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TDI a story

2004
.Steve Maurer (Berkeley) and Arti Rai (Duke)
.PLoS Medicine, Dec. 2004. Vol 1(3):e56

2005
.TDI web site http://TropicalDisease.org
.Ginger Taylor and The Synaptic Leap

2006
.Maurer and Sali 41th in “50 Who Matter”
.TSL web site http://TheSynapticLeap.org

2008
.TDI kernel http://TropicalDisease.org/kernel
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Open Source without a Kernel?
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Drug Discovery pipeline

Pre Lead Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12

Cumulative cost
Success rate

Target & Lead RegistrationPhase IIIPhase IIPhase ILead 

Adapted from: - Nwaka & Ridley. (2003) Nature Reviews. Drug Discovery. 2:919
                        - Austin, Brady, Insel & collins. (2004) Science. 306:1138

Target & Lead identification
Computational Biology

Target Inhibitors
Iterative Bio/Med chemistry

Validated hits Leads Drug candidates
Compounds
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Drug Discovery pipeline

Pre Lead Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12

Cumulative cost
Success rate

RegistrationPhase IIIPhase IIPhase ILead Target & Lead

shorter time...

T
D

I

+ Completeness of genome projects (eg, Malaria)
+ New and more complete biological databases
+ New software and computers (cheaper and faster)
+ Internet == more people == less cost
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Non-Profit organizations
Open-Source + Out-Source = low cost business model
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Novel
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-diones

MMV active support ended MMV/GSK portfolio New projects to be added

Exploratory Discovery Preclinical Clinical development

Phase III

to entice developers to create applications 
for their product, possibly in the hope of 
turning it into a ‘platform’. Some of them 
have been quite successful at turning open-
source into profits. Red Hat, for instance, 
has attained a US$5-billion market cap from 
selling support services for Linux.
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If biomedical scientists could adapt the 
open-source model, it could make a huge 
difference to such projects as developing 
drugs for neglected diseases, for which 
needs are great but funds are scarce4. Only 
10% of R&D resources are spent on illnesses 
that represent 90% of the burden of disease. 
Open-source drug R&D might not change 
that equation, but could make it possible 
to get much more from that 10%.

There are, however, significant barriers to 
the deployment of open-source approaches 
to drug R&D5. One is economic. All it takes 
to write open-source software is a laptop and 
an internet connection. With drug research, 
someone must pay for laboratory expenses 
and clinical trials. And the costs are high, at 
more than US$800 million for the discovery 
and development of a novel drug by most 
estimates.

Research dynamics between the two indus-
tries also differ. Software development does 
not have a discovery phase. Once the objective 
is set, programmers set to work and make 
steady progress towards their goal. By contrast, 
drug discovery cannot flourish until a certain 
amount of knowledge about the target disease 

has been accumulated. That knowledge 
acquisition can take years or decades, with no 
way to know at the outset whether the store 
of knowledge at hand is nearly sufficient or 
will require years of painstaking additional 
research before innovation can thrive.

Software development is also simpler: 
it spans only a few disciplines and has no 
equivalent to clinical trials. For the most 
part, a single programmer can master all the 
skills needed to write a program from start 
to finish. By contrast, drug development 
requires coordination of multiple specialties 
with little overlap. Biomedical knowledge, 
which grows at the rate of 1,000 publications 
per day, must be peer-reviewed and repli-
cated before it is accepted. All this is slow 
and enormously expensive.

Drug R&D can go off-track more easily 
than software programming. Biologists 
can get mired in the complexity of biology 
without ever making much progress towards 
a drug — chemists handed the wrong target 
cannot do much good no matter how hard 
they try; inadequate toxicology can derail 
a compound late in development, or even 
after launch. One misstep along the way can 
render all downstream work useless.

In contrast to drug developers, software 
publishers are lightly regulated. They do 
not need FDA approval. The quality stand-
ards they face are far less onerous than the 
minutia of Good Laboratory Practice 
(GLP), Good Clinical Practice (GCP) and 
Good Manufacturing Practice (GMP). 
One sloppy programmer seldom jeopardizes 

the achievements of others, and errors can 
be patched without requiring the rewrite of 
the whole program. With drugs, one care-
less worker can compromise years of work 
costing tens of million of dollars.

Finally, the two industries follow different 
intellectual property regimes. Software is 
protected by copyrights that arise automati-
cally as code is written, even if nothing is 
filed. Drug research is protected by patents 
that are costly to file and maintain, and 
for which meeting the legal standards that 
define innovation is much harder.

123#4/(-)53$6%(73,%5"8$)3/3")59

Early efforts. Despite these differences, the 
open-source idea has entered biomedical 
research6. The first inroads were made in bio-
informatics7,8, as might have been expected. 
These efforts resulted in a collection of pro-
grams such as Biojava, BioPerl, BioPython, 
Bio-SPICE, BioRuby and Simple Molecular 
Mechanics for Proteins9, and inspired other 
initiatives such as the Human Genome 
Project, the SNP Consortium, the Alliance 
for Cellular Signaling, BioForge, GMOD 
and Massachusetts Institute of Technology’s 
BioBricks (some of these have the transpar-
ency and feel of open-source, although the 
resources needed to get involved do not allow 
all volunteers to participate; however, we still 
call them ‘open-source’).

An old idea. One could argue that there has 
long been an active, if invisible, collabora-
tive process akin to open-source in drug 
development, as, for some diseases, half 
of all prescriptions are for off-label uses10. 
Somehow, physicians share their ideas and 
experiences informally to uncover novel 
uses for existing medicines. For instance, 
oncologists routinely use drugs approved for 
one kind of cancer to treat other types. In a 
recent study, DeMonaco11 found that 59% of 
drug therapy innovations were discovered 
by practicing clinicians via field discovery. 
The way by which physicians uncover these 
new indications is quick and inexpensive 
compared with Phase III trials. From an eco-
nomic and medical standpoint, there would 
be merit in exploiting these clinical observa-
tions and sharing them with physicians as a 
complement to, or replacement for, some of 
the traditional clinical development.

Public–private partnerships. Taking a different 
approach, a new kind of organization, known 
as the public–private partnership (PPP), has 
recently developed a clever virtual business 
model that emulates the collaborative features 
of the open-source concept12. An example is 
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Munos (2006) Nature Reviews. Drug Discovery.

Discovery
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Preclinical Clinical Available to Patients

Nitroimidazoles
(All)

Microtubule
Inhibitors (HAT)

GSK (All)

CDRI (HAT)

IPK (VL)

Kitasato Natural
Substances (HAT)

Eskitis Natural
Products (HAT)

Exploratory
Screening:
Anacor,
Chemroutes, 
Univ of Ouro 
Preto, Fiocruz, 
IICB, IRD,  
LSHTM, MerLion 
Otsuka, STI, TDR,
Univ of Antwerp, 
Univ of Dundee 
WEHI, and other 
partners

Azoles (Chagas)

Amphotericin B Polymer (VL)

Buparvaquone (VL)

Fexinidazole (HAT)

Paromomycin 
(VL in Africa)

AmBisome
(VL in Africa)

Paediatric Benznidazole
(Chagas)

ASMQ (Malaria)
Fixed-Dose

Artesunate/Mefloquine

ASAQ (Malaria)
Fixed-Dose

Artesunate/Amodiaquine

HAT 
Consortium 
Scynexis
Pace Univ

VL
Consortium
Advinus,
CDRI

Chagas
Consortium
CDCO,
Epichem,
Murdoch
Univ,
Univ of Ouro
Preto

HAT: Human African trypanosomiasis
VL: Visceral leishmaniasis
All: HAT, VL, and Chagas

Combination Therapy
(VL in India)

Nifurtimox-Eflornithine
Co-Administration (HAT)
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Need is High in the Tail
DALY Burden Per Disease in Developed Countries
DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.
DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. 

The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full 
health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

10

Disease

DALY

Heart diseases

Rare diseases
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“Unprofitable” Diseases
and Global DALY (in 1000ʼs)

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life year in 1000ʼs.

*  Officially listed in the WHO Tropical Disease Research disease portfolio.
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Malaria* 46,486

Tetanus 7,074

Lymphatic filariasis* 5,777

Syphilis 4,200

Trachoma 2,329

Leishmaniasis* 2,090

Ascariasis 1,817

Schistosomiasis* 1,702

Trypanosomiasis* 1,525

Trichuriasis 1,006

Japanese encephalitis 709

Chagas Disease* 667

Dengue* 616

Onchocerciasis* 484

Leprosy* 199

Diphtheria 185

Poliomyelitise 151

Hookworm disease 59
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Predicting binding sites in protein structure models.
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DBAliv2.0 database
http://www.dbali.org

Marti-Renom et al. 2001. Bioinformatics. 17, 746

  Fully-automatic
  Data is kept up-to-date with PDB releases
  Tools for “on the fly” classification of families.
  Easy to navigate
  Provides tools for structure analysis

 Does not provide a stable classification similar to 
 that of CATH or SCOP

Uses MAMMOTH for similarity detection
  VERY FAST!!!
  Good scoring system with significance

Ortiz AR, (2002) Protein Sci. 11 pp2606 
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DBAli

Search

Tools

Special 

pages
Structural Genomics

Download

Statistics

Pairwise

Get all similar

DBAlit!

AnnoLite

AnnoLyze

ModClus from list

ModClus from chain

SALIGN

ModDom

Pairwise  alignment result

Table of structural similarities

Multiple alignment result

Domain assignments

Full annotations result

Fast annotations result

Cluster results

e-mail

Multiple
Multiple alignment result

Marti-Renom et al. BMC Bioinformatics (2007) Volume 8. Suppl S4

DBAliv2.0 database
http://www.dbali.org
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Method
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HTML output

AnnoLyze search

Selection based on local 

similarity

% Seq Id >20%

% Equivalent positions >75%

Similar chains in DBAli

RMSD < 4A

% Seq Id >20%

% Equivalent positions >75%

p-value >4

Chain ID

LigBase protein 

ligands

Ligands from 

LigBase are 

collected and 

binding sites 

annotated based 

on the spatial 

proximity to the 

ligand

DBAli tools

PiBase protein 

partners

Interations from 

PiBase are 

collected and 

interaction 

patches 

annotated based 

on the spatial 

proximity 

between domains

AnnoLyze
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Sensitivity .vs. Precision

Optimal cut-off Sensitivity (%)
Recall or TPR

Precision (%)

Ligands 30% 71.9 13.7

Precision = TP
TP + FP

Sensitivity = TP
TP + FN

AnnoLyze

~90-95% of residues correctly predicted

Marti-Renom et al. BMC Bioinformatics (2007) Volume 8. Suppl S4
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Comparative docking
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crystalized protein

Anabaena 7120

Anacystis nidulans

Condrus crispus

Desulfovibrio vulgaris

GFCHIKAYTRLIMV

Expansion 2. Inheritance

co-crystalized protein/ligand model

crystalized 
protein template

1. Modeling
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M. tuberculosis
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T. gondii
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T. brucei
P. vivax

L. major

C. parvum

C. hominis

A good model has MPQS of 1.0 or higher

Modeling Genomes
data from models generated by ModPipe (Eswar, Pieper & Sali)
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Summary table
models with inherited ligands

Transcripts Modeled targets Selected models Inherited ligands Similar to a drug Drugs

C. hominis 3,886 1,614 666 197 20 13

C. parvum 3,806 1,918 742 232 24 13

L. major 8,274 3,975 1,409 478 43 20

M. leprae 1,605 1,178 893 310 25 6

M. tuberculosis 3,991 2,808 1,608 365 30 10

P. falciparum 5,363 2,599 818 284 28 13

P. vivax 5,342 2,359 822 268 24 13

T. brucei 7,793 1,530 300 138 13 6

T. cruzi 19,607 7,390 3,070 769 51 28

T. gondii 9,210 3,900 1,386 458 39 21

TOTAL 68,877 29,271 11,714 3,499 297 143

19

29,271 targets with good models, 297 inherited a ligand/substance 
similar to a known drug in DrugBank
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L. major Histone deacetylase 2 + Vorinostat 
Template 1t64A a human HDAC8 protein. 
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ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435–1436 Vol. 48, No. 4
0066-4804/04/$08.00!0 DOI: 10.1128/AAC.48.4.1435–1436.2004
Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a
New Class of Histone Deacetylase Inhibitors

Members of the genus Leishmania are parasitic protozoans
that infect about two million people per annum (5), and they
are emerging as serious opportunistic infective agents in hu-
man immunodeficiency virus-infected patients (4). Malaria
parasites are responsible for 1.5 to 2.7 million deaths annually,
primarily in Africa (10). The effort to find new antimalarial
agents is still a high priority given the increasing malaria emer-
gency largely due to multidrug-resistant Plasmodium falcipa-
rum strains. The histones of P. falciparum have recently been
proposed as targets for drug treatment of blood stage parasites
(6). They also play an important role in chromatin remodeling
in trypanosomatids, which include Leishmania species and try-
panosomes (3).

Apicidin, a cyclic tetrapeptide isolated from Fusarium spp.,
was reported to block the in vitro development of apicom-
plexan parasites by inhibiting parasite (including Plasmodium
species) histone deacetylase (HDAC) (6). Another HDAC
inhibitor, suberoyl bishydroxamic acid, showed an in vivo cy-
tostatic effect against the acute murine malaria Plasmodium
berghei, and one round of treatment with the compound failed
to select for resistant mutations (1).

Recently, Mai et al. reported a novel series of hydroxamate
compounds, namely, 3-(4-aroyl-1H-pyrrol-2-yl)-N-hydroxy-2-
propenamides, acting as HDAC inhibitors in the range of low
micromolar-submicromolar concentrations (7, 8). The aim of
the present study was to investigate the in vitro antimalarial
and antileishmanial activities of lead compound 1 and some
analogues (compounds 2 to 10) to identify potential chemical
tools with selective toxicity for protozoa.

The antimalarial activity of compounds 1 to 10 (Table 1) was
determined in vitro for chloroquine-sensitive (CQS) (D6,
Sierra Leone) and chloroquine-resistant (CQR) (W2, Indo-
china) strains of P. falciparum. Growth of cultures of P. falci-

parum was determined by a parasite lactate dehydrogenase
assay using Malstat reagent (9). Chloroquine was used as the
positive control, while dimethyl sulfoxide was tested as the
negative control. Suberoylanilide hydroxamic acid (SAHA)
and trichostatin A (TSA), two well-known HDAC inhibitors,
were also tested. Antileishmanial activity of compounds 1 to 10
(Table 1) was tested on a transgenic cell line of Leishmania
donovani promastigotes expressing firefly luciferase (assay with
Steady Glo reagent; Promega, Madison, Wis.) obtained from
Dr. Rafael Balana-Fouce, University of Leon, Leon, Spain.
Pentamidine was tested as a reference drug together with
SAHA and TSA. All the compounds were simultaneously
tested for cytotoxicity on Vero (monkey kidney fibroblast) cells
by a Neutral Red assay (2).

Among compounds 1 to 10, only compound 7 showed anti-
malarial activity against P. falciparum strains; however, its 50%
inhibitor concentration (IC50) values were 22- to 100-fold
higher than those of chloroquine and 4.8- to 8.5-fold and 33- to
93-fold higher than those of SAHA and TSA, respectively.
Compounds 1 to 4 showed little Plasmodium inhibition activity
(Table 1). This biological behavior of compounds 1 to 10 re-
sembles their corresponding anti-HDAC effect against maize
HD2 (compound 7, IC50 " 0.1 #M; compounds 1 to 4, IC50 "
2 to 4 #M; compounds 5, 6, and 8 to 10, low-level activity or
totally inactivity) (7, 8), thus confirming an inhibiting action of
compound 7 and, to a lesser extent, of compounds 1 to 4 on
parasite HDAC enzymes.

Surprisingly, the majority of compounds 1 to 10 were found
endowed with interesting anti-Leishmania activity (in this case,
activity not directly related to their anti-HD2 action) (Table 1).
Compounds 2 and 3, the most potent of the series, were as
active as pentamidine, slightly less potent than TSA, and $10-
fold more potent than SAHA. Interestingly, compounds 2 and

TABLE 1. Antimalarial and antileishmanial activities of compounds 1 to 10

Compound Compounda
IC50 (#g/ml) for P. falciparumb: IC (#g/ml) for L. donovani Cytotoxicity

(#g/ml)D6 (CQS) W2 (CQR) IC50 IC90

1 1 $4.8 (46) $4.8 (45) 2.4 11.3 NCc

2 2 $4.7 (19) $4.7 (34) 1.7 5.4 NC
3 5 $4.7 (35) $4.7 (49) 1.6 5.1 NC
4 7 3.8 3.5 2.4 14.3 NC
5 27 NAd NA NA NA NC
6 29 NA NA NA NA NC
7 8 1.2 4 16 $50 NC
8 25 NA NA NA NA NC
9 26 NA NA 8.3 32 NC
10 28 NA NA 6.8 $50 NC
SAHA 0.25 0.47 22 50 1.2
TSA 0.036 0.043 0.89 25 0.095
Pentamidine NTe NT 1.25 4.1 NC
Chloroquine 0.014 0.18 NT NT NC

a From reference 7.
b Numbers in parentheses represent percentages of inhibition at the tested dose.
c NC, not cytotoxic at concentrations of up to 23.8 #g/ml.
d NA, not active at the maximum dose tested (4.8 #g/ml in the case of the antimalarial assays and 50 #g/ml in the case of the antileishmanial assays).
e NT, not tested.
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Apicidin: A novel antiprotozoal agent that inhibits
parasite histone deacetylase

(cyclic tetrapeptide!Apicomplexa!antiparasitic!malaria!coccidiosis)

SANDRA J. DARKIN-RATTRAY*†, ANNE M. GURNETT*, ROBERT W. MYERS*, PAULA M. DULSKI*,
TAMI M. CRUMLEY*, JOHN J. ALLOCCO*, CHRISTINE CANNOVA*, PETER T. MEINKE‡, STEVEN L. COLLETTI‡,
MARIA A. BEDNAREK‡, SHEO B. SINGH§, MICHAEL A. GOETZ§, ANNE W. DOMBROWSKI§,
JON D. POLISHOOK§, AND DENNIS M. SCHMATZ*
Departments of *Parasite Biochemistry and Cell Biology, ‡Medicinal Chemistry, and §Natural Products Drug Discovery, Merck Research Laboratories,
P.O. Box 2000, Rahway, NJ 07065

Communicated by Edward M. Scolnick, Merck & Co., Inc., West Point, PA, August 21, 1996 (received for review June 25, 1996)

ABSTRACT A novel fungal metabolite, apicidin [cyclo(N-
O-methyl-L-tryptophanyl-L-isoleucinyl-D-pipecolinyl-L-2-
amino-8-oxodecanoyl)], that exhibits potent, broad spectrum
antiprotozoal activity in vitro against Apicomplexan parasites
has been identified. It is also orally and parenterally active in
vivo against Plasmodium berghei malaria in mice. Many Api-
complexan parasites cause serious, life-threatening human
and animal diseases, such as malaria, cryptosporidiosis,
toxoplasmosis, and coccidiosis, and new therapeutic agents
are urgently needed. Apicidin’s antiparasitic activity appears
to be due to low nanomolar inhibition of Apicomplexan histone
deacetylase (HDA), which induces hyperacetylation of his-
tones in treated parasites. The acetylation–deacetylation of
histones is a thought to play a central role in transcriptional
control in eukaryotic cells. Other known HDA inhibitors were
also evaluated and found to possess antiparasitic activity,
suggesting that HDA is an attractive target for the develop-
ment of novel antiparasitic agents.

Protozoan parasites of the subphylum Apicomplexa remain
significant threats to human and animal health worldwide.
With respect to human health, malaria remains one of the
leading causes of death in the world, resulting in the loss of over
1.5 million lives per year (1). Widespread multidrug resistance
to malaria has developed, and few, if any, new therapeutic
agents will be available in the foreseeable future. Another
Apicomplexan parasite, Cryptosporidium parvum, was recently
identified by the World Health Organization as an emerging
global health problem (2). The rapid spread of cryptosporidi-
osis has been reported in urban slums (3), and there have been
several major water-borne outbreaks in developed countries in
which thousands of individuals were infected (4). In immune
compromised individuals, such as AIDS patients, Cr. parvum
infections are incurable and lead to chronic diarrhea and
wasting disease. Despite its medical importance, there is
currently no therapy for treating cryptosporidiosis. Another
important apicomplexan infection in immune-compromised
patients is Toxoplasma gondii, which is becoming a relatively
common problem in AIDS patients (5). Although methods of
treating toxoplasmosis exist, better therapeutic agents are
clearly needed.

In animal health, the Apicomplexan parasites cause major
economic losses in livestock and poultry throughout the world.
Eimeria parasites are responsible for coccidiosis in poultry and
many other domesticated animals. Infection of the gut epithe-
lium by these intracellular parasites results in severe morbidity
and mortality, particularly in chickens. Poultry producers

worldwide routinely employ chemical prophylaxis to prevent
serious coccidiosis outbreaks. Resistance to currently available
coccidiostats is prevalent, and new anticoccidial agents are
needed. T. gondii is an important cause of abortion and
morbidity in livestock, especially sheep and goats (6), and
species of Cryptosporidium cause widespread and rapidly trans-
mitted diarrheal illness in several mammalian hosts, especially
calves, neonatal lambs and goats, and young foals (7).

In this paper, a novel natural product, apicidin [cyclo(N-O-
methyl-L-tryptophanyl-L-isoleucinyl-D-pipecolinyl-L-2-amino-
8-oxodecanoyl)], that has broad spectrum activity against the
Apicomplexan parasites is described, and experimental evi-
dence that demonstrates that this compound kills parasites by
inhibiting histone deacetylase (HDA), a key nuclear enzyme
involved in transcriptional control, is provided.

MATERIALS AND METHODS
Source of Compounds and Organisms. [3H]Apicidin A

(2-N-desmethoxy[3H]apicidin, specific activity 18.7 mCi!mg; 1
Ci ! 37 GBq), Ac-Gly-Ala-Lys(!-[3H]Ac)-Arg-His-Arg-Lys(!-
[3H]Ac)-Val-NH2 (specific activity 3.8 Ci!mmol), "-hydroxy-
HC-toxin, and trichostatin were prepared at Merck Research
Laboratories, Rahway, NJ. Sodium [14C]acetate (60 mCi!
mmol) was purchased from Amersham. Sodium butyrate and
HC-toxin were from Sigma. Organisms for in vitro studies were
obtained from a variety of sources: Plasmodium berghei (strain
KBG 173), A. Ager (University of Miami, Miami); Plasmo-
dium falciparum (Dd2 strain), D. Chakraborti (University of
Florida, Gainesville, FL); Neospora caninum (strain NC-1-2C)
and Caryospora bigenetica, D. Lindsay and C. Sundermann
(Auburn University, Auburn, AL). Human blood products
were from the North Jersey Blood Center.

Determination of in Vitro Antiprotozoal Activity. Conditions
for the in vitro culture of parasites and determination of
minimal inhibitory concentrations [defined as the lowest con-
centration (nanograms per milliliter) at which parasite growth
was fully inhibited] for compounds were conducted according
to previously described methods. For Eimeria tenella, the 48-hr
assay as described by Schmatz et al. (8) was used; for T. gondii,
Besnoitia jellisoni, and N. caninum, the method of Roos et al.
(9) was used; for Ca. bigenetica, the 7-day assay as described by
Sundermann et al. (10) was used; for P. falciparum [chloro-
quine-resistant strain Dd2, grown according to Trager and
Jensen (11)], drug sensitivity was determined over 48 hr
visually by light microscopy of stained blood smears; and
activity against Cr. parvum was determined according to
Woods et al. (12) with rat serum at a 1:1000 dilution. Test

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: HDA, histone deacetylase; p.i., post infection; AUT,
acid urea triton.
†To whom reprint requests should be addressed.
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P. falciparum tymidylate kinase + zidovudine 
Template 3tmkA a yeast tymidylate kinase. 
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P. falciparum thymidylate kinase + zidovudine 
NMR Water-LOGSY  and STD experiments

Leticia Ortí, Rodrigo J. Carbajo, and Antonio Pineda-Lucena

ATM Zidovudine

6.46.66.87.07.27.47.67.8 mpp0.8 6.26.46.66.87.07.27.47.67.8 ppm

6.46.66.87.07.27.47.67.8 ppm
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Figure 4. Ortí et al.

cAMP Fludarabine
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TDIʼs kernel
http://tropicaldisease.org/kernel

 Ortí et al . “A kernel for open source drug discovery in tropical diseases”. Submitted. 
Ortí et al . “A Kernel for the Tropical Disease Initiative”. Submitted. 
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