Comparative Protein Structure Prediction

Marc A. Marti-Renom http://bioinfo.cipf.es/squ/

Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

DISCLAIMER!

Name	Type#	World Wide Web address®
DATABASES		
CATH	5	http://www.biochem.ucl.ac.uk/bsm/cath/
DBAII	s	http://www.saillab.org/DBAII/
GenBank	s	http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html
GeneCensus	5	http://bioinfo.mbb.yale.edu/genome
MODBASE	s	http://salilab.org/modbase/
MSD	s	http://www.rcsb.org/databases.html
NOSI	s	http://www.ncbi.nlm.nih.gov/
PDB	s	http://www.rcsb.org/pdb/
PSI	s	http://www.nigms.nih.gov/psi/
Sacch3D	8	http://genome-www.stanford.edu/Sacch3D/
SCOP	s	http://scop.mrc-lmb.cam.ac.uk/scop/
TIGR	s	http://www.tigr.org/tdb/mdb/mdbcomplete.html
TrEMBL	8	http://srs.ebi.ac.uk/
FOLD ASSIGNM	ENT	
123D	s	http://123d.ncifcrf.gov/
3D-PSSM	8	http://www.sbg.bio.ic.ac.uk/~3dpssm/
BIOINBGU	s	http://www.cs.bgu.ac.il/~bioinbgu/
BLAST	s	http://www.ncbi.nlm.nih.gov/BLAST/
DALI	s	http://www2.ebi.ac.uk/dali/
FASS	s	http://bioinformatics.burnham-inst.org/FFAS/index.html
FastA	S	http://www.ebi.ac.uk/fasta3/
FRSVR	8	http://fold.doe-mbi.ucla.edu/
FUGUE	S	http://www-cryst.bloc.cam.ac.uk/~fugus/

http://sgu.bioinfo.cipf.es/home/?page=resources

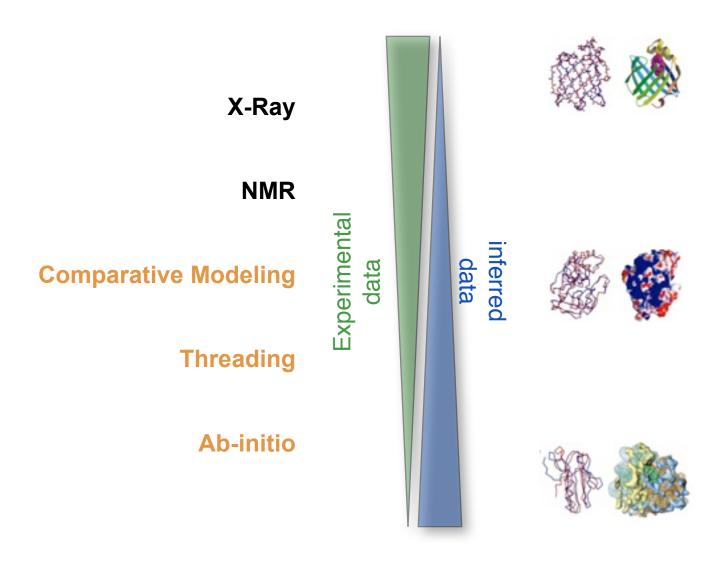
Summary

- INTRO
- MODELLER
- MOULDER
- MODEL(S) --> FUNCTION
- MODELLER example

Nomenclature

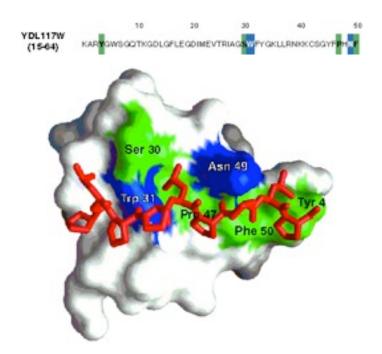
Homology: Sharing a common ancestor, may have similar or dissimilar functions

Similarity: Score that quantifies the degree of relationship between two sequences.


Identity: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

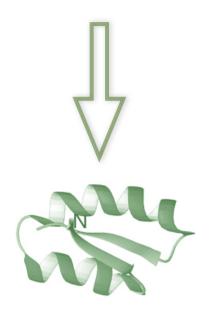
Template: 3D structure/s to be used during protein structure prediction.

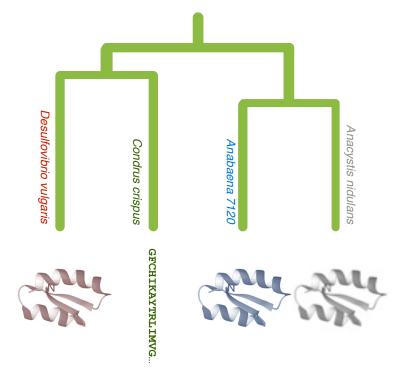

Model: Predicted 3D structure of the target sequence.

protein prediction .vs. protein determination

Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

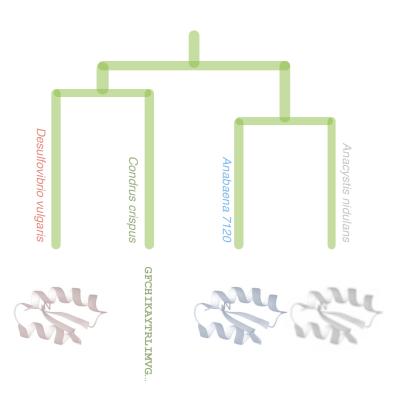



In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.

Principles of protein structure

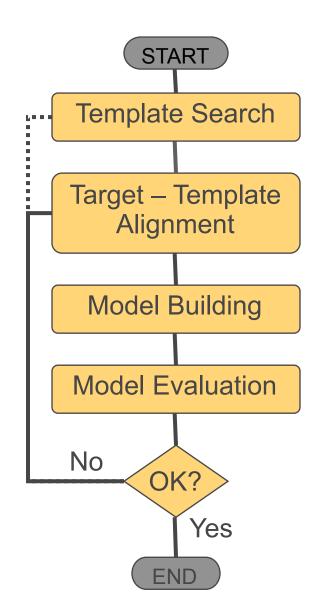
GFCHIKAYTRLIMVG...


Folding (physics)

Ab initio prediction

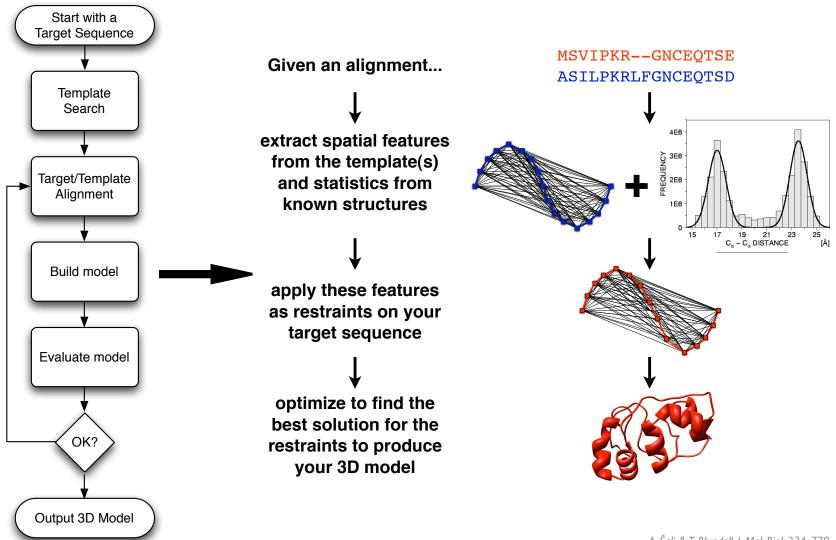
Evolution (rules)

Threading Comparative Modeling


D. Baker & A. Sali. Science 294, 93, 2001.

MODELLER

N. Eswar, et al. Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30, 2008.
 M.A. Marti-Renom, et al.. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000.
 A. Sali & T.L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815, 1993.
 A. Fiser, R.K. Do, & A. Sali. Modeling of loops in protein structures, Protein Science 9. 1753-1773, 2000.


Steps in Comparative Protein Structure Modeling


A. Šali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Šali, Curr. Opin. Str. Biol. 7, 206, 1997. M. Marti et al. Ann. Rev. Biophys. Biomolec. Struct., 29, 291, 2000.

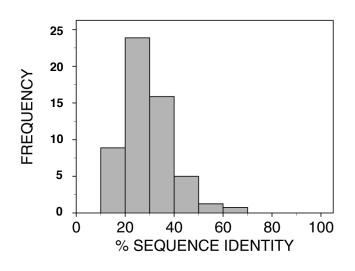
Comparative modeling by satisfaction of spatial restraints MODELLER

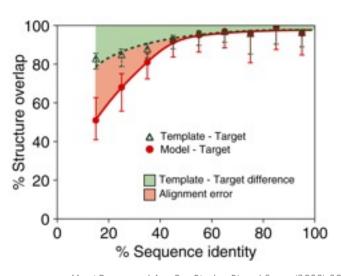
A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Comparative modeling by satisfaction of spatial restraints Types of errors and their impact

Wrong fold

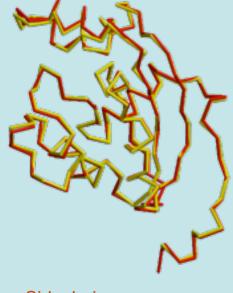
Miss alignments


Loop regions



Rigid body distortions

Side-chain packing

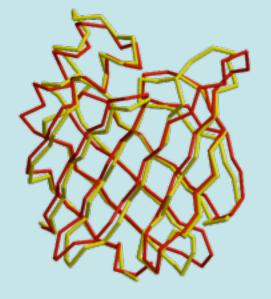


Marti-Renom etal. Ann Rev Biophys Biomol Struct (2000) 29, 291

Model Accuracy

HIGH ACCURACY

NM23 Seq id 77% $C\alpha$ equiv 147/148 RMSD 0.41Å



Sidechains Core backbone Loops

X-RAY / MODEL

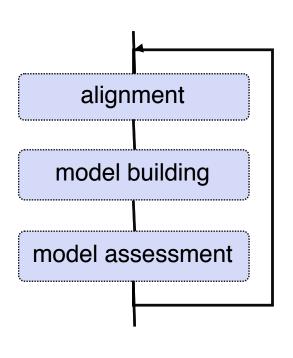
MEDIUM ACCURACY

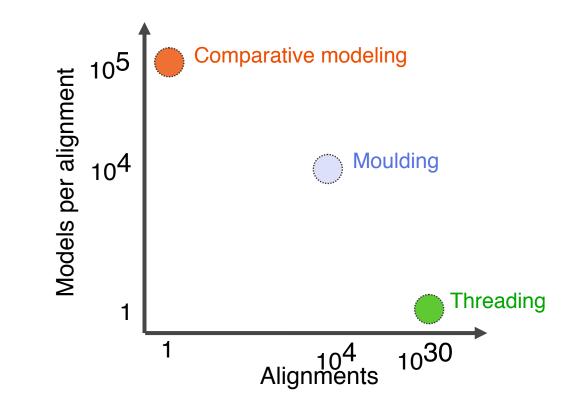
CRABP Seq id 41% Cα equiv 122/137 RMSD 1.34Å

Sidechains Core backbone Loops Alignment

LOW ACCURACY

EDN Seq id 33% $C\alpha$ equiv 90/134 RMSD 1.17Å


Sidechains
Core backbone
Loops
Alignment
Fold assignment


Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

John, Sali (2003). NAR pp31 3982

Moulding: iterative alignment, model building, model assessment

Genetic algorithm operators

Single point cross-over ...TSSQ-NMK-LGVFWGY... ...TSSQ-NMKLGVFWGY-... ...V-SSCN-GDLHMKVGV... ...V-SSCNGDLHMKV-GV... ...TSSQNMKLGVFWGY---... ...TSSQNMK——LGVFWGY... ...VSSČN——GDLHMKVGV... ...VSSCNGDLHMKV——GV... Gap insertion ...TSSQN—MKLGVFWGY... ...VSSCNGDLHMKVG—V... ...TSSONMKLGVFWGY... ...VSSCNGDLHMKVGV... ...-T-SSQNMKLGVFWGY... ...VSSCNGDLHMKVGV---... Gap shift ...T—S—SONMKLGVFWGY... ...VSSCNGDLHMKVGV—... ...T—SSONMKLGVFWGY... ...VSSCNGDLHMKVGV—... ...—TSSONMKLGVFWGY... ...VSSCNGDLHMKVGV—... ...TS-SQNMKLGVFWGY... ...VSSCNGDLHMKVGV-Also, "two point crossover" and "gap deletion".

Composite model assessment score

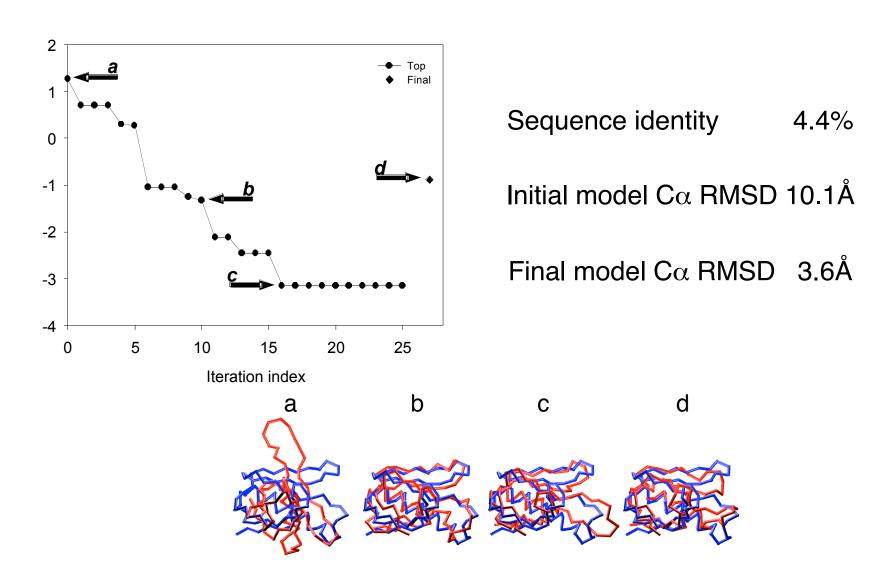
Weighted linear combination of several scores:

- Pair (P_D) and surface (P_S) statistical potentials;
- Structural compactness (S_C);
- Harmonic average distance score (H_a);
- Alignment score (A_S).

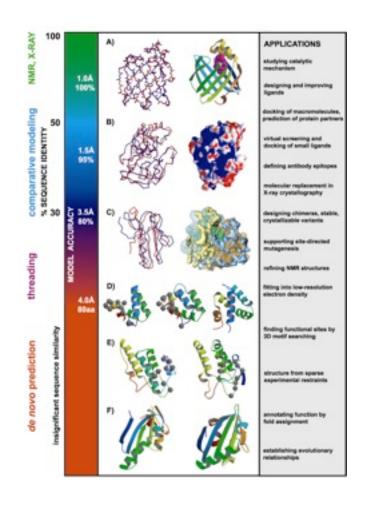
$$Z = 0.17 Z(P_P) + 0.02 Z(P_S) + 0.10 Z(S_C) + 0.26 Z(H_a) + 0.45 (A_S)$$

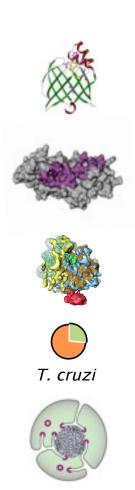
```
Z(score) = (score-\mu)/σ

\mu ... average score of all models


\sigma ... standard deviation of the scores
```

Benchmark with the "very difficult" test set

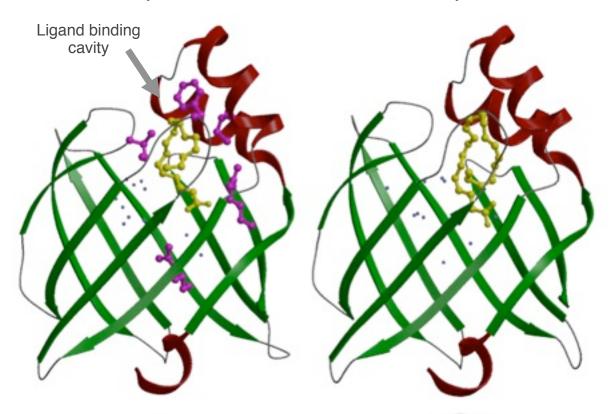

D. Fischer threading test set of 68 structural pairs (a subset of 19)


			Initial prediction		Final prediction		Best prediction	
Target -template	Sequence identity [%]	Coverage [% aa]	Cα RMSD [Å]	CE overlap [%]	Cα RMSD [Å]	CE overlap [%]	Cα RMSD [Å]	CE overlap [%]
1ATR-1ATN	13.8	94.3	19.2	20.2	18.8	20.2	17.1	24.6
1BOV-1LTS	4.4	83.5	10.1	29.4	3.6	79.4	3.1	92.6
1CAU-1CAU	18.8	96.7	11.7	15.6	10.0	27.4	7.6	47.4
1COL-1CPC	11.2	81.4	8.6	44.0	5.6	58.6	4.8	59.3
1LFB-1HOM	17.6	75.0	1.2	100.0	1.2	100.0	1.1	100.0
1NSB-2SIM	10.1	89.2	13.2	20.2	13.2	20.1	12.3	26.8
1RNH-1HRH	26.6	91.2	13.0	21.2	4.8	35.4	3.5	57.5
1YCC-2MTA	14.5	55.1	3.4	72.4	5.3	58.4	3.1	75.0
2AYH-1SAC	8.8	78.4	5.8	33.8	5.5	48.0	4.8	64.9
2CCY-1BBH	21.3	97.0	4.1	52.4	3.1	73.0	2.6	77.0
2PLV-1BBT	20.2	91.4	7.3	58.9	7.3	58.9	6.2	60.7
2POR-2OMF	13.2	97.3	18.3	11.3	11.4	14.7	10.5	25.9
2RHE-1CID	21.2	61.6	9.2	33.7	7.5	51.1	4.4	71.1
2RHE-3HLA	2.4	96.0	8.1	16.5	7.6	9.4	6.7	43.5
3ADK-1GKY	19.5	100.0	13.8	26.6	11.5	37.7	7.7	48.1
3HHR-1TEN	18.4	98.9	7.3	60.9	6.0	66.7	4.9	79.3
4FGF-81IB	14.1	98.6	11.3	24.0	9.3	30.6	5.4	41.2
6XIA-3RUB	8.7	44.1	10.5	14.5	10.1	11.0	9.0	34.3
9RNT-2SAR	13.1	88.5	5.8	41.7	5.1	51.2	4.8	69.0
AVERAGE	14.2	85.2	9.6	36.7	7.7	44.8	6.3	57.8

Application to a difficult modeling case1BOV-1LTS

Can we use models to infer function?

What is the physiological ligand of Brain Lipid-Binding Protein?


Predicting features of a model that are not present in the template

BLBP/oleic acid

BLBP/docosahexaenoic acid

Cavity is not filled

Cavity is filled

- 1. BLBP binds fatty acids.
 - 2. Build a 3D model.
- 3. Find the fatty acid that fits most snuggly into the ligand binding cavity.

L. Xu, R. Sánchez, A. Šali, N. Heintz, J. Biol. Chem. 271, 24711, 1996.

Structural analysis of missense mutations in human BRCA1 BRCT domains

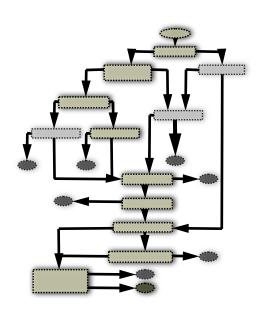
Nebojsa Mirkovic, Marc A. Marti-Renom, Barbara L. Weber, Andrej Sali and Alvaro N.A. Monteiro

Cancer Research (June 2004). 64:3790-97

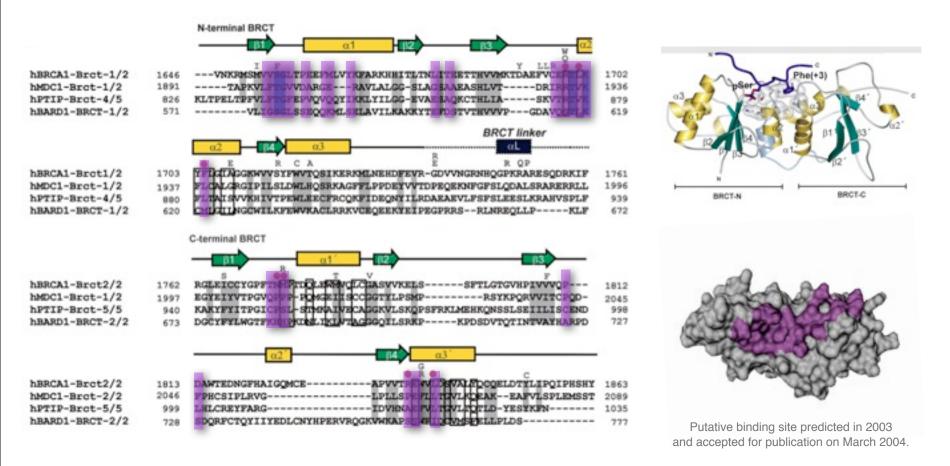
Cannot measure the functional impact of every possible SNP at all positions in each protein! Thus, prediction based on general principles of protein structure is needed.

Missense mutations in BRCT domains by function

cancer not cancer associated

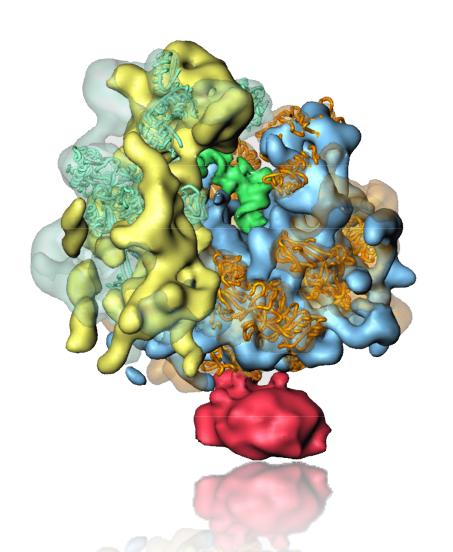

?

no transcription activation


transcription activation

7

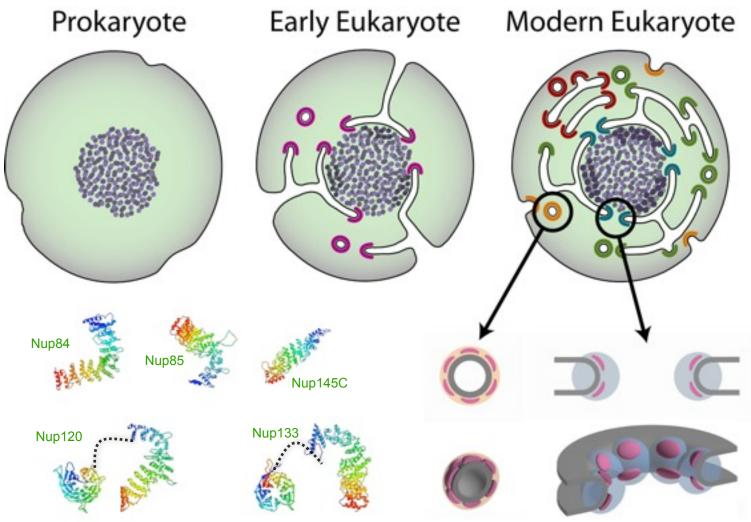
C1697R R1699W A1708E S1715R P1749R M1775R		M1652K L1705PS F1761S L1657P M1775E E1660G 1715NS1 M1775K H1686Q 722FF17 L1780P R1699Q 34LG173 I1807S K1702E 8EG1743 V1833E Y1703HF RA1752 A1843T 1704S PF1761I
	M1652I A1669S	V1665M D1692N G1706A D1733G M1775V P1806A
		M1652T W1718S R1751P C1787S A1823T V1653M T1720A R1751Q G1788D V1833M L1664P W1730S R1758G G1788V W1837R T1685A F1734S L1764P G1803A W1837G T1685I E1735K I1766S V1804D S1841N M1689R V1736A I1766S V1808A A1843P D1692Y D1739E T1771L V1809A T1852S F1695L D1739E T1773S V1809F P1856T V1696L D1739G P1776S V1810G P1859R G1706E V1741G D1778N Q1811R G1706E V1741G D1778H N1819S W1718C H1746N D1778H M1783T



Putative binding site on BRCA1

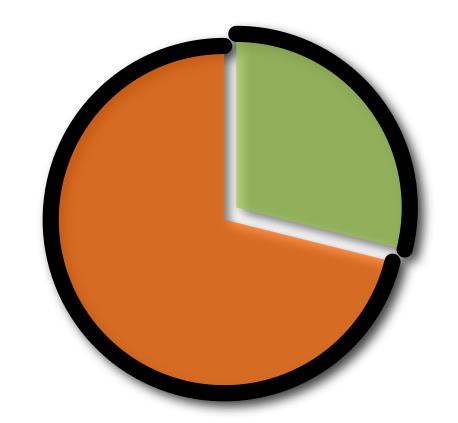
Williams *et al.* 2004 Nature Structure Biology. **June 2004 11**:519 Mirkovic *et al.* 2004 Cancer Research. **June 2004 64**:3790

S. cerevisiae ribosome


Fitting of comparative models into 15Å cryo-electron density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.

The modeled fraction of the proteins ranges from 34-99%.

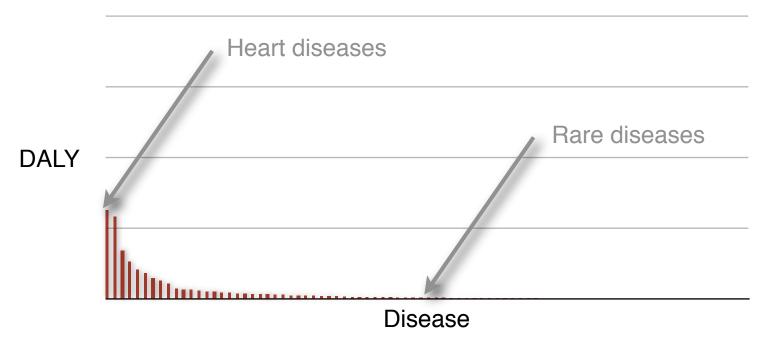

C. Spahn, R. Beckmann, N. Eswar, P. Penczek, A. Sali, G. Blobel, J. Frank. Cell 107, 361-372, 2001.

The Nucleopore complex Cell evolution (?)

Tropical Disease Initiative (TDI)

Predicting binding sites in protein structure models.

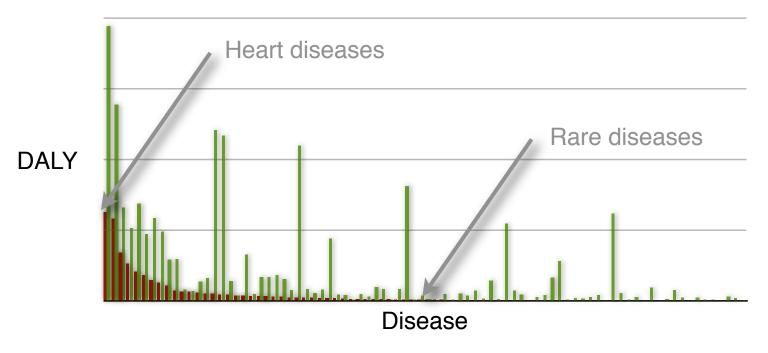
http://www.tropicaldisease.org



Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004


DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life years

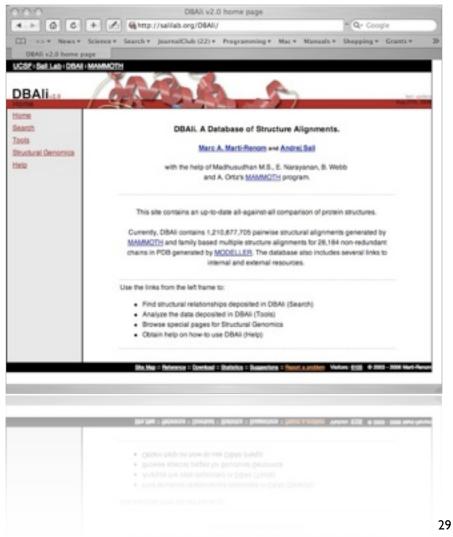
DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486
Tetanus	7,074
Lymphatic filariasis*	5,777
Syphilis	4,200
Trachoma	2,329
Leishmaniasis*	2,090
Ascariasis	1,817
Schistosomiasis*	1,702
Trypanosomiasis*	1,525

Trichuriasis	1,006
Japanese encephalitis	709
Chagas Disease*	667
Dengue*	616
Onchocerciasis*	484
Leprosy*	199
Diphtheria	185
Poliomyelitise	151
Hookworm disease	59


Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life year in 1000's.

* Officially listed in the WHO Tropical Disease Research disease portfolio.

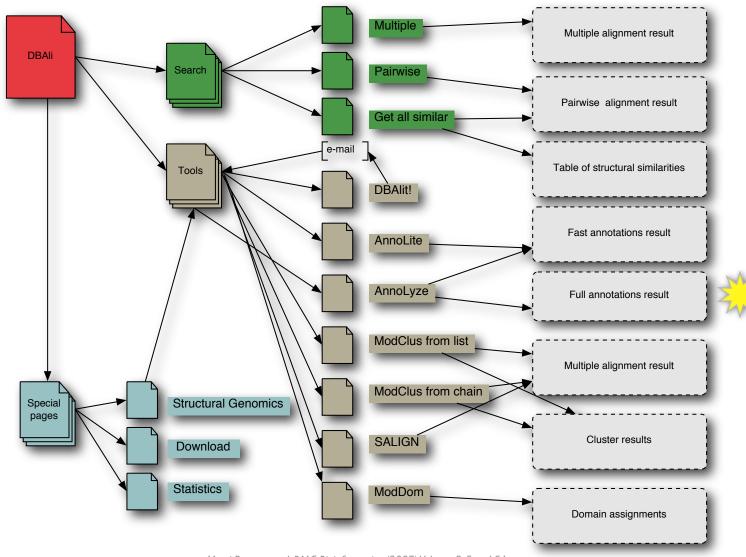
DBAliv2.0 database

http://www.dbali.org

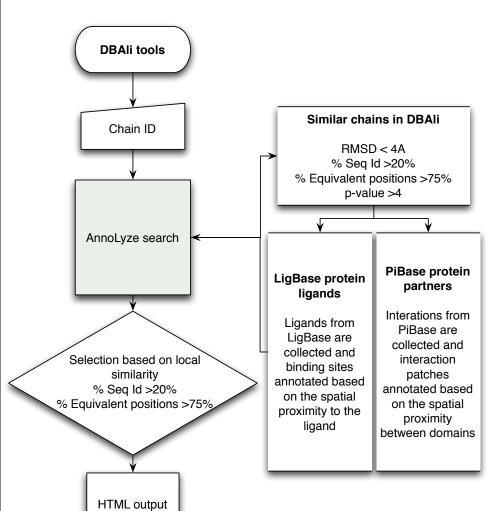
- √ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families.
- ✓ Easy to navigate
- ✓ Provides tools for structure analysis

Does not provide a stable classification similar to that of CATH or SCOP

Pairwise structure alignments	
Last update:	October 6th, 2007
Number of chains:	96,804
Number of structure-structure comparisons:*	1,748,371,897
Multiple structure alignments	
Last update:	August 1st, 2007
Number of representative chains:	34,637
Number of families:	12,732


Uses MAMMOTH for similarity detection

- ✓ VERY FAST!!!
- √ Good scoring system with significance


Ortiz AR, (2002) Protein Sci. 11 pp2606 Marti-Renom et al. 2001. Bioinformatics. 17, 746

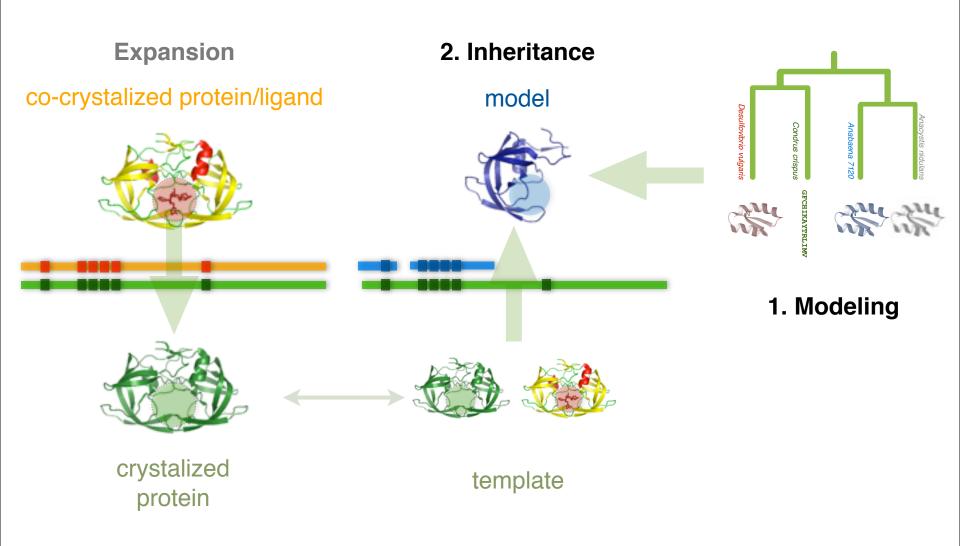
DBAliv2.0 database

http://www.dbali.org


Method

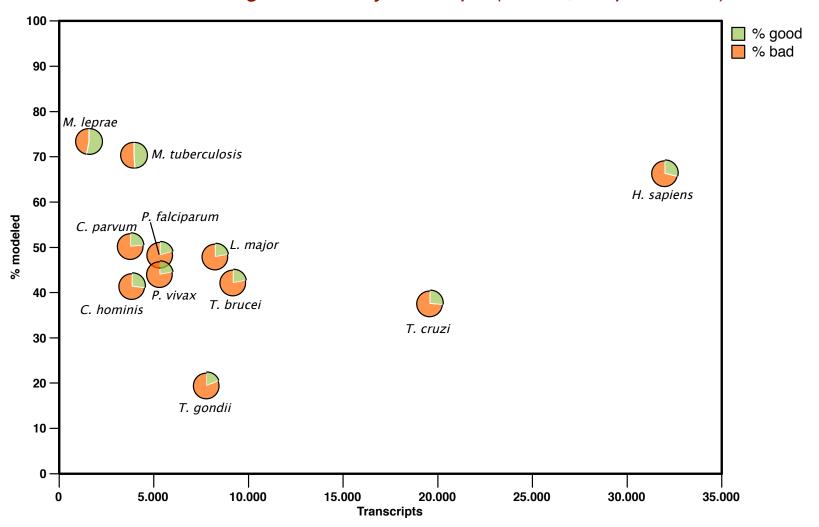
Ligand	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)
MO2	59.03	0.185	48 49 52 62 63 66 67 113 116
CRY	20.00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121
80G	20.00	0.111	19 20 21 48 49 51 96 98 136
ACY	15.87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135

herited pa	rtners:1		
Partner	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)
1.113.1.1	23.68	0.948	19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142


Sensitivity .vs. Precision

	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
Ligands	30%	71.9	13.7

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$


~90-95% of residues correctly predicted

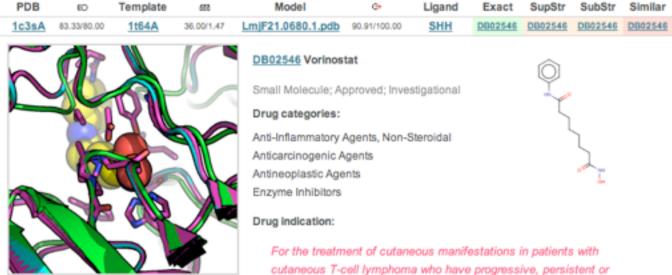
Comparative docking

Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)

Summary table

models with inherited ligands


29,271 targets with good models, 297 inherited a ligand/substance similar to a known drug in DrugBank

	Transcripts	Modeled targets	Selected models	Inherited ligands	Similar to a drug	Drugs
C. hominis	3,886	1,614	666	197	20	13
C. parvum	3,806	1,918	742	232	24	13
L. major	8,274	3,975	1,409	478	43	20
М. Іергае	1,605	1,178	893	310	25	6
M. tuberculosis	3,991	2,808	1,608	365	30	10
P. falciparum	5,363	2,599	818	284	28	13
P. vivax	5,342	2,359	822	268	24	13
T. brucei	7,793	1,530	300	138	13	6
T. cruzi	19,607	7,390	3,070	769	51	28
T. gondii	9,210	3,900	1,386	458	39	21
TOTAL	68,877	29,271	11,714	3,499	297	143

L. major Histone deacetylase 2 + Vorinostat

Template 1t64A a human HDAC8 protein.

recurrent disease on or following two systemic therapies.

L. major Histone deacetylase 2 + Vorinostat

Literature

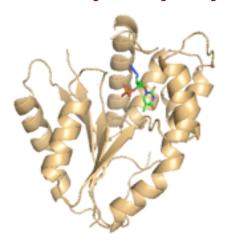
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

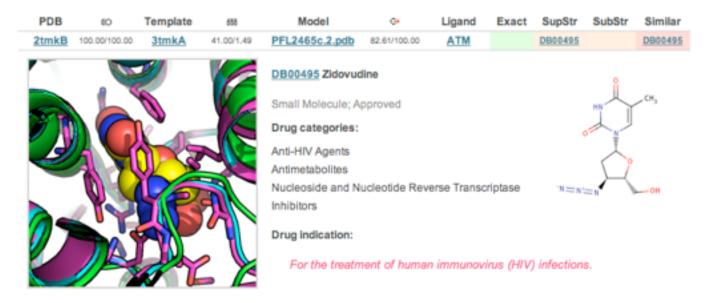
Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray*†, Anne M. Gurnett*, Robert W. Myers*, Paula M. Dulski*, Tami M. Crumley*, John J. Allocco*, Christine Cannova*, Peter T. Meinke‡, Steven L. Colletti‡, Maria A. Bednarek‡, Sheo B. Singh§, Michael A. Goetz§, Anne W. Dombrowski§, Jon D. Polishook§, and Dennis M. Schmatz*

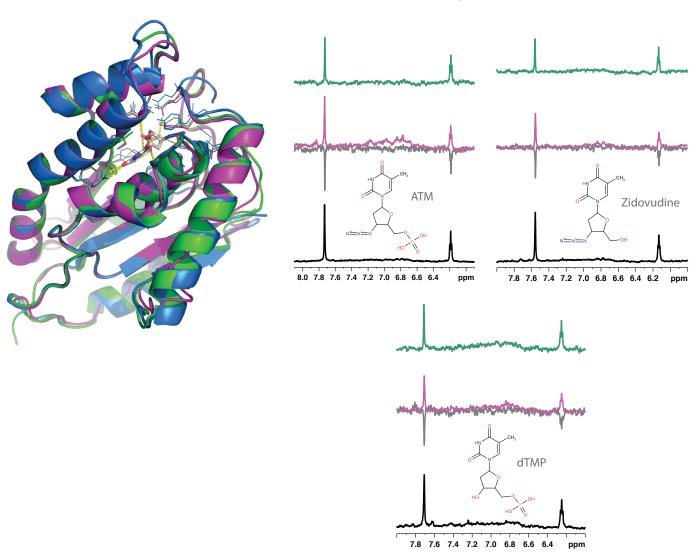
Departments of *Parasite Biochemistry and Cell Biology, [‡]Medicinal Chemistry, and [§]Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065


ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.


Vol. 48, No. 4

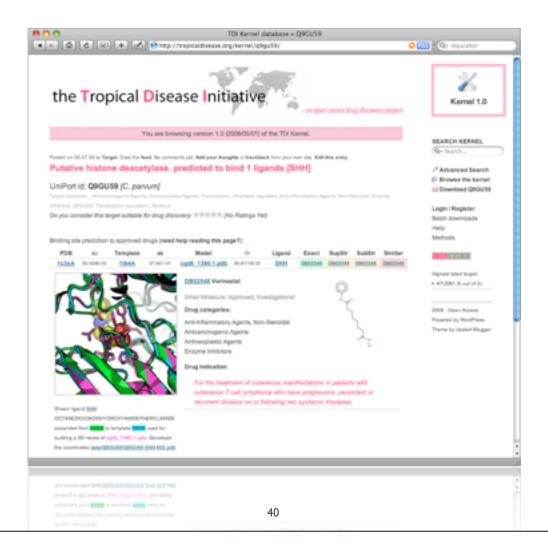
Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

P. falciparum tymidylate kinase + zidovudine


Template 3tmkA a yeast tymidylate kinase.

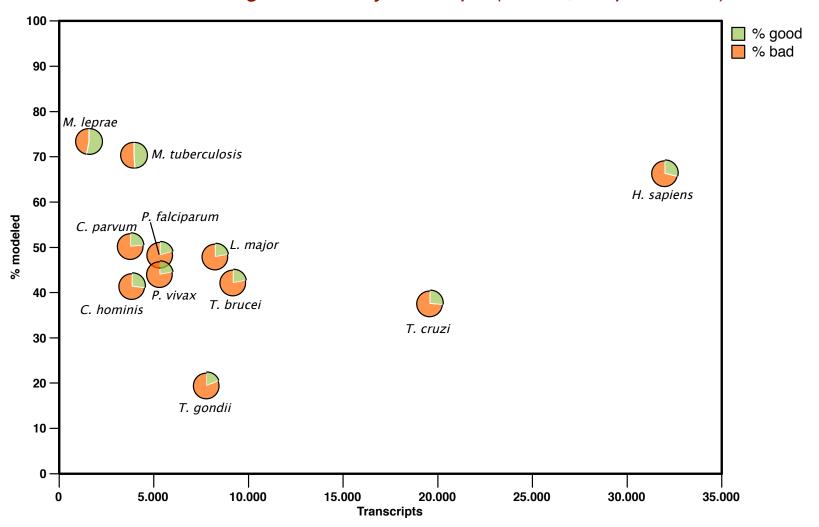
P. falciparum thymidylate kinase + zidovudine

NMR Water-LOGSY and STD experiments

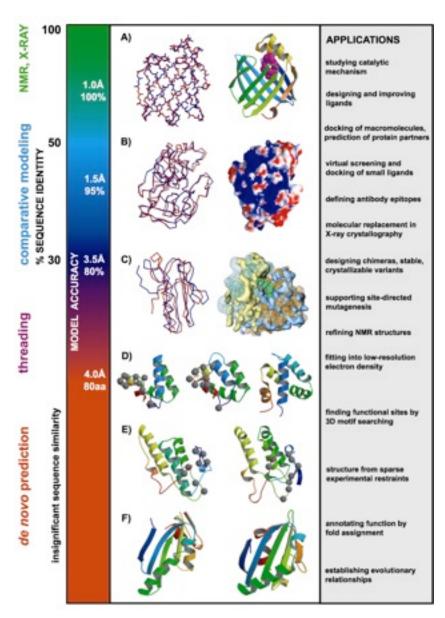


Leticia Ortí, Rodrigo J. Carbajo, and Antonio Pineda-Lucena

TDI's kernel


http://tropicaldisease.org/kernel

Ortí et al . "A kernel for open source drug discovery in tropical diseases". PLoS Neglected Tropical Diseases. (2009) **3**:e18 Ortí et al . "A Kernel for the Tropical Disease Initiative". Nature Biotechnology. (2009) **27**:320-321



Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)

"take home" message

Comparative Protein Structure PredictionMODELLER tutorial

\$>mod9v6 model.py

Marc A. Marti-Renom http://bioinfo.cipf.es/squ/

Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

Obtaining MODELLER and related information

- MODELLER web page
- http://www.salilab.org/modeller/
 - Download Software (Linux/Windows/Mac/Solaris)
 - HTML Manual
 - **♦ Join Mailing List**

Using MODELLER

- ♦ No GUI! ⁽⁸⁾
- Controlled by command file 88
- Script is written in PYTHON language
- You may know Python language is simple

MODELLER 9v6

Python interface

- Modeller Python interface uses classes, e.g.:
 - 'alignment' holds and manipulates aligned sequences
 - 'model' holds and manipulates protein models
 - 'environ' keeps the configuration of the environment
 - 'profile' holds and manipulates sequence profiles
 - 'sequence_db' is for sequence databases
- These behave just like ordinary Python classes, but Modeller Fortran code is linked to them
- The Modeller data is automatically freed when the Python object is deleted (explicitly or implicitly)

Using MODELLER

♦ INPUT:

- Target Sequence (FASTA/PIR format)
- Template Structure (PDB format)
- Python file

♦ OUTPUT:

- Target-Template Alignment
- Model in PDB format
- Other data

Modeling of BLBP Input

- Target: Brain lipid-binding protein (BLBP)
- ♦ BLBP sequence in PIR (Modeller) format:

```
>P1;blbp
sequence:blbp::::::
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSID
DRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_ld=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file 'lhms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Output

```
>P1;1hms
structureX:1hms: 1 : : 131 : :undefined:undefined:-1.00:-1.00
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp: : : : : 0.00: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Output

```
>P1;1hms

structureX:1hms: 1 :: 131 :: undefined:undefined:-1.00:-1.00

VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA

DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*

>P1;blbp

sequence:blbp: :: :: : 0.00: 0.00

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI

DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Output

STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                                  # request verbose output
env = environ()
                                   # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = 'lhms',
                                # codes of the templates
             sequence = 'blbp')
                                            # code of the target
                                  # index of the first model
a.starting model= 1
a.ending model = 1
                                   # index of the last model
                                   # (determines how many models to calculate)
a.make()
                                   # do the actual homology modelling
```

STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
                               # request verbose output
log.verbose()
                                # create a new MODELLER environment
env = environ()
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
            alnfile = 'blbp-1hms.ali', # alignment filename
            sequence = 'blbp') # code of the target
                               # index of the first model
a.starting model= 1
a.ending model = 1
                               # index of the last model
                                # (determines how many models to calculate)
                                # do the actual homology modelling
a.make()
```

STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

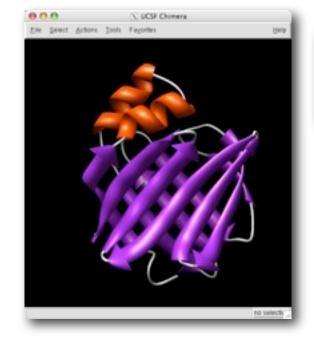
```
# Homology modelling by the automodel class
from modeller.automodel import *  # Load the automodel class
log.verbose()
                               # request verbose output
env = environ()
                                # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
            alnfile = 'blbp-1hms.ali', # alignment filename
            equence = 'blbp') # code of the target
                              # index of the first model
a.starting model= 1
a.ending model = 1
                               # index of the last model
                                # (determines how many models to calculate)
                                # do the actual homology modelling
a.make()
```

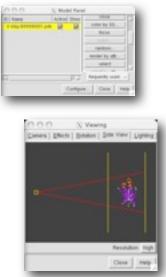
STEP 2: Model the blbp structure using the alignment from step 1.

Python script for model building

PDB file

Can be viewed with Chimera

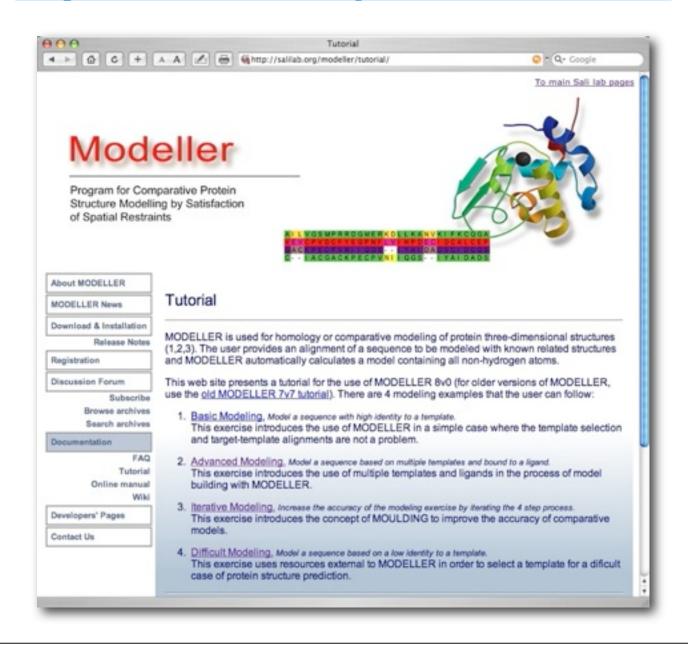

http://www.cgl.ucsf.edu/chimera/


Rasmol

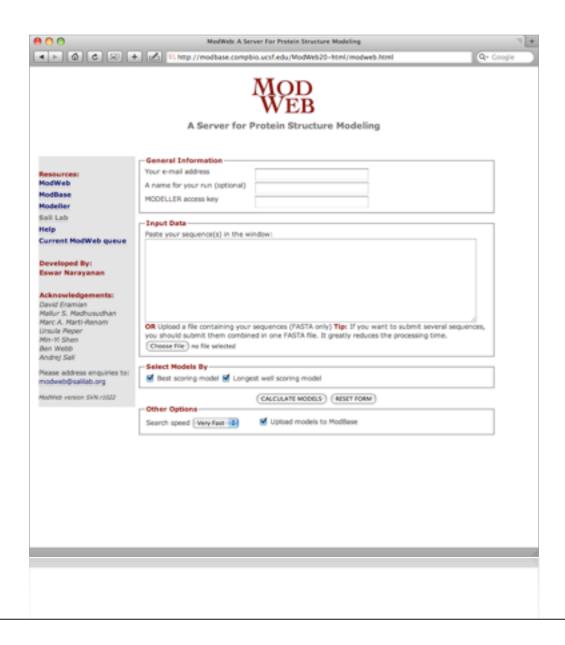
http://www.openrasmol.org

PyMol

http://pymol.sourceforge.net/



Model file →


blbp.B9990001.pdb

http://www.salilab.org/modeller/tutorial/

MODWEB

http://salilab.org/modweb

MODBASE

http://salilab.org/modbase

Model Details Search Page ModWeb Modelling Server Mon ModBase Search Page User Login Home ModBase Search Page ModWeb Modelling Server **Current Legins** BASE Current Logins Database of Comparative Protein Structure Models Sequence Information Welcome to ModBase, a database of three-dimensional protein models calculated by comparative modeling. Primary Database Link # P43632 (KI2S4 HUMAN) (Old ModBase Interface) Organism # Home sapiess killer cell immunoglobulin-like receptor 2ds4 precursor (mhc class ide nk cell receptor) (natural killer associated transcript 8) (nkst-8)de (p58 natural killer cell receptor clone cl-39) (p58 nk Annotation Sequence Length General Information Model Information Statistics Search -ModBase search form Perform action on this model iii | Select spilor Project Pages Search type @ Model Default Display type @ Model Detail (graphical) . Sequence Model Coverage @ Documentation Authors and Sequence Identity 88.00% Acknowledgements All available datasets are selected if Select specific dataset(s) E-Value 26-43 Model Score 1.00 Publications Target Region 27-021 Protein Length Todo List Search by properties Template PDB 1mir Property # AU Related Resources Template Region 6-200 Organism # AU srp-human2 Note: MODBASE contains Filtered models for current sequence (Show all models) theoretically calculated Advanced search determined structures. The Cross-references Sequence Overview 3738 hypothetical protein Pseudomonas aeruginosa Q8G8A6 Escherichia coli hypothetical protein 1140 Q8G9W1 Streptococcus pneumoniae, Streptococcus pneumoniae hypothetical protein spr1965 1038 Q8CY62 **B**6 Model Overview Pseudomonas 4 6 1 8-78 Q8G8C7 hypothetical protein 4996 2089-2158 70 37.00 7e-14 1.00 1dnyA aeruginosa Pseudomonas 4 6 1 Q8G8C7 hypothetical protein 492-1017 526 36.00 1e-82 1.00 1amuA 19-529 aeruginosa 6-783

Escherichia coli

Q8G9W1 hypothetical protein

Pieper et al. (2004) Nucleic Acids Research 32, D217-D222

1.00

349-1135 787 35.00

Acknowledgments

Structural Genomics Unit (CIPF)

Marc A. Marti-Renom Emidio Capriotti Davide Baù Stefania Bosi

Comparative Genomics Unit (CIPF)

Hernán Dopazo François Serra

Functional Genomics Unit (CIPF) Joaquín Dopazo

Fátima Al-Shahrour

José Carbonell

Jose Carbonell

Francisco García

Ignacio Medina

David Montaner

Joaquin Tárraga

Ana Conesa

Eva Alloza

Stefan Goetz

Pablo Minguez

Javier Santoyo

Pablo Escobar

Sonia Tarazona

FUNDING

Prince Felipe Research Center Marie Curie Reintegration Grant STREP EU Grant

Ministerio de Educación y Ciencia (Spain)

Tropical Disease Initiative

Stephen Maurer (UC Berkeley)

Arti Rai (Duke U)

Andrej Sali (UCSF)

Ginger Taylor (TSL)

Barri Bunin (CDD)

STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB)

NY-SGXRC

MAMMOTH

Angel R. Ortiz

BIOLOGY

Jeff Friedman (RU)

James Hudsped (RU)

Partho Ghosh (UCSD)

Alvaro Monteiro (Cornell U)

Stephen Krilis (St.George H)

FUNCTIONAL ANNOTATION

Fatima Al-Shahrour Joaquin Dopazo

NMR STRUCTURE BIOLOGY

Antonio Pineda-Lucena Leticia Ortí

Rodrigo Carbajo

COMPARATIVE MODELING

Andrej Sali

Narayanan Eswar

Ursula Pieper

FUNCTIONAL ANNOTATION

Andrea Rossi Fred Davis

http://bioinfo.cipf.es
http://sgu.bioinfo.cipf.es