## **Comparative Protein Structure Prediction**



### Marc A. Marti-Renom



Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

# **DISCLAIMER!**

| Name         | Type <sup>a</sup> | World Wide Web address <sup>b</sup>                    |
|--------------|-------------------|--------------------------------------------------------|
| DATABASES    |                   |                                                        |
| CATH         | S                 | http://www.biochem.ucl.ac.uk/bsm/cath/                 |
| DBAli        | S                 | http://www.salilab.org/DBAli/                          |
| GenBank      | S                 | http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html |
| GeneCensus   | S                 | http://bioinfo.mbb.yale.edu/genome                     |
| MODBASE      | S                 | http://salilab.org/modbase/                            |
| MSD          | S                 | http://www.rcsb.org/databases.html                     |
| NCBI         | S                 | http://www.ncbi.nlm.nih.gov/                           |
| PDB          | S                 | http://www.rcsb.org/pdb/                               |
| PSI          | S                 | http://www.nigms.nih.gov/psi/                          |
| Sacch3D      | S                 | http://genome-www.stanford.edu/Sacch3D/                |
| SCOP         | S                 | http://scop.mrc-Imb.cam.ac.uk/scop/                    |
| TIGR         | S                 | http://www.tigr.org/tdb/mdb/mdbcomplete.html           |
| TrEMBL       | S                 | http://srs.ebi.ac.uk/                                  |
| FOLD ASSIGNM | ENT               |                                                        |
| 123D         | S                 | http://123d.ncifcrf.gov/                               |
| 3D-PSSM      | S                 | http://www.sbg.bio.ic.ac.uk/~3dpssm/                   |
| BIOINBGU     | S                 | http://www.cs.bgu.ac.il/~bioinbgu/                     |
| BLAST        | S                 | http://www.ncbi.nlm.nih.gov/BLAST/                     |
| DALI         | S                 | http://www2.ebi.ac.uk/dali/                            |
| FASS         | S                 | http://bioinformatics.burnham-inst.org/FFAS/index.html |
| FastA        | S                 | http://www.ebi.ac.uk/fasta3/                           |
| FRSVR        | S                 | http://fold.doe-mbi.ucla.edu/                          |
| FUGUE        | S                 | http://www-cryst.bioc.cam.ac.uk/~fugue/                |
| LOOPP        | S                 | http://ser-loopp.tc.cornell.edu/cbsu/loopp.htm         |
|              |                   |                                                        |
|              |                   |                                                        |

http://sgu.bioinfo.cipf.es/home/?page=resources

# Summary

- INTRO
- MODELLER
- MOULDER
- MODEL(S) --> FUNCTION
- MODELLER example

# Nomenclature

**Homology**: Sharing a common ancestor, may have similar or dissimilar functions

**Similarity**: Score that quantifies the degree of relationship between two sequences.

**Identity**: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

**Template**: 3D structure/s to be used during protein structure prediction.

**Model**: Predicted 3D structure of the target sequence.

### protein prediction .vs. protein determination



# Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.



In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.

# **Principles of protein structure**

#### GFCHIKAYTRLIMVG...





## Folding (physics)

Ab initio prediction

Evolution (rules) Threading Comparative Modeling



# MODELLER

N. Eswar, et al. Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30, 2008.
 M.A. Marti-Renom, et al.. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000.
 A. Sali & T.L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815, 1993.
 A. Fiser, R.K. Do, & A. Sali. Modeling of loops in protein structures, Protein Science 9. 1753-1773, 2000.

## **Steps in Comparative Protein Structure Modeling**







A. Šali, Curr. Opin. Biotech. 6, 437, 1995.
R. Sánchez & A. Šali, Curr. Opin. Str. Biol. 7, 206, 1997.
M. Marti et al. Ann. Rev. Biophys. Biomolec. Struct., 29, 291, 2000.

### Comparative modeling by satisfaction of spatial restraints MODELLER



A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

### Comparative modeling by satisfaction of spatial restraints Types of errors and their impact



Marti-Renom etal. Ann Rev Biophys Biomol Struct (2000) 29, 291

## **Model Accuracy**

#### **HIGH ACCURACY**

NM23 Seq id 77% Cα equiv 147/148 RMSD 0.41Å



#### MEDIUM ACCURACY

CRABP Seq id 41% Cα equiv 122/137 RMSD 1.34Å



Sidechains Core backbone Loops Alignment LOW ACCURACY

EDN Seq id 33% Cα equiv 90/134 RMSD 1.17Å



Sidechains Core backbone Loops Alignment Fold assignment

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.



John, Sali (2003). NAR pp31 3982

## Moulding: iterative alignment, model building, model assessment



# **Genetic algorithm operators**





Also, "two point crossover" and "gap deletion".

## **Composite model assessment score**

Weighted linear combination of several scores:

- Pair (Pp) and surface (Ps) statistical potentials;
- Structural compactness (S<sub>C</sub>);
- Harmonic average distance score (H<sub>a</sub>);
- Alignment score  $(A_S)$ .

### $Z = 0.17 Z(P_P) + 0.02 Z(P_s) + 0.10 Z(S_c) + 0.26 Z(H_a) + 0.45 (A_s)$

 $Z(\text{score}) = (\text{score-} \mu)/\sigma$  $\mu$  ... average score of all models  $\sigma$  ... standard deviation of the scores

## Benchmark with the "very difficult" test set

D. Fischer threading test set of 68 structural pairs (a subset of 19)

|                  |                             |                    | Initial pr     | tial prediction Final prediction |             | Best prediction |             |                      |
|------------------|-----------------------------|--------------------|----------------|----------------------------------|-------------|-----------------|-------------|----------------------|
| Target -template | Sequence<br>identity<br>[%] | Coverage<br>[% aa] | Cα RMSD<br>[Å] | overlap<br>[%]                   | RMSD<br>[Å] | overlap<br>[%]  | RMSD<br>[Å] | CE<br>overlap<br>[%] |
| 1ATR-1ATN        | 13.8                        | 94.3               | 19.2           | 20.2                             | 18.8        | 20.2            | 17.1        | 24.6                 |
| 1BOV-1LTS        | 4.4                         | 83.5               | 10.1           | 29.4                             | 3.6         | 79.4            | 3.1         | 92.6                 |
| 1CAU-1CAU        | 18.8                        | 96.7               | 11.7           | 15.6                             | 10.0        | 27.4            | 7.6         | 47.4                 |
| 1COL-1CPC        | 11.2                        | 81.4               | 8.6            | 44.0                             | 5.6         | 58.6            | 4.8         | 59.3                 |
| 1LFB-1HOM        | 17.6                        | 75.0               | 1.2            | 100.0                            | 1.2         | 100.0           | 1.1         | 100.0                |
| 1NSB-2SIM        | 10.1                        | 89.2               | 13.2           | 20.2                             | 13.2        | 20.1            | 12.3        | 26.8                 |
| 1RNH-1HRH        | 26.6                        | 91.2               | 13.0           | 21.2                             | 4.8         | 35.4            | 3.5         | 57.5                 |
| 1YCC-2MTA        | 14.5                        | 55.1               | 3.4            | 72.4                             | 5.3         | 58.4            | 3.1         | 75.0                 |
| 2AYH-1SAC        | 8.8                         | 78.4               | 5.8            | 33.8                             | 5.5         | 48.0            | 4.8         | 64.9                 |
| 2CCY-1BBH        | 21.3                        | 97.0               | 4.1            | 52.4                             | 3.1         | 73.0            | 2.6         | 77.0                 |
| 2PLV-1BBT        | 20.2                        | 91.4               | 7.3            | 58.9                             | 7.3         | 58.9            | 6.2         | 60.7                 |
| 2POR-2OMF        | 13.2                        | 97.3               | 18.3           | 11.3                             | 11.4        | 14.7            | 10.5        | 25.9                 |
| 2RHE-1CID        | 21.2                        | 61.6               | 9.2            | 33.7                             | 7.5         | 51.1            | 4.4         | 71.1                 |
| 2RHE-3HLA        | 2.4                         | 96.0               | 8.1            | 16.5                             | 7.6         | 9.4             | 6.7         | 43.5                 |
| 3ADK-1GKY        | 19.5                        | 100.0              | 13.8           | 26.6                             | 11.5        | 37.7            | 7.7         | 48.1                 |
| 3HHR-1TEN        | 18.4                        | 98.9               | 7.3            | 60.9                             | 6.0         | 66.7            | 4.9         | 79.3                 |
| 4FGF-81IB        | 14.1                        | 98.6               | 11.3           | 24.0                             | 9.3         | 30.6            | 5.4         | 41.2                 |
| 6XIA-3RUB        | 8.7                         | 44.1               | 10.5           | 14.5                             | 10.1        | 11.0            | 9.0         | 34.3                 |
| 9RNT-2SAR        | 13.1                        | 88.5               | 5.8            | 41.7                             | 5.1         | 51.2            | 4.8         | 69.0                 |
| AVERAGE          | 14.2                        | 85.2               | 9.6            | 36.7                             | 7.7         | 44.8            | 6.3         | 57.8                 |

### **Application to a difficult modeling case 1BOV-1LTS**



4.4%

## Can we use models to infer function?













## What is the physiological ligand of Brain Lipid-Binding Protein?

Predicting features of a model that are not present in the template



# Structural analysis of missense mutations in human BRCA1 BRCT domains

Nebojsa Mirkovic, Marc A. Marti-Renom, Barbara L. Weber, Andrej Sali and Alvaro N.A. Monteiro

Cancer Research (June 2004). 64:3790-97

Cannot measure the functional impact of every possible SNP at all positions in each protein! Thus, prediction based on general principles of protein structure is needed.



### **Missense mutations in BRCT domains by function**

|                                | cancer<br>associated                                     | not cancer<br>associated | ?                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                          |
|--------------------------------|----------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| no transcription<br>activation | C1697R<br>R1699W<br>A1708E<br>S1715R<br>P1749R<br>M1775R |                          | M1652K L1705PS<br>L1657P 1715NS1<br>E1660G 722FF17<br>R1699Q 34LG173<br>K1702E 8EG1743<br>Y1703HF RA1752<br>1704S PF17611                                                                                                                                                                     | F1761S<br>M1775E<br>M1775K<br>L1780P<br>I1807S<br>V1833E<br>A1843T                                                                                                                                                       |
| transcription<br>activation    |                                                          | M1652I<br>A1669S         | V1665M<br>D1692P<br>G1706A<br>D1733C<br>M1775V<br>P1806A                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |
| ?                              |                                                          |                          | M1652T W1718S R1751<br>V1653M T1720A R17510<br>L1664P W1730S R1758<br>T1685A F1734S L1764<br>T1685I E1735K 117665<br>M1689R V1736A 117665<br>D1692Y G1738R P1771<br>F1695L D1739E T1773<br>V1696L D1739G P17763<br>R1699L D1739Y D1778<br>G1706E V1741G D1778<br>W1718C H1746N D1778<br>M1783 | P C1787S A1823T<br>G G1788D V1833M<br>G G1788V W1837R<br>G G1803A W1837G<br>V1804D S1841N<br>V1808A A1843P<br>V1809A T1852S<br>S V1809F P1856T<br>S V1809F P1856T<br>S V1810G P1859R<br>N Q1811R<br>G P1812S<br>H N1819S |



## **Putative binding site on BRCA1**



Williams *et al.* 2004 Nature Structure Biology. **June 2004 11**:519 Mirkovic *et al.* 2004 Cancer Research. **June 2004 64**:3790

# S. cerevisiae ribosome



Fitting of comparative models into 15Å cryoelectron density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.

The modeled fraction of the proteins ranges from 34-99%.

C. Spahn, R. Beckmann, N. Eswar, P. Penczek, A. Sali, G. Blobel, J. Frank. Cell 107, 361-372, 2001.

# The Nucleopore complex Cell evolution (?)



Devos et al. PLoS Biology 2, 1 (2004)

### **Tropical Disease Initiative (TDI)** *Predicting binding sites in protein structure models.*



http://www.tropicaldisease.org



# Need is High in the Tail

DALY Burden Per Disease in Developed CountriesDALY Burden Per Disease in Developing Countries



Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

# Need is High in the Tail

DALY Burden Per Disease in Developed CountriesDALY Burden Per Disease in Developing Countries



Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

## "Unprofitable" Diseases and Global DALY (in 1000's)

| Malaria*              | 46,486 | Trichuriasis          | I,006 |
|-----------------------|--------|-----------------------|-------|
| Tetanus               | 7,074  | Japanese encephalitis | 709   |
| Lymphatic filariasis* | 5,777  | Chagas Disease*       | 667   |
| Syphilis              | 4,200  | Dengue*               | 616   |
| Trachoma              | 2,329  | Onchocerciasis*       | 484   |
| Leishmaniasis*        | 2,090  | Leprosy*              | 199   |
| Ascariasis            | 1,817  | Diphtheria            | 185   |
| Schistosomiasis*      | 1,702  | Poliomyelitise        | 151   |
| Trypanosomiasis*      | 1,525  | Hookworm disease      | 59    |

Disease data taken from WHO, <u>World Health Report 2004</u> DALY - Disability adjusted life year in 1000's. \* Officially listed in the WHO Tropical Disease Research <u>disease portfolio</u>.

# **Modeling Genomes**

data from models generated by ModPipe (Eswar, Pieper & Sali)



A good model has MPQS of 1.1 or higher

## DBAliv2.0 database

http://www.dbali.org



- ✓ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families.
- ✓ Easy to navigate
- ✓ Provides tools for structure analysis

#### Does not provide a stable classification similar to that of CATH or SCOP

| Pairwise structure alignments               |                   |
|---------------------------------------------|-------------------|
| Last update:                                | October 6th, 2007 |
| Number of chains:                           | 96,804            |
| Number of structure-structure comparisons:* | 1,748,371,897     |
| Multiple structure alignments               |                   |
| Last update:                                | August 1st, 2007  |
| Number of representative chains:            | 34,637            |
| Number of families:                         | 12,732            |

#### Uses MAMMOTH for similarity detection

- ✓ VERY FAST!!!
- ✓ Good scoring system with significance

Ortiz AR, (2002) Protein Sci. 11 pp2606 Marti-Renom et al. 2001. Bioinformatics. 17, 746

## DBAliv2.0 database

http://www.dbali.org



#### AnnoLyze

# Method



| Inherited I | nherited ligands: 4          |                             |                                                                                     |  |  |  |  |  |
|-------------|------------------------------|-----------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| Ligand      | Av. binding site<br>seq. id. | Av. residue<br>conservation | Residues in predicted binding site<br>(size proportional to the local conservation) |  |  |  |  |  |
| <u>MO2</u>  | 59.03                        | <u>0.185</u>                | 48 49 52 62 63 66 67 113 116                                                        |  |  |  |  |  |
| <u>CRY</u>  | 20.00                        | <u>0.111</u>                | 23 29 31 37 44 48 49 83 85 94 96 103 121                                            |  |  |  |  |  |
| <u>80G</u>  | 20.00                        | <u>0.111</u>                | 19 20 21 48 49 51 96 98 136                                                         |  |  |  |  |  |
| <u>ACY</u>  | 15.87                        | <u>0.163</u>                | 23 29 31 37 44 45 81 83 85 94 96 98 103 121 135                                     |  |  |  |  |  |







#### AnnoLyze

# Sensitivity .vs. Precision

|         | Optimal cut-off | Sensitivity (%)<br>Recall or TPR | Precision (%)                                               |
|---------|-----------------|----------------------------------|-------------------------------------------------------------|
| Ligands | 30%             | 71.9                             | 13.7                                                        |
|         |                 | Sensitivity =                    | $\frac{TP}{TP + FN}  \text{Precision} = \frac{TP}{TP + FP}$ |

#### ~90-95% of residues correctly predicted

# **Comparative docking**

2. Inheritance

#### 1. Expansion



# **Summary table**

#### models with inherited ligands

from 16,284 good models, 295 inherited a ligand/substance with at least one compound already approved by FDA and ready to be used from ZINC

|                 | Transcripts | Good   | Ligands | Lipinski | Lipinski+ZINC | FDA+ZINC  |
|-----------------|-------------|--------|---------|----------|---------------|-----------|
| C. hominis      | 3,886       | 886    | 183     | 131      | 28            | 12 (10)   |
| C. parvum       | 3,806       | 949    | 219     | 145      | 30            | 12 (10)   |
| L. major        | 8,274       | 1,845  | 488     | 334      | 84            | 44 (34)   |
| M. leprae       | 1,605       | 1,321  | 286     | 189      | 39            | 29 (25)   |
| M. tuberculosis | 3,991       | 2,887  | 404     | 285      | 71            | 44 (37)   |
| P. falciparum   | 5,363       | 1,057  | 271     | 191      | 48            | 20 (16)   |
| P. vivax        | 5,342       | 1,042  | 267     | 177      | 37            | 18 (15)   |
| T. brucei       | 921         | 1,795  | 440     | 309      | 94            | 46 (36)   |
| T. cruzi        | 19,607      | 3,915  | 730     | 493      | 127           | 62 (52)   |
| T. gondii       | 7,793       | 587    | 174     | 124      | 28            | 8 (7)     |
| TOTAL           | 60,588      | 16,284 | 3,462   | 2,378    | 586           | 295 (242) |

## Example of inheritance (expansion)

*LmjF21.0680 from* L. major *"Histone deacetylase 2" (model 1)* 

Template 1t64A a human HDAC8 protein.



|     | Origen   | Formula                                                       | Name                                         | Cov.   | Seq, Id. (%) |
|-----|----------|---------------------------------------------------------------|----------------------------------------------|--------|--------------|
| ZN  | X-ray    | Zn <sup>2+</sup>                                              | Zinc ion                                     |        |              |
| NA  | X-ray    | Na *                                                          | Sodium ion                                   |        |              |
| СА  | X-ray    | Ca <sup>2+</sup>                                              | Calcium ion                                  |        |              |
| TSN | X-ray    | C <sub>17</sub> H <sub>22</sub> N <sub>2</sub> O <sub>3</sub> | Trichostatin A                               |        |              |
| SHH | Expanded | C14 H20 N2 O3                                                 | Octadenioic acid hudroxyamide<br>phenylamide | 100.00 | 83.8         |

# **Example of inheritance** (inheritance)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

|     | Formula                                                       | Name                                         | Cov.   | Seq, Id. (%) | Residues               |
|-----|---------------------------------------------------------------|----------------------------------------------|--------|--------------|------------------------|
| TSN | C17 H22 N2 O3                                                 | Trichostatin A                               | 100.00 | 90.9         | 90 131 132 140 141 167 |
| SHH | C <sub>14</sub> H <sub>20</sub> N <sub>2</sub> O <sub>3</sub> | Octadenioic acid hudroxyamide<br>phenylamide | 100.00 | 90.9         | 167 256 263 293 295    |

It64A

38.00

1.47



## **Example of inheritance** (CDD-Roos-literature)

*LmjF21.0680 from* L. major *"Histone deacetylase 2" (model 1)* 

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

## Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray<sup>\*†</sup>, Anne M. Gurnett<sup>\*</sup>, Robert W. Myers<sup>\*</sup>, Paula M. Dulski<sup>\*</sup>, Tami M. Crumley<sup>\*</sup>, John J. Allocco<sup>\*</sup>, Christine Cannova<sup>\*</sup>, Peter T. Meinke<sup>‡</sup>, Steven L. Colletti<sup>‡</sup>, Maria A. Bednarek<sup>‡</sup>, Sheo B. Singh<sup>§</sup>, Michael A. Goetz<sup>§</sup>, Anne W. Dombrowski<sup>§</sup>, Jon D. Polishook<sup>§</sup>, and Dennis M. Schmatz<sup>\*</sup>

Departments of \*Parasite Biochemistry and Cell Biology, <sup>‡</sup>Medicinal Chemistry, and <sup>§</sup>Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Vol. 48, No. 4

#### Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

## **Models database**

#### http://bioinfo.cipf.es/sgu/services/TDIModels/

| 00                                        | The TDIModels server                                                                                                                                                                                                                                                                                                                                |                                                          |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ► G C +                                   | Bhttp://bioinfo.cipf.es/sgu/services/TDIModels/index.p                                                                                                                                                                                                                                                                                              | • Q <b>.</b> Google                                      |
| The TDIModels server                      |                                                                                                                                                                                                                                                                                                                                                     |                                                          |
| TDIModels ©<br>Results for 096526 [096526 | Cdc2-related kinase (Cell division related protein ]                                                                                                                                                                                                                                                                                                | (SGU-HOME)<br>DBAli<br>Eva-CM<br>SeqProfCod<br>TDIModels |
| MOL                                       | This model has 1 predicted ligands.<br>Lipinski ZINC FDA Coverage Seq.<br>Id.<br>NO3 IOLOO 100.00 100.00<br>SEQUENCE IDENTITY: 58.00<br>MODPIFE QUALITY SCORE: 1.73<br>TEMPLATE CHAIN: A<br>TARGET LENGTH: 311<br>TARGET BEGIN: 20<br>TARGET END: 309<br>Download PDB file                                                                          |                                                          |
| JMOL                                      | This model has 2 predicted ligands.<br>Lipinski ZINC FDA Coverage Seq.<br>Id.<br>NO3 O ID0.00 100.00<br>KCX O ID0.00 93.75<br>SEQUENCE IDENTITY 29.00<br>MODPIFE QUALITY SCORE: 1.13<br>TEMPLATE CHAIN: A<br>TARGET EDB: 2cn5<br>TEMPLATE CHAIN: A<br>TARGET EBGIN: 1<br>TARGET EBGIN: 1<br>TARGET EBGIN: 1<br>TARGET EDD: 311<br>Download PDB file |                                                          |
| <- new search                             |                                                                                                                                                                                                                                                                                                                                                     |                                                          |
| HELP:                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                          |
|                                           | 39                                                                                                                                                                                                                                                                                                                                                  |                                                          |
|                                           | TALLON ANYONE DION DIT                                                                                                                                                                                                                                                                                                                              |                                                          |

## "take home" message





### **Comparative Protein Structure Prediction** MODELLER tutorial

# \$>mod9v3 model.py

Marc A. Marti-Renom



PRINCIPE FELIPE

Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

# Obtaining MODELLER and related information

MODELLER (9v3) web page

http://www.salilab.org/modeller/

- Download Software (Linux/Windows/Mac/Solaris)
- ♦ HTML Manual
- ♦ Join Mailing List





Sgi



# **Using MODELLER**

## No GUI! 😕

- Controlled by command file 88
- Script is written in PYTHON language ③
- You may know Python language is simple <a>©©</a>

# MODELLER 9v3 Python interface

- Modeller Python interface uses classes, e.g.:
  - 'alignment' holds and manipulates aligned sequences
  - 'model' holds and manipulates protein models
  - 'environ' keeps the configuration of the environment
  - 'profile' holds and manipulates sequence profiles
  - 'sequence\_db' is for sequence databases
- These behave just like ordinary Python classes, but Modeller Fortran code is linked to them
- The Modeller data is automatically freed when the Python object is deleted (explicitly or implicitly)

# **Using MODELLER**

## INPUT:

- Target Sequence (FASTA/PIR format)
- Template Structure (PDB format)
- Python file

## OUTPUT:

- Target-Template Alignment
- Model in PDB format
- Other data

# Modeling of BLBP Input

Target: Brain lipid-binding protein (BLBP)
 BLBP sequence in PIR (MODELLER) format:

>P1;blbp

sequence:blbp::::::::

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSID DRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA\*

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
loq.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='lhms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
loq.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align_codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.al', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

## Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

| >P1;1hms                                                                    |
|-----------------------------------------------------------------------------|
| <pre>structureX:1hms: 1 : : 131 : :undefined:undefined:-1.00:-1.00</pre>    |
| VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA |
| DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*                   |
| >P1;blbp                                                                    |
| sequence:blbp: :::::::0.00:0.00                                             |
| VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI |
| DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*                   |

## Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

| >P1; <mark>1hms</mark>                                                      |
|-----------------------------------------------------------------------------|
| <pre>structureX:1hms: 1 : : 131 : :undefined:undefined:-1.00:-1.00</pre>    |
| VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA |
| DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*                   |
| >P1;blbp                                                                    |
| sequence:blbp: ::::::0.00:0.00                                              |
| VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI |
| DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*                   |

## Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

| _aln.pos<br>1hms<br>blbp<br>_consrvd | 1(<br>VDAFLGTWK)<br>VDAFCATWK)<br>**** *** | )<br>LVDSKNFDD<br>LTDSQNFDE<br>* ** ***  | 20<br>YMKSLGVGFA<br>YMKALGVGFA                | 30<br>ATRQVASMTKE<br>ATRQVGNVTKE<br>**** *** | 40<br>PTTIIEKNGDI<br>PTVIISQEGGR | 50<br>LTLKTHSTFK<br>VVIRTQCTFK<br>* *** | 60<br>INTEISFKLGV<br>INTEINFQLGE |
|--------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------|----------------------------------|
| _aln.p<br>1hms<br>blbp<br>_consrvd   | 70<br>EFDETTADDI<br>EFEETSIDDI<br>** ** ** | 80<br>RKVKSIVTI<br>RNCKSVVRI<br>* ** * * | 90<br>DGGKLVHLQK<br>DGDKLIHVQK<br>*** ** * ** | 100<br>WDGQETTLVF<br>WDGKETNCTF              | 110<br>ELIDGKLILT<br>EIKDGKMVVT  | 120<br>LTHGTAVCTF<br>LTFGDIVAVF         | 130<br>RTYEKE<br>RCYEKA<br>* * * |

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                                  # request verbose output
env = environ()
                                   # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms',
                                          # codes of the templates
             sequence = 'blbp')
                                            # code of the target
a.starting model= 1
                                  # index of the first model
a.ending model = 1
                                   # index of the last model
                                   # (determines how many models to calculate)
                                    do the actual homology modelling
a.make()
```

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                            # request verbose output
                                  # create a new MODELLER environment
env = environ()
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms',
                                         # codes of the templates
             sequence = 'blbp')
                                           # code of the target
a.starting model= 1
                                 # index of the first model
                                  # index of the last model
a.ending model = 1
                                  # (determines how many models to calculate)
                                   # do the actual homology modelling
a.make()
```

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                      # request verbose output
env = environ()
                                  # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms', # codes of the templates
              sequence = 'blbp')
                                         # code of the target
                               # index of the first model
a.starting model= 1
a.ending model = 1
                                 # index of the last model
                                  # (determines how many models to calculate)
                                   do the actual homology modelling
a.make()
```

PDB file

Can be viewed with Chimera

http://www.cgl.ucsf.edu/chimera/

Rasmol

http://www.openrasmol.org

PyMol

http://pymol.sourceforge.net/





# Model file → blbp.B9990001.pdb

### http://www.salilab.org/modeller/tutorial/



## **MODWEB**

#### http://salilab.org/modweb



# MODBASE

#### http://salilab.org/modbase

| Search Pa                                                                                                                                             | age                                              |                                                        |                    |                   |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------|-------------------|---------------------------|
|                                                                                                                                                       |                                                  |                                                        |                    |                   |                           |
| Home User                                                                                                                                             | Login ModBase Search Page                        | ModWeb M                                               | odelling Server    | Help              | Current Logins            |
| Mod                                                                                                                                                   | Database of Co<br>Welcome to ModBase, a database | omparative P<br>of three-dimensional p<br>(Old ModBase | rotein Struct      | ture Mo           | dels<br>parative modeling |
| General Informat                                                                                                                                      | ion                                              |                                                        |                    |                   |                           |
| Statistics                                                                                                                                            | ModBase search form                              |                                                        |                    |                   | Search                    |
| Project Pages                                                                                                                                         | Search type 😰 Model(Defa                         | utt) <b>v</b> (                                        | Display type 🛛 M   | odel Detail (gran | hical) 💌                  |
| Documentation                                                                                                                                         | Search type in production                        |                                                        | Display type 🖬 j 🕷 | ouer Detail (grap | (10 u) <u>·</u>           |
| Authors and<br>Acknowledgemer                                                                                                                         | nts All available datasets are set               | ected                                                  |                    | Select spec       | cific dataset(s)          |
| Publications                                                                                                                                          |                                                  |                                                        |                    |                   |                           |
| Todo List                                                                                                                                             | Search by properties                             |                                                        |                    |                   |                           |
| Related Resource                                                                                                                                      | Property ALL                                     | <u> </u>                                               |                    |                   |                           |
| Note:<br>MODBASE contains<br>theoretically calculated<br>models, not experimen<br>determined structures.<br>models may contain<br>significant errors. | Organism 🖬 ALL                                   | or                                                     |                    | Adv               | vanced search             |

#### Model Details

| Mon             | Home      | User Login                            | ModBase Se                                                | arch Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ModWeb Modelling Server                                                             | Help      |
|-----------------|-----------|---------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------|
| BASE            |           |                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current                                                                             | Logins    |
| Sequence Infor  | mation    |                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |
| Primary Databa  | se Link 🖬 | P43632 (KI2S4                         | HUMAN )                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |
| Organism 🖬      |           | Homo sapiens                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |
| Annotation      |           | killer cell immun<br>associated trans | oglobulin-like recep<br>cript 8) (nkat-8)de               | otor 2ds4 precurs<br>(p58 natural kille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or (mhc class ide nk cell receptor) (natura<br>r cell receptor clone cl-39) (p58 nk | al killer |
| Sequence Lengt  | h         | 304                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |
| Model Informat  | tion      |                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |
|                 | on this   | Select                                | option<br>Sequence Model Co<br>Sequence Identity<br>Value | ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓     ✓ |                                                                                     |           |
|                 | -25       |                                       | Iodel Score                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |           |
|                 | 213       | Т                                     | arget Region                                              | 27-221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |           |
|                 |           | F F                                   | Protein Length                                            | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |           |
|                 |           | 🖌 - 1                                 | emplate PDB<br>Code                                       | <u>1nkr</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |           |
|                 |           | т                                     | emplate Region                                            | 6-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |           |
|                 |           | C                                     | Dataset                                                   | snp-human2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |           |
| Filtered models | s for cur | rent sequence ( <u>S</u>              | how all models )                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |
| 🥮 👌             |           |                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |
| Cross-reference | es        |                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |           |

#### Sequence Overview

| SegId<br>Fold<br>MScore  | hypothetical protein         | <u>Pseudomonas aeruginosa</u>                                   | 3738 |
|--------------------------|------------------------------|-----------------------------------------------------------------|------|
| SegId<br>Fold<br>MScore  | hypothetical protein         | <u>Escherichia coli</u>                                         | 1140 |
| SegId<br>Fold<br>Miscore | hypothetical protein spr1965 | Streptococcus pneumoniae, Streptococcus pneumoniae<br><u>R6</u> | 1038 |

#### Model Overview

| 29. A.  | •   | <u>Q8G8C7</u> | hypothetical protein | <u>Pseudomonas</u><br><u>aeruginosa</u> | 4996 | 2089-2158 | 70  | 37.00 | 7e-14 | 1.00 | <u>1dnyA</u> | 8-78   |
|---------|-----|---------------|----------------------|-----------------------------------------|------|-----------|-----|-------|-------|------|--------------|--------|
| 教       | •   | <u>Q8G8C7</u> | hypothetical protein | <u>Pseudomonas</u><br><u>aeruginosa</u> | 4996 | 492-1017  | 526 | 36.00 | 1e-82 | 1.00 | <u>1amuA</u> | 19-529 |
| State - | ● □ | <u>Q8G9W1</u> | hypothetical protein | <u>Escherichia coli</u>                 | 1140 | 349-1135  | 787 | 35.00 | 0     | 1.00 | <u>1r9dA</u> | 6-783  |

# **Acknowledgments**

#### **Structural Genomics Unit (CIPF) Marc A. Marti-Renom** Emidio Capriotti Peio Ziarsolo Areitioaurtena

**Comparative Genomics Unit (CIPF) Hernán Dopazo** Leo Arbiza Francisco García

#### **Functional Genomics Unit (CIPF)**

Joaquín Dopazo Fátima Al-Shahrour José Carbonell Ignacio Medina David Montaner Joaquin Tárraga Ana Conesa Toni Gabaldón Eva Alloza Lucía Conde Stefan Goetz Jaime Huerta Cepas Marina Marcet Pablo Minguez Jordi Burguet Castell

#### FUNDING

Prince Felipe Research Center Marie Curie Reintegration Grant STREP EU Grant Generalitat Valenciana Tropical Disease Initiative Stephen Maurer (UC Berkeley) Arti Rai (Duke U) Andrej Sali (UCSF) Ginger Taylor (TSL) Barri Bunin (CDD)

#### STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB) **NY-SGXRC** 

MAMMOTH Angel R. Ortiz

#### BIOLOGY

Jeff Friedman (RU) James Hudsped (RU) Partho Ghosh (UCSD) **Alvaro Monteiro (Cornell U)** Stephen Krilis (St.George H)

**FUNCTIONAL ANNOTATION** Fatima Al-Shahrour Joaquin Dopazo COMPARATIVE MODELING Andrej Sali M. S. Madhusudhan Narayanan Eswar Min-Yi Shen Ursula Pieper Bino John Maya Topf

FUNCTIONAL ANNOTATION Andrea Rossi Fred Davis



http://bioinfo.cipf.es
http://sgu.bioinfo.cipf.es