

Sensitivity = TP
TP + FN

AnnoLyze
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Example (2azwA)
Structural Genomics Unknown Function

Molecule: MutT/nudix family protein  
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Can we use models to infer function?

66

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Transcripts

0

10

20

30

40

50

60

70

80

90

100
%

 m
o

d
e
le

d

% good

% bad

H. sapiens

M. tuberculosis

M. leprae

P. falciparum

T. gondii

T. cruzi

T. brucei
P. vivax

L. major

C. parvum

C. hominis



What is the physiological ligand of 
Brain Lipid-Binding Protein?

L. Xu, R. Sánchez, A. Šali, N. Heintz, J. Biol. Chem. 271, 24711, 1996.

BLBP/docosahexaenoic acidBLBP/oleic acid

Ligand binding 
cavity

Cavity is not filled Cavity is filled

1. BLBP binds fatty acids.

2. Build a 3D model.

3. Find the fatty acid that 
fits most snuggly into the 

ligand binding cavity.

Predicting features of a model that are not present in the template
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Nebojsa Mirkovic, Marc A. Marti-Renom, Barbara L. Weber, 
Andrej Sali and Alvaro N.A. Monteiro

Cancer Research (June 2004). 64:3790-97

Structural analysis of missense mutations 
in human BRCA1 BRCT domains

Cannot measure the functional impact of every 
possible SNP at all positions in each protein! 

Thus, prediction based on general principles of 
protein structure is needed.
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Missense mutations in BRCT domains by function

C1697R
R1699W
A1708E
S1715R
P1749R
M1775R

M1652I
A1669S

V1665M
D1692N
G1706A
D1733G
M1775V
P1806A

M1652K
L1657P
E1660G
H1686Q
R1699Q
K1702E 

Y1703HF
1704S

L1705PS
1715NS1
722FF17
34LG173
8EG1743
RA1752
PF1761I

F1761S 
M1775E 
M1775K
L1780P
I1807S
V1833E 
A1843T

M1652T
V1653M
L1664P 
T1685A
T1685I

M1689R 
D1692Y
F1695L
V1696L
R1699L
G1706E
W1718C

W1718S
T1720A
W1730S
F1734S
E1735K
V1736A
G1738R
D1739E
D1739G
D1739Y 
V1741G
H1746N

R1751P
R1751Q 
R1758G 
L1764P 
I1766S 
P1771L 
T1773S
P1776S 
D1778N
D1778G
D1778H
M1783T

A1823T
V1833M
W1837R
W1837G
S1841N
A1843P 
T1852S
P1856T
P1859R

cancer
associate ?

?

C1787S
G1788D
G1788V
G1803A
V1804D
V1808A
V1809A
V1809F
V1810G
Q1811R
P1812S
N1819S

not cancer
associated

no transcription
activation

transcription
activation
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Putative binding site on BRCA1

Putative binding site predicted in 2003 
and accepted for publication on March 2004.

Williams et al. 2004 Nature Structure Biology. June 2004 11:519
Mirkovic et al. 2004 Cancer Research. June 2004 64:3790
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S. cerevisiae ribosome

C. Spahn, R. Beckmann, N. Eswar, P. Penczek, A. Sali, G. Blobel, J. Frank. Cell 107, 361-372, 2001. 

Fitting of comparative 
models into 15Å cryo- 
electron density map.

43 proteins could be 
modeled on 20-56% 
seq.id. to a known 

structure.

The modeled fraction of 
the proteins ranges from 

34-99%.

71



Nup84
Nup85

Nup145C

Nup120 Nup133

The Nucleopore complex
Cell evolution (?)
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Devos et al. PLoS Biology 2, 1 (2004)



Tropical Disease Initiative (TDI)
Predicting binding sites in protein structure models.
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http://www.tropicaldisease.org

http://www.tropicaldisease.org
http://www.tropicaldisease.org


Need is High in the Tail
DALY Burden Per Disease in Developed Countries
DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.
DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. 

The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full 
health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.
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Disease

DALY

Heart diseases

Rare diseases

http://www.who.int/whr/2004/en/
http://www.who.int/whr/2004/en/


Need is High in the Tail
DALY Burden Per Disease in Developed Countries
DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.
DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. 

The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full 
health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.
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Disease

DALY

Heart diseases

Rare diseases

http://www.who.int/whr/2004/en/
http://www.who.int/whr/2004/en/


“Unprofitable” Diseases
and Global DALY (in 1000’s)

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life year in 1000’s.

*  Officially listed in the WHO Tropical Disease Research disease portfolio.
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Malaria* 46,486

Tetanus 7,074

Lymphatic filariasis* 5,777

Syphilis 4,200

Trachoma 2,329

Leishmaniasis* 2,090

Ascariasis 1,817

Schistosomiasis* 1,702

Trypanosomiasis* 1,525

Trichuriasis 1,006

Japanese encephalitis 709

Chagas Disease* 667

Dengue* 616

Onchocerciasis* 484

Leprosy* 199

Diphtheria 185

Poliomyelitise 151

Hookworm disease 59

http://www.who.int/whr/2004/en/
http://www.who.int/whr/2004/en/
http://www.who.int/tdr/diseases/default.htm
http://www.who.int/tdr/diseases/default.htm
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TDI flowchart
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Sali, Rai, Maurer. PLoS Medicine (2004)
Kepler, et al. Australian Journal of Chemistry (2006)

http://www.tropicaldisease.org
http://www.tropicaldisease.org
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Modeling Genomes
data from models generated by ModPipe (Eswar, Pieper & Sali)



Comparative docking
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1. Expansion 2. Inheritance
co-crystalized protein/ligand model

crystalized protein template

crystalized protein



Ligand “expanded” space

79

from 6,859 templates used in “good” models

Expansion 
cut-off

Templates Expanded Unique

30% 4,639 64,800 3,178

50% 4,242 37,945 3,030

70% 3,323 20,603 2,786



Ligand “inherited” space
second cut-offs

Inheritance
cut-offs

Models Inherited Unique

90% / 70% 5,181 23,286 1,137

90% / 80% 4,383 17,842 1,027

90% / 90% 3,462 11,803 827

80

Using a 70% “expansion” cut-off



Distribution of models with inherited ligands
from 3,882 “good” models

using a 90% / 90% “inherited” cut-offs

C.hominis         183
C.parvum          219
L.major   488
M.leprae          286
M.tuberculosis  404
P.falciparum  271
P.vivax    267
T.brucei          440
T.cruzi    730
T.gondii          174

81



Summary table
models with inherited ligands

Transcripts Good Ligands Lipinski Lipinski+ZINC FDA+ZINC

C. hominis 3,886 886 183 131 28 12 (10)

C. parvum 3,806 949 219 145 30 12 (10)

L. major 8,274 1,845 488 334 84 44 (34)

M. leprae 1,605 1,321 286 189 39 29 (25)

M. tuberculosis 3,991 2,887 404 285 71 44 (37)

P. falciparum 5,363 1,057 271 191 48 20 (16)

P. vivax 5,342 1,042 267 177 37 18 (15)

T. brucei 921 1,795 440 309 94 46 (36)

T. cruzi 19,607 3,915 730 493 127 62 (52)

T. gondii 7,793 587 174 124 28 8 (7)

TOTAL 60,588 16,284 3,462 2,378 586 295 (242)

82

from 16,284 good models, 295 inherited a ligand/substance with at least one 
compound  already approved by FDA and ready to be used from ZINC
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Example of inheritance (expansion)
LmjF21.0680 from L. major “Histone deacetylase 2” (model 1)

Template 1t64A a human HDAC8 protein. 

Origen Formula Name Cov. Seq, Id. (%)

ZN X-ray Zn 2+ Zinc ion -- --

NA X-ray Na +  Sodium ion -- --

CA X-ray Ca 2+  Calcium ion -- --

TSN X-ray C17 H22 N2 O3  Trichostatin A -- --

SHH
Expanded C14 H20 N2 O3 Octadenioic acid hudroxyamide 

phenylamide
100.00 83.8
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Example of inheritance (inheritance)
LmjF21.0680 from L. major “Histone deacetylase 2” (model 1)

Formula Name Cov. Seq, Id. (%) Residues

TSN C17 H22 N2 O3  Trichostatin A 100.00 90.9 90 131 132 140 141 167 
169 256 263 293 295

SHH
C14 H20 N2 O3 Octadenioic acid hudroxyamide 

phenylamide
100.00 90.9

LmjF21.0680.1.pdb

Template 1t64A 

Seq. Id (%) 38.00

MPQS 1.47

suberoylanilide hydroxamic acid

Pharmacological Action:
Anti-Inflammatory Agents, Non-Steroidal
Antineoplastic Agents
Enzyme Inhibitors
Anticarcinogenic Agents

Inhibits histone deacetylase I and 3

TSN

trichostatin A

Pharmacological Action:
Antibiotics, Antifungal
Enzyme Inhibitors
Protein Synthesis Inhibitors

chelates zinc ion in the active site of histone deacetylases, 
resulting in preventing histone unpacking so DNA is less 
available for transcription

SHH

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=mesh&dopt=Full&list_uids=67111237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=mesh&dopt=Full&list_uids=67111237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anti%2dInflammatory%20Agents%2c%20Non%2dSteroidal%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anti%2dInflammatory%20Agents%2c%20Non%2dSteroidal%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Antineoplastic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Antineoplastic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Enzyme%20Inhibitors%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Enzyme%20Inhibitors%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anticarcinogenic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anticarcinogenic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anticarcinogenic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anticarcinogenic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anticarcinogenic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Anticarcinogenic%20Agents%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=mesh&dopt=Full&list_uids=67012589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=mesh&dopt=Full&list_uids=67012589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Antibiotics%2c%20Antifungal%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Antibiotics%2c%20Antifungal%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Enzyme%20Inhibitors%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Enzyme%20Inhibitors%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Protein%20Synthesis%20Inhibitors%5Bmh%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&db=mesh&term=Protein%20Synthesis%20Inhibitors%5Bmh%5D
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Example of inheritance (CDD-Roos-literature)
LmjF21.0680 from L. major “Histone deacetylase 2” (model 1)

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435–1436 Vol. 48, No. 4
0066-4804/04/$08.00!0 DOI: 10.1128/AAC.48.4.1435–1436.2004
Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a
New Class of Histone Deacetylase Inhibitors

Members of the genus Leishmania are parasitic protozoans
that infect about two million people per annum (5), and they
are emerging as serious opportunistic infective agents in hu-
man immunodeficiency virus-infected patients (4). Malaria
parasites are responsible for 1.5 to 2.7 million deaths annually,
primarily in Africa (10). The effort to find new antimalarial
agents is still a high priority given the increasing malaria emer-
gency largely due to multidrug-resistant Plasmodium falcipa-
rum strains. The histones of P. falciparum have recently been
proposed as targets for drug treatment of blood stage parasites
(6). They also play an important role in chromatin remodeling
in trypanosomatids, which include Leishmania species and try-
panosomes (3).

Apicidin, a cyclic tetrapeptide isolated from Fusarium spp.,
was reported to block the in vitro development of apicom-
plexan parasites by inhibiting parasite (including Plasmodium
species) histone deacetylase (HDAC) (6). Another HDAC
inhibitor, suberoyl bishydroxamic acid, showed an in vivo cy-
tostatic effect against the acute murine malaria Plasmodium
berghei, and one round of treatment with the compound failed
to select for resistant mutations (1).

Recently, Mai et al. reported a novel series of hydroxamate
compounds, namely, 3-(4-aroyl-1H-pyrrol-2-yl)-N-hydroxy-2-
propenamides, acting as HDAC inhibitors in the range of low
micromolar-submicromolar concentrations (7, 8). The aim of
the present study was to investigate the in vitro antimalarial
and antileishmanial activities of lead compound 1 and some
analogues (compounds 2 to 10) to identify potential chemical
tools with selective toxicity for protozoa.

The antimalarial activity of compounds 1 to 10 (Table 1) was
determined in vitro for chloroquine-sensitive (CQS) (D6,
Sierra Leone) and chloroquine-resistant (CQR) (W2, Indo-
china) strains of P. falciparum. Growth of cultures of P. falci-

parum was determined by a parasite lactate dehydrogenase
assay using Malstat reagent (9). Chloroquine was used as the
positive control, while dimethyl sulfoxide was tested as the
negative control. Suberoylanilide hydroxamic acid (SAHA)
and trichostatin A (TSA), two well-known HDAC inhibitors,
were also tested. Antileishmanial activity of compounds 1 to 10
(Table 1) was tested on a transgenic cell line of Leishmania
donovani promastigotes expressing firefly luciferase (assay with
Steady Glo reagent; Promega, Madison, Wis.) obtained from
Dr. Rafael Balana-Fouce, University of Leon, Leon, Spain.
Pentamidine was tested as a reference drug together with
SAHA and TSA. All the compounds were simultaneously
tested for cytotoxicity on Vero (monkey kidney fibroblast) cells
by a Neutral Red assay (2).

Among compounds 1 to 10, only compound 7 showed anti-
malarial activity against P. falciparum strains; however, its 50%
inhibitor concentration (IC50) values were 22- to 100-fold
higher than those of chloroquine and 4.8- to 8.5-fold and 33- to
93-fold higher than those of SAHA and TSA, respectively.
Compounds 1 to 4 showed little Plasmodium inhibition activity
(Table 1). This biological behavior of compounds 1 to 10 re-
sembles their corresponding anti-HDAC effect against maize
HD2 (compound 7, IC50 " 0.1 #M; compounds 1 to 4, IC50 "
2 to 4 #M; compounds 5, 6, and 8 to 10, low-level activity or
totally inactivity) (7, 8), thus confirming an inhibiting action of
compound 7 and, to a lesser extent, of compounds 1 to 4 on
parasite HDAC enzymes.

Surprisingly, the majority of compounds 1 to 10 were found
endowed with interesting anti-Leishmania activity (in this case,
activity not directly related to their anti-HD2 action) (Table 1).
Compounds 2 and 3, the most potent of the series, were as
active as pentamidine, slightly less potent than TSA, and $10-
fold more potent than SAHA. Interestingly, compounds 2 and

TABLE 1. Antimalarial and antileishmanial activities of compounds 1 to 10

Compound Compounda
IC50 (#g/ml) for P. falciparumb: IC (#g/ml) for L. donovani Cytotoxicity

(#g/ml)D6 (CQS) W2 (CQR) IC50 IC90

1 1 $4.8 (46) $4.8 (45) 2.4 11.3 NCc

2 2 $4.7 (19) $4.7 (34) 1.7 5.4 NC
3 5 $4.7 (35) $4.7 (49) 1.6 5.1 NC
4 7 3.8 3.5 2.4 14.3 NC
5 27 NAd NA NA NA NC
6 29 NA NA NA NA NC
7 8 1.2 4 16 $50 NC
8 25 NA NA NA NA NC
9 26 NA NA 8.3 32 NC
10 28 NA NA 6.8 $50 NC
SAHA 0.25 0.47 22 50 1.2
TSA 0.036 0.043 0.89 25 0.095
Pentamidine NTe NT 1.25 4.1 NC
Chloroquine 0.014 0.18 NT NT NC

a From reference 7.
b Numbers in parentheses represent percentages of inhibition at the tested dose.
c NC, not cytotoxic at concentrations of up to 23.8 #g/ml.
d NA, not active at the maximum dose tested (4.8 #g/ml in the case of the antimalarial assays and 50 #g/ml in the case of the antileishmanial assays).
e NT, not tested.
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Apicidin: A novel antiprotozoal agent that inhibits
parasite histone deacetylase

(cyclic tetrapeptide!Apicomplexa!antiparasitic!malaria!coccidiosis)
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P.O. Box 2000, Rahway, NJ 07065
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ABSTRACT A novel fungal metabolite, apicidin [cyclo(N-
O-methyl-L-tryptophanyl-L-isoleucinyl-D-pipecolinyl-L-2-
amino-8-oxodecanoyl)], that exhibits potent, broad spectrum
antiprotozoal activity in vitro against Apicomplexan parasites
has been identified. It is also orally and parenterally active in
vivo against Plasmodium berghei malaria in mice. Many Api-
complexan parasites cause serious, life-threatening human
and animal diseases, such as malaria, cryptosporidiosis,
toxoplasmosis, and coccidiosis, and new therapeutic agents
are urgently needed. Apicidin’s antiparasitic activity appears
to be due to low nanomolar inhibition of Apicomplexan histone
deacetylase (HDA), which induces hyperacetylation of his-
tones in treated parasites. The acetylation–deacetylation of
histones is a thought to play a central role in transcriptional
control in eukaryotic cells. Other known HDA inhibitors were
also evaluated and found to possess antiparasitic activity,
suggesting that HDA is an attractive target for the develop-
ment of novel antiparasitic agents.

Protozoan parasites of the subphylum Apicomplexa remain
significant threats to human and animal health worldwide.
With respect to human health, malaria remains one of the
leading causes of death in the world, resulting in the loss of over
1.5 million lives per year (1). Widespread multidrug resistance
to malaria has developed, and few, if any, new therapeutic
agents will be available in the foreseeable future. Another
Apicomplexan parasite, Cryptosporidium parvum, was recently
identified by the World Health Organization as an emerging
global health problem (2). The rapid spread of cryptosporidi-
osis has been reported in urban slums (3), and there have been
several major water-borne outbreaks in developed countries in
which thousands of individuals were infected (4). In immune
compromised individuals, such as AIDS patients, Cr. parvum
infections are incurable and lead to chronic diarrhea and
wasting disease. Despite its medical importance, there is
currently no therapy for treating cryptosporidiosis. Another
important apicomplexan infection in immune-compromised
patients is Toxoplasma gondii, which is becoming a relatively
common problem in AIDS patients (5). Although methods of
treating toxoplasmosis exist, better therapeutic agents are
clearly needed.

In animal health, the Apicomplexan parasites cause major
economic losses in livestock and poultry throughout the world.
Eimeria parasites are responsible for coccidiosis in poultry and
many other domesticated animals. Infection of the gut epithe-
lium by these intracellular parasites results in severe morbidity
and mortality, particularly in chickens. Poultry producers

worldwide routinely employ chemical prophylaxis to prevent
serious coccidiosis outbreaks. Resistance to currently available
coccidiostats is prevalent, and new anticoccidial agents are
needed. T. gondii is an important cause of abortion and
morbidity in livestock, especially sheep and goats (6), and
species of Cryptosporidium cause widespread and rapidly trans-
mitted diarrheal illness in several mammalian hosts, especially
calves, neonatal lambs and goats, and young foals (7).

In this paper, a novel natural product, apicidin [cyclo(N-O-
methyl-L-tryptophanyl-L-isoleucinyl-D-pipecolinyl-L-2-amino-
8-oxodecanoyl)], that has broad spectrum activity against the
Apicomplexan parasites is described, and experimental evi-
dence that demonstrates that this compound kills parasites by
inhibiting histone deacetylase (HDA), a key nuclear enzyme
involved in transcriptional control, is provided.

MATERIALS AND METHODS
Source of Compounds and Organisms. [3H]Apicidin A

(2-N-desmethoxy[3H]apicidin, specific activity 18.7 mCi!mg; 1
Ci ! 37 GBq), Ac-Gly-Ala-Lys(!-[3H]Ac)-Arg-His-Arg-Lys(!-
[3H]Ac)-Val-NH2 (specific activity 3.8 Ci!mmol), "-hydroxy-
HC-toxin, and trichostatin were prepared at Merck Research
Laboratories, Rahway, NJ. Sodium [14C]acetate (60 mCi!
mmol) was purchased from Amersham. Sodium butyrate and
HC-toxin were from Sigma. Organisms for in vitro studies were
obtained from a variety of sources: Plasmodium berghei (strain
KBG 173), A. Ager (University of Miami, Miami); Plasmo-
dium falciparum (Dd2 strain), D. Chakraborti (University of
Florida, Gainesville, FL); Neospora caninum (strain NC-1-2C)
and Caryospora bigenetica, D. Lindsay and C. Sundermann
(Auburn University, Auburn, AL). Human blood products
were from the North Jersey Blood Center.

Determination of in Vitro Antiprotozoal Activity. Conditions
for the in vitro culture of parasites and determination of
minimal inhibitory concentrations [defined as the lowest con-
centration (nanograms per milliliter) at which parasite growth
was fully inhibited] for compounds were conducted according
to previously described methods. For Eimeria tenella, the 48-hr
assay as described by Schmatz et al. (8) was used; for T. gondii,
Besnoitia jellisoni, and N. caninum, the method of Roos et al.
(9) was used; for Ca. bigenetica, the 7-day assay as described by
Sundermann et al. (10) was used; for P. falciparum [chloro-
quine-resistant strain Dd2, grown according to Trager and
Jensen (11)], drug sensitivity was determined over 48 hr
visually by light microscopy of stained blood smears; and
activity against Cr. parvum was determined according to
Woods et al. (12) with rat serum at a 1:1000 dilution. Test

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: HDA, histone deacetylase; p.i., post infection; AUT,
acid urea triton.
†To whom reprint requests should be addressed.
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Marc A. Marti-Renom
http://bioinfo.cipf.es/sgu/

Structural Genomics Unit
Bioinformatics Department

Prince Felipe Resarch Center (CIPF), Valencia, Spain

Comparative Protein Structure Prediction
MODELLER tutorial

$>mod9v1 model.py

http://bioinfo.cipf.es/sgu/
http://bioinfo.cipf.es/sgu/


Obtaining MODELLER and 
related information

MODELLER (9v1) web page
http://www.salilab.org/modeller/
http://www.salilab.org/modeller/tutorial

Download Software (Linux/Windows/Mac/Solaris)
HTML Manual
Join Mailing List
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http://www.salilab.org/modeller/
http://www.salilab.org/modeller/
http://www.salilab.org/modeller/
http://www.salilab.org/modeller/


Using MODELLER

No GUI! 
Controlled by command file 
Script is written in PYTHON language 
You may know Python language is simple 
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MODELLER 9v1
Python interface
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• Modeller Python interface uses classes, e.g.:
• ‘alignment’   holds and manipulates aligned sequences

• ‘model’   holds and manipulates protein models

• ‘environ’   keeps the configuration of the environment

• ‘profile’   holds and manipulates sequence profiles

• ‘sequence_db’   is for sequence databases

• These behave just like ordinary Python classes, but 
Modeller Fortran code is linked to them

• The Modeller data is automatically freed when the 
Python object is deleted (explicitly or implicitly)



MODELLER 8
class hierarchy
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object

modobject

model

alignment

environ

density

automodel

loopmodel

• ‘object’ is a standard
  Python class
• ‘modobject’ provides
  basic functions for
  most Modeller classes
• Not all classes are
  shown in this diagram



INPUT:
Target Sequence (FASTA/PIR format)
Template Structure (PDB format)
Python file

OUTPUT:
Target-Template Alignment
Model in PDB format
Other data
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Using MODELLER



Modeling of BLBP
Input

Target: Brain lipid-binding protein (BLBP)
BLBP sequence in PIR (MODELLER) format:

>P1;blbp

sequence:blbp:::::::: 

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSID
DRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*
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Modeling of BLBP
STEP 1: Align blbp and 1hms sequences 

Python script for target-template alignment

# Example for: alignment.align()

# This will read two sequences, align them, and write the alignment
# to a file:

log.verbose()
env = environ()

aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms') 
aln.append(file='blbp.seq', align_codes=('blbp'))

# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment_format='PAP') 

Run by typing  mod9v1 align.py in the directory where you have the python file. 
MODELLER will produce a align.log file
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Modeling of BLBP
STEP 1: Align blbp and 1hms sequences 

Python script for target-template alignment

# Example for: alignment.align()

# This will read two sequences, align them, and write the alignment
# to a file:

log.verbose()
env = environ()

aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms') 
aln.append(file='blbp.seq', align_codes=('blbp'))

# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment_format='PAP') 
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Run by typing  mod9v1 align.py in the directory where you have the python file. 
MODELLER will produce a align.log file



Modeling of BLBP
STEP 1: Align blbp and 1hms sequences 

Python script for target-template alignment

# Example for: alignment.align()

# This will read two sequences, align them, and write the alignment
# to a file:

log.verbose()
env = environ()

aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms') 
aln.append(file='blbp.seq', align_codes=('blbp'))

# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment_format='PAP') 

96

Run by typing  mod9v1 align.py in the directory where you have the python file. 
MODELLER will produce a align.log file



Modeling of BLBP
STEP 1: Align blbp and 1hms sequences 

Python script for target-template alignment

# Example for: alignment.align()

# This will read two sequences, align them, and write the alignment
# to a file:

log.verbose()
env = environ()

aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms') 
aln.append(file='blbp.seq', align_codes=('blbp'))

# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment_format='PAP') 
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Run by typing  mod9v1 align.py in the directory where you have the python file. 
MODELLER will produce a align.log file



Modeling of BLBP
STEP 1: Align blbp and 1hms sequences 

Output
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>P1;1hms

structureX:1hms:   1 : : 131 : :undefined:undefined:-1.00:-1.00

VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA

DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*

>P1;blbp

sequence:blbp:     : :     : : : : 0.00: 0.00

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI

DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*



Modeling of BLBP
STEP 1: Align blbp and 1hms sequences 

Output
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>P1;1hms

structureX:1hms:   1 : : 131 : :undefined:undefined:-1.00:-1.00

VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA

DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*

>P1;blbp

sequence:blbp:     : :     : : : : 0.00: 0.00

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI

DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*



Modeling of BLBP
STEP 1: Align blbp and 1hms sequences 

Output
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 _aln.pos         10        20        30        40        50        60
1hms      VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGV
blbp      VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGE
 _consrvd ****  **** ** *** *** **********   **** **   *      *  ******* * **

 _aln.p   70        80        90       100       110       120       130
1hms      EFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE
blbp      EFEETSIDDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA
 _consrvd ** **  ***  ** * *** ** * ***** **   **  ***   *** *  *  * ***            



Modeling of BLBP
STEP 2: Model the blbp structure using the 

alignment from step 1. 
Python script for model building
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# Homology modelling by the automodel class
from modeller.automodel import *    # Load the automodel class
log.verbose()    	

	

 	

 	

 	

 	

 # request verbose output
env = environ()  	

	

 	

 	

 	

 	

 # create a new MODELLER environment
	

 	

 	

 	

 	

 	

 	

 	

 	

 	


# directories for input atom files
env.io.atom_files_directory = './:../atom_files'

a = automodel(env,
              alnfile  = 'blbp-1hms.ali',     # alignment filename
              knowns   = '1hms',              # codes of the templates
              sequence = 'blbp')              # code of the target
a.starting_model= 1                 # index of the first model 
a.ending_model  = 1                 # index of the last model
                                    # (determines how many models to calculate)
a.make()                            # do the actual homology modelling

Run by typing  mod9v1 model.py in the directory where you have the python file. 
MODELLER will produce a model.log file



Modeling of BLBP
STEP 2: Model the blbp structure using the 

alignment from step 1. 
Python script for model building
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# Homology modelling by the automodel class
from modeller.automodel import *    # Load the automodel class
log.verbose()    	

	

 	

 	

 	

 	

 # request verbose output
env = environ()  	

	

 	

 	

 	

 	

 # create a new MODELLER environment
	

 	

 	

 	

 	

 	

 	

 	

 	

 	


# directories for input atom files
env.io.atom_files_directory = './:../atom_files'

a = automodel(env,
              alnfile  = 'blbp-1hms.ali',     # alignment filename
              knowns   = '1hms',              # codes of the templates
              sequence = 'blbp')              # code of the target
a.starting_model= 1                 # index of the first model 
a.ending_model  = 1                 # index of the last model
                                    # (determines how many models to calculate)
a.make()                            # do the actual homology modelling

Run by typing  mod9v1 model.py in the directory where you have the python file. 
MODELLER will produce a model.log file



Modeling of BLBP
STEP 2: Model the blbp structure using the 

alignment from step 1. 
Python script for model building
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# Homology modelling by the automodel class
from modeller.automodel import *    # Load the automodel class
log.verbose()    	

	

 	

 	

 	

 	

 # request verbose output
env = environ()  	

	

 	

 	

 	

 	

 # create a new MODELLER environment
	

 	

 	

 	

 	

 	

 	

 	

 	

 	


# directories for input atom files
env.io.atom_files_directory = './:../atom_files'

a = automodel(env,
              alnfile  = 'blbp-1hms.ali',     # alignment filename
              knowns   = '1hms',              # codes of the templates
              sequence = 'blbp')              # code of the target
a.starting_model= 1                 # index of the first model 
a.ending_model  = 1                 # index of the last model
                                    # (determines how many models to calculate)
a.make()                            # do the actual homology modelling

Run by typing  mod9v1 model.py in the directory where you have the python file. 
MODELLER will produce a model.log file



Model file  
blbp.B99990001.pdb

PDB file

Can be viewed with Chimera 
http://www.cgl.ucsf.edu/chimera/

Rasmol 
http://www.openrasmol.org

PyMol 
http://pymol.sourceforge.net/
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Modeling of BLBP
STEP 2: Model the blbp structure using the 

alignment from step 1. 
Python script for model building

http://www.expasy.org/spdbv/
http://www.expasy.org/spdbv/


http://www.salilab.org/modeller/tutorial/
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http://www.salilab.org/modeller/tutorial/
http://www.salilab.org/modeller/tutorial/


MODWEB
http://salilab.org/modweb

http://salilab.org/modweb
http://salilab.org/modweb


MODBASE
http://salilab.org/modbase

Pieper et al. (2004) Nucleic Acids Research 32, D217-D222

Search Page Model Details

Model Overview

Sequence Overview
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