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First step
Can we reliably compare RNA structures?
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RNA structure
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Primary Structure
>Mutant Rat 28S rRNA sarcin/ricin domain
GGUGCUCAGUAUGAGAAGAACCGCACC

5’

3’

HAIRPIN

BULGE
Secondary Structure
>Mutant Rat 28S rRNA sarcin/ricin domain 
GGUGCUCAGUAUGAGAAGAACCGCACC
((((((((.((((..))))))))))))

Tertiary Structure
Secondary Structure interactions and other 
interactions like pseudoknots, hairpin-hairpin 
interactions etc. 
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Structural alignment
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In contrast to simple structural superposition, where at least some equivalent 
residues of the two structures are known, structural alignment does not 
require prior knowledge of the equivalent positions.

Structural alignment has been used as a valuable tool for the comparison of 
proteins, including the inference of evolutionary relationships between proteins 
of remote sequence similarity.

Structural alignment attempts to establish 
equivalences between two or more 
polymer structures based on their shape 
and three-dimensional conformation. 
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RNA Structure
Currently more than 1500 RNA structures are deposited in the PDB (Mar 09)
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RNA structure datasets
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RNA STRUCTURE* 1,101

RNA CHAINS 2,179

Non-Redundant RNA CHAINS** 744

RNA CHAINS (20≤ Length ≤310) 313

HIGH RESOLUTION RNA SET*** 54

*  from PDB November 06.  
**  non-redundant 95% sequence identity 
*** Resolution below 4.0 Å and with no missing backbone atoms. 

NR95

HR
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Dataset distribution
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tRNA

20 of 
>1,000n

407 of <20n
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Atom selection
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The best backbone atom that 
represents the RNA structure 
has been selected by evaluating 
the distribution of the distances 
between consecutive atoms in 
structures from the NR95 set.
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Unit Vector I
Representation

9

i

i

i+1

i+2

i+1

i+2

i+3

Ortiz et al. Proteins 2002

A Unit Vector is the normalized vector between two successive C3ʼ atoms. 
For each position i consider the k consecutive vectors, which will be mapped into a unit 
sphere representing the local structure of k residues.   
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Unit Vector II
Scoring
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For each position i, the k consecutive unit vectors are grouped and aligned to the j 
set of unit vectors. Each pair of aligned unit vectors will be evaluated by calculating 
Unit Root Mean Square distance (URMSij).
The obtained URMS values are compared the minimum expected URMS distance 
between two random set of k unit vectors (URMSR).
The alignment score is than calculated normalizing URMSij to the URMSR value.

10 7 5

7 10 4

5 4 10
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Alignment
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A Dynamic Programming procedure is then applied to search for the optimal structural 
alignment using a global alignment with zero end gap penalties. 
The maximum subset of local structures that have their corresponding C3ʼ within 3.5 Å 
in the space are evaluated. The number of close atoms is used to evaluate the 
percentage of structural identity (PSI) using a variant of the MaxSub algorithm.

Needleman and Wunsch J. Mol.Biol 1970
Siew et al. Bioinformatics 2000
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Random RNA
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In order to build a background distribution that reproduce the scores given by the 
structural alignments of unrelated RNA sequences, we generated a set 300 random 
RNA sequences and structures with sequence length uniformly distributed between 20 
and 320 nucleotides.

The RNA backbone can be described given 
the 6 torsion angle (α,β,γ,δ,ε,ζ) for each 
nucleotide.       
The RNA backbone is rotameric and only 42 
conformation have been described from a 
set o high resolution structures .
According to this observation we generated 
the 300 structures, randomly selecting the 
backbone angles among the 42 possible 
conformations. 

Murray et al PNAS 2003
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Background distribution
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Considering a dataset of 300 random RNA structures, we have produced ~45,000 
pairwise alignments that resulted in a empirical distribution. From such distribution 
we can then evaluate μ and σ needed to calculated the p-value for P(s>=x). 

Empirical Analytic

Karlin and Altschul, 1990 PNAS 87, pp2264

P(s ≥ x) = 1− exp(−e−λ (s−µ ) )
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Mean and sigma
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The score distribution depends on the length of the molecule.  

We divided the resulting structural 
alignments (∼45,000) in 30 bins 
according to the shorter sequence 
length of the two random structures (N).
For each bin the μ and σ values are 
evaluated fitting the data to an EVD.
The relations between N and μ, σ 
values are extrapolate fitting them to a 
power low function (r≈0.99). 
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Statistical significance
all-against-all comparison of structures in the NR95 set
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9,859 alignments

31,448 alignments

<5%

<1%

PSI ≤ 25
25 < PSI ≤ 50
50 < PSI ≤ 75
75 < PSI ≤ 100
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SARA .vs. ARTS
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>1q96 Chain:A
--------------------gugcucaguaugaga-----aga-accgcacc--------
>1un6 Chain:E
ccggccacaccuacggggccugguuaguaccugggaaaccugggaauaccaggugccggc

Percentage of structure identity (PSI)   76.9% 
Percentage of sequence identity  20.0% 
Percentage of SSE identity 79.2%
RMSD 1.66Å

ARTS

>1q96 Chain:A
-------------------ggugcucaguaugag--------aagaaccgcacc-------
>1un6 Chain:E
gccggccacaccuacggggccugguuaguaccugggaaaccugggaauaccaggugccggc

Percentage of structure identity (PSI)   92.6% 
Percentage of sequence identity  48.0% 
Percentage of SSE identity 100.0%
RMSD 1.78 Å

SARA

PSI:  % of structure identity
PSS: % of secondary structure identity
Cut-off distance: 4.0 Å
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SARA Alignments
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Second step...
Can we reliably predict RNA function from structure?
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RNA function annotation

Capriotti and Marti-Renom Bioinformatics 2008
Tamura et al. NAR 2004
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Results

SERVER DETAILS

Pair-wise structure alignment

The SARA server for structure alignment requires the
input of either two PDB/NDB codes or two coordinates
files in PDB format (Figure 2A). Alternatively, the user
can manually modify the default options of the SARA
program by unchecking the ‘default options’ check box.
Optional parameters include the open and extension gap

penalties to be used during dynamic programming, the
number of consecutive atoms to use in the unit-vector
representation, the use of secondary structure information
calculated by the 3DNA program, and the type of atom
selected for calculating the unit vectors. When the second-
ary structure information option is selected, but the
3DNA program cannot calculate any base-pairs, SARA
will use the single atom unit-vector alignment method.
Moreover, the SARA server also aligns two RNA struc-
tures in the case when one of the two PDB contains only a

Figure 1. Accuracy of structure-based function assignment by the
SARA program. (A) QCF, QSF and dataset coverage as a function of
the mean logarithm of the P-values for PSI, PSS and PID scores for the
leave-one-out benchmark using the FSCOR dataset. (B) Same repre-
sentation as in panel A for the T-FSCOR benchmark dataset using the
R-FSCOR dataset for searching.

Figure 2. User interface for the SARA server. (A) Pair-wise structure
alignment. (B) Structure-based function assignment. Both panels
include snapshots of the actual user interface as well as a flowchart
of the actions taken by the back-end SARA program. User input and
output are enclosed within the orange and green dashed areas,
respectively.

Nucleic Acids Research, 2009, Vol. 37, Web Server issue W263
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leave one out on FSCOR performances on T-FSCOR

to existing alignment methods such as AMIGOS, ARTS,
DIAL, and SARSA.

Structure-based function assignment requires identify-
ing structural units and classifying them into annotated
functional groups. Currently, only the Structural
Classification of RNA (SCOR) database (26) offers such
a systematic classification for RNA structures. SCOR was
designed to provide a comprehensive perspective and
understanding of RNA motif structure, function, tertiary
interactions and their relationships. Structure elements in
the SCOR database are organized in a directed acyclic
graph architecture, which allows multiple parent classes
for a given structure motif. Currently, SCOR stores the
structure and function classification of 3D motifs con-
tained in 579 RNA structures. Unfortunately, the SCOR
database has not been updated since May 2004 and does
not include an option for automatically classifying new
RNA structures. Therefore, the SCOR database does
not reflect the rapid increase of deposited RNA structures
in the PDB. Only recently, the DART database (27),
which relies in the ARTS program for the alignment of
two RNA structures, proposed an automatically gener-
ated RNA structure classification that resulted in 94 clus-
ters containing 1333 RNA structure motifs. In contrast to
SCOR, DARTS allows for automatic classification of new
structures by providing a user-friendly Web interface.
However, the DARTS database does not include a func-
tion-based classification similar to the SCOR database.
To overcome such limitations we introduce the implemen-
tation of our SARA program (21) for automatic function
assignment based on the SCOR classification.

We begin by briefly describing the benchmark sets
of RNA alignments for the development and evaluation
of the SARA program as well as outlining the algorithms
behind the SARA program (Method outline). Next, we
detail the requirements for using the SARA web server
(server details). Finally, we conclude by assessing the
impact of the SARA server on the automatic annotation
of the RNA structure space (Conclusions).

METHOD OUTLINE

RNA structure and alignment data sets

As of March 2009, the PDB stored a total of 1534 struc-
ture files containing at least one RNA chain. The initial
list of RNA structures was further filtered by: (i) removing
any RNA structure with missing heavy atoms, (ii) remov-
ing any RNA structure with less than 20 nucleotides
and less than 3 base-pairs and (iii) removing redundancy
at 100% sequence identity. The filtered data set, called
RNA09, included 451 RNA chains from 409 PDB entries.
Next, we run an all-against-all comparison of the entries in
the RNA09 data set using the ‘align’ program for global
sequence alignment without end gap penalty and with
default parameters (28). This run resulted in 50 995 pair-
wise alignments with sequence identity with respect to the
length of the alignment below 25%, which constituted our
BgALI data set. All pairs of structures in the BgALI data
set were then realigned with the SARA program to obtain

a background distribution of scores for pairs of unrelated
RNA structures.
To assess the accuracy of SARA in functional classifica-

tion, the SCOR database (version 2.0.3, October 2004)
was used as a standard of truth. Although outdated, to
our knowledge SCOR is the only available function-based
classification of RNA structures. Three more functional
data sets were collected from the SCOR database: (i) the
FSCOR data set, which includes RNA chains with more
than three base-pairs that are annotated with a unique
deepest SCOR functional class, (ii) the R-FSCOR data
set, which includes only representative structures clustered
at 90% structure identity for each class in the FSCOR
data set and (iii) the T-FSCOR data set, which includes
all structures in the FSCOR data set not present in the
R-SCOR data set. All data sets of RNA structures and
alignments are summarized in Table 1 and available for
download at http://sgu.bioinfo.cipf.es/datasets/.

SARA program for RNA structure alignment

The SARA program (21) is based on a unit-vector align-
ment strategy previously implemented for the alignment of
protein structures (25,29–31). Briefly, the unit-vector rep-
resentation of an RNA, originally introduced as a tool to
analyze molecular dynamics trajectories (29) and fast
detection of common geometric substructure in proteins
(25), is calculated as follows: (i) given an RNA structure
with N nucleotides, for each i=1, . . . ,N–1 extract the
vector from the i-th to the (i+1)-th selected atoms;
(ii) normalize all obtained vectors to a unit-distance, and
place the tails of all normalized vectors at the origin of a
unit-sphere; the resulting collection of normalized vectors
is the unit-vector representation of the input RNA; (iii) the
Unit-vector RMS (URMS) distance between two input
RNA structures is the root-mean-square deviation
(RMSD) between their corresponding normalized vectors
after determining the rotation to minimize RMSD.
Specifically, SARA aligns two RNA structures by select-
ing its C30 or P atoms. If secondary structure information
is used, SARA selects only C30 or P atoms involved in the
base-pairing as computed by the 3DNA program (32) and
omits all other atoms. In such a case, RNA structures
are represented with a set of three unit-vectors for each
selected atoms forming a base-pair. The SARA program
calculates unit-spheres using four or eight successive
atoms, depending on the existence or not of base-paring
information, respectively. The SARA program cannot
compute an alignment between two structures with less

Table 1. Composition of the different RNA datasets used in this work

Datasets Number
of chains

Number of
alignments

Number of
different SCOR
functions

RNA09 451 101 475
BgALI 451 50 995
FSCOR 419 168
R-FSCOR 192 168
T-FSCOR 227 88

Nucleic Acids Research, 2009, Vol. 37, Web Server issue W261
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Third step...
To what extend can we do comparative RNA structure prediction?

21

Chothia et al.. EMBO J (1986) vol. 5 (4) pp. 823-6

The EMBO Journal vol.5 no.4 pp.823-826, 1986

The relation between the divergence of sequence and structure in
proteins

Cyrus Chothial and Arthur M.Lesk2

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH,
and 'Christopher Ingold Laboratory, University College London, 20 Gordon
Street, London WC1H OAJ, UK

2Permanent address: Fairleigh Dickinson University, Teaneck-Hackensack
Campus, Teaneck, NJ 07666, USA

Communicated by M.F.Perutz

Homologous proteins have regions which retain the same gen-
eral fold and regions where the folds differ. For pairs of
distantly related proteins (residue identity --20%), the regions
with the same fold may comprise less than half of each mol-
ecule. The regions with the same general fold differ in struc-
ture by amounts that increase as the amino acid sequences
diverge. The root mean square deviation in the positions of
the main chain atoms, A, is related to the fraction of mutated
residues, H, by the expression: A(A) = 0.40 el87H.
Key words: evolution/protein homology/model building

Introduction
The comparative analysis of the structures of related proteins can
reveal the effects of the amino acid sequence changes that have
occurred during evolution (Perutz et al., 1965). Previous work
on individual protein families has shown that mutations, insertions
and deletions produce changes in three-dimensional structure
(Almassy and Dickerson, 1978; Lesk and Chothia, 1980, 1982,
1986; Greer, 1981; Chothia and Lesk, 1982, 1984; Read et al.,
1984). Here we report a systematic comparison of structures from
eight different protein families. This shows that the extent of the
structural changes is directly related to the extent of the sequence
changes.

In the work reported here we used the atomic coordinates of
25 proteins (Table I). All these structures have been determined
at high resolution (1.4-2.OA) and refined. The errors in their
co-ordinates are 0.15-0.20A (see references given in Table I).
The 25 proteins represent eight different protein families and pro-
vide 32 pairs of homologous structures.

Methods and Results
The conserved structural cores and the variable regions ofhom-
ologous proteins
The structures of homologous proteins can be divided into those
regions in which the general fold of the polypeptide chains is
very similar and those where it is quite different. In comparing
protein structures it is useful to separate the parts that have similar
folds from those where the folds differ. We did this using the
following quantitative procedure: (i) the main-chain atoms of
major elements of secondary structure - helices or two adjacent
strands of 3-sheet - were individually superposed; and (ii) each
superposition was then extended to include additional atoms at
both ends. The extension was continued as long as the deviations
in the positions of the atoms in the last residue included were
no greater than 3 A. This procedure defined the segments that

© IRL Press Limited, Oxford, England
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Fig. 1. Size of common cores as a function of protein homology. If two
proteins of length n1 and n2 have c residues in the common core, the
fractions of each sequence in the common core are c/n1 and c/n2. We plot
these values, connected by a bar,- against the residue identity of the core
(see Table II).
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Fig. 2. The relation of residue identity and the r.m.s. deviation of the
backbone atoms of the common cores of 32 pairs of homologous proteins
(see Table I).
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Twilight zone of protein sequence alignments

Fig. 4. Pairwise sequence similarity versus alignment length. (A) Correctly
detected structural homologues; (B) false positives. Open circles, original
HSSP-curve (Sander and Schneider, 1991) (eqn 1); filled triangles, new
curve proposed here (eqn 3).

where L gave the number of residues aligned between two
proteins; pS defined cut-off for the percentage of residue
similarity over the L aligned residues; and n described the
distance in percentage points from the curve (n ! 0 plotted
in Figure 4).

Sequence-space-hopping

Suppose proteins A0 and B0 were less than 25% identical;
family A is given by: {A0, A1,..., An} (such that all proteins in
the family A are more than 25% identical to A0); analogously
family B is given by: {B0, B1,..., Bm}. Although A0 and B0
differed by more than 75%, it may well be true that both were
aligned to the same sequences, i.e. that for some i and j: Ai !
Bj. If this is the case, ‘sequence-space-hopping’ refers to
simply extending both families A and B to become: {A0, A1,...,
An, B0, B1,..., Bm} (Figure 1). Technically, I described this
situation by compiling a simple matrix H(A,B) that contained
the number of overlapping proteins (i.e. those contained both
in family A and B) between all proteins in the test set (792
chains) and all proteins in the search set (5646 chains). For
example, H(A,B) ! 5 implied that test protein A and search
protein B had five identical proteins in their family alignments.

89

The family alignments were taken from the HSSP database
(Schneider et al., 1997) with a cut-off at: HSSP-curve " 10%
(n ! 10 in eqn 1), i.e. for alignments longer than 80 residues,
35% pairwise sequence identity was required. All protein pairs
(A,B) in the twilight zone were investigated for which H(A,B)
was larger than zero. Note, the concept of sequence-space-
hopping explored here is being used in everyday sequence
analysis. The novel idea introduced by others (Abagyan and
Batalov, 1997; Neuwald et al., 1997; Park et al., 1997) was
NOT to use sequence-space-hopping, but to use it for reducing
false positives in large-scale sequence analysis. Here, I simply
applied this concept was applied to the large data set explored,
and investigated its usefulness in dependence on various
parameters.

More-similar-than-identical rule

A simple rule-of-thumb was explored: accept hits only if the
level of sequence similarity was higher than the level of
sequence identity. This rule may appear to be non-selective in
that similarity would always be larger than identity; however,
for the given definition of similarity (using the McLachlan
metric), this was not the case.

Results

Number of false positives exploded in twilight zone

In contrast to 1990, when Sander and Schneider (1991)
compiled their data, now protein pairs of dissimilar structure
were detected above the 30% cut-off (Figure 2A). And these
were not exceptions: at a level of 32% (HSSP-curve " 7%,
i.e. n ! 7 in eqn 1), the number of false positives already
equalled that of homologues. For the original HSSP-curve the
number of false positives was 20-fold higher than the number
of true pairs. The transition from 20 to 30% sequence identity
was highly non-linear for true, and false positives (logarithmic
scales in Figure 2): the number of true pairs rose by a factor
of 5, that of false pairs by a factor of 200 (Figure 2B). Thus,
below the region of significant pairwise sequence identity
(#34%) the population of false positives exploded. However,
also the vast majority of homologues had less than 30%
sequence identity.

Functional shape of original HSSP-curve adequate

The functional shape of the original HSSP-curve proved to be
basically correct (Figure 3, grey line with triangles). However,
the larger data set analysed here revealed several problems in
detail (Figure 3B). (i) A threshold of 25% was not reasonable
for an alignment length below 150–200 residues. (ii) Above
an alignment length of about 100 residues, the derivative of
the curve separating true and false positives should be lower
than at lengths below 80. I attempted to solve these problems
by defining a new curve for separating true and false positives
(eqn 2; Figure 3, grey line with dotted circles). The particular
functional form guaranteed an approximate saturation for long
alignments. For alignments shorter than 11 residues eqn 2
yielded values above 100%. However, this was acceptable as
100% identity for fragments of 10–11 residues does not imply
structural similarity (Cerpa et al., 1996; Minor and Kim, 1996;
Muñoz and Serrano, 1996). The new curve saturated around
20% for alignments over more than 250 residues.

Defining a curve for pairwise sequence similarity

Compiling sequence identity neglects the physico-chemical
nature of amino acids. Any multiple sequence alignment
illustrates that, for example, the feature hydrophobicity is more

Rost. Protein Eng (1999) vol. 12 (2) pp. 85-94
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Homologousproteinshaveregionswhichretainthesamegen-
eralfoldandregionswherethefoldsdiffer.Forpairsof
distantlyrelatedproteins(residueidentity--20%),theregions
withthesamefoldmaycompriselessthanhalfofeachmol-
ecule.Theregionswiththesamegeneralfolddifferinstruc-
turebyamountsthatincreaseastheaminoacidsequences
diverge.Therootmeansquaredeviationinthepositionsof
themainchainatoms,A,isrelatedtothefractionofmutated
residues,H,bytheexpression:A(A)=0.40el87H.
Keywords:evolution/proteinhomology/modelbuilding

Introduction
Thecomparativeanalysisofthestructuresofrelatedproteinscan
revealtheeffectsoftheaminoacidsequencechangesthathave
occurredduringevolution(Perutzetal.,1965).Previouswork
onindividualproteinfamilieshasshownthatmutations,insertions
anddeletionsproducechangesinthree-dimensionalstructure
(AlmassyandDickerson,1978;LeskandChothia,1980,1982,
1986;Greer,1981;ChothiaandLesk,1982,1984;Readetal.,
1984).Herewereportasystematiccomparisonofstructuresfrom
eightdifferentproteinfamilies.Thisshowsthattheextentofthe
structuralchangesisdirectlyrelatedtotheextentofthesequence
changes.

Intheworkreportedhereweusedtheatomiccoordinatesof
25proteins(TableI).Allthesestructureshavebeendetermined
athighresolution(1.4-2.OA)andrefined.Theerrorsintheir
co-ordinatesare0.15-0.20A(seereferencesgiveninTableI).
The25proteinsrepresenteightdifferentproteinfamiliesandpro-
vide32pairsofhomologousstructures.

MethodsandResults
Theconservedstructuralcoresandthevariableregionsofhom-
ologousproteins
Thestructuresofhomologousproteinscanbedividedintothose
regionsinwhichthegeneralfoldofthepolypeptidechainsis
verysimilarandthosewhereitisquitedifferent.Incomparing
proteinstructuresitisusefultoseparatethepartsthathavesimilar
foldsfromthosewherethefoldsdiffer.Wedidthisusingthe
followingquantitativeprocedure:(i)themain-chainatomsof
majorelementsofsecondarystructure-helicesortwoadjacent
strandsof3-sheet-wereindividuallysuperposed;and(ii)each
superpositionwasthenextendedtoincludeadditionalatomsat
bothends.Theextensionwascontinuedaslongasthedeviations
inthepositionsoftheatomsinthelastresidueincludedwere
nogreaterthan3A.Thisproceduredefinedthesegmentsthat

©IRLPressLimited,Oxford,England
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residues,H,bytheexpression:A(A)=0.40el87H.
Keywords:evolution/proteinhomology/modelbuilding

Introduction
Thecomparativeanalysisofthestructuresofrelatedproteinscan
revealtheeffectsoftheaminoacidsequencechangesthathave
occurredduringevolution(Perutzetal.,1965).Previouswork
onindividualproteinfamilieshasshownthatmutations,insertions
anddeletionsproducechangesinthree-dimensionalstructure
(AlmassyandDickerson,1978;LeskandChothia,1980,1982,
1986;Greer,1981;ChothiaandLesk,1982,1984;Readetal.,
1984).Herewereportasystematiccomparisonofstructuresfrom
eightdifferentproteinfamilies.Thisshowsthattheextentofthe
structuralchangesisdirectlyrelatedtotheextentofthesequence
changes.

Intheworkreportedhereweusedtheatomiccoordinatesof
25proteins(TableI).Allthesestructureshavebeendetermined
athighresolution(1.4-2.OA)andrefined.Theerrorsintheir
co-ordinatesare0.15-0.20A(seereferencesgiveninTableI).
The25proteinsrepresenteightdifferentproteinfamiliesandpro-
vide32pairsofhomologousstructures.

MethodsandResults
Theconservedstructuralcoresandthevariableregionsofhom-
ologousproteins
Thestructuresofhomologousproteinscanbedividedintothose
regionsinwhichthegeneralfoldofthepolypeptidechainsis
verysimilarandthosewhereitisquitedifferent.Incomparing
proteinstructuresitisusefultoseparatethepartsthathavesimilar
foldsfromthosewherethefoldsdiffer.Wedidthisusingthe
followingquantitativeprocedure:(i)themain-chainatomsof
majorelementsofsecondarystructure-helicesortwoadjacent
strandsof3-sheet-wereindividuallysuperposed;and(ii)each
superpositionwasthenextendedtoincludeadditionalatomsat
bothends.Theextensionwascontinuedaslongasthedeviations
inthepositionsoftheatomsinthelastresidueincludedwere
nogreaterthan3A.Thisproceduredefinedthesegmentsthat
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Fig.1.Sizeofcommoncoresasafunctionofproteinhomology.Iftwo
proteinsoflengthn1andn2havecresiduesinthecommoncore,the
fractionsofeachsequenceinthecommoncorearec/n1andc/n2.Weplot
thesevalues,connectedbyabar,-againsttheresidueidentityofthecore
(seeTableII).
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Fig.2.Therelationofresidueidentityandther.m.s.deviationofthe
backboneatomsofthecommoncoresof32pairsofhomologousproteins
(seeTableI).
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Twilight zone of protein sequence alignments

Fig. 4. Pairwise sequence similarity versus alignment length. (A) Correctly
detected structural homologues; (B) false positives. Open circles, original
HSSP-curve (Sander and Schneider, 1991) (eqn 1); filled triangles, new
curve proposed here (eqn 3).

where L gave the number of residues aligned between two
proteins; pS defined cut-off for the percentage of residue
similarity over the L aligned residues; and n described the
distance in percentage points from the curve (n ! 0 plotted
in Figure 4).

Sequence-space-hopping

Suppose proteins A0 and B0 were less than 25% identical;
family A is given by: {A0, A1,..., An} (such that all proteins in
the family A are more than 25% identical to A0); analogously
family B is given by: {B0, B1,..., Bm}. Although A0 and B0
differed by more than 75%, it may well be true that both were
aligned to the same sequences, i.e. that for some i and j: Ai !
Bj. If this is the case, ‘sequence-space-hopping’ refers to
simply extending both families A and B to become: {A0, A1,...,
An, B0, B1,..., Bm} (Figure 1). Technically, I described this
situation by compiling a simple matrix H(A,B) that contained
the number of overlapping proteins (i.e. those contained both
in family A and B) between all proteins in the test set (792
chains) and all proteins in the search set (5646 chains). For
example, H(A,B) ! 5 implied that test protein A and search
protein B had five identical proteins in their family alignments.

89

The family alignments were taken from the HSSP database
(Schneider et al., 1997) with a cut-off at: HSSP-curve " 10%
(n ! 10 in eqn 1), i.e. for alignments longer than 80 residues,
35% pairwise sequence identity was required. All protein pairs
(A,B) in the twilight zone were investigated for which H(A,B)
was larger than zero. Note, the concept of sequence-space-
hopping explored here is being used in everyday sequence
analysis. The novel idea introduced by others (Abagyan and
Batalov, 1997; Neuwald et al., 1997; Park et al., 1997) was
NOT to use sequence-space-hopping, but to use it for reducing
false positives in large-scale sequence analysis. Here, I simply
applied this concept was applied to the large data set explored,
and investigated its usefulness in dependence on various
parameters.

More-similar-than-identical rule

A simple rule-of-thumb was explored: accept hits only if the
level of sequence similarity was higher than the level of
sequence identity. This rule may appear to be non-selective in
that similarity would always be larger than identity; however,
for the given definition of similarity (using the McLachlan
metric), this was not the case.

Results

Number of false positives exploded in twilight zone

In contrast to 1990, when Sander and Schneider (1991)
compiled their data, now protein pairs of dissimilar structure
were detected above the 30% cut-off (Figure 2A). And these
were not exceptions: at a level of 32% (HSSP-curve " 7%,
i.e. n ! 7 in eqn 1), the number of false positives already
equalled that of homologues. For the original HSSP-curve the
number of false positives was 20-fold higher than the number
of true pairs. The transition from 20 to 30% sequence identity
was highly non-linear for true, and false positives (logarithmic
scales in Figure 2): the number of true pairs rose by a factor
of 5, that of false pairs by a factor of 200 (Figure 2B). Thus,
below the region of significant pairwise sequence identity
(#34%) the population of false positives exploded. However,
also the vast majority of homologues had less than 30%
sequence identity.

Functional shape of original HSSP-curve adequate

The functional shape of the original HSSP-curve proved to be
basically correct (Figure 3, grey line with triangles). However,
the larger data set analysed here revealed several problems in
detail (Figure 3B). (i) A threshold of 25% was not reasonable
for an alignment length below 150–200 residues. (ii) Above
an alignment length of about 100 residues, the derivative of
the curve separating true and false positives should be lower
than at lengths below 80. I attempted to solve these problems
by defining a new curve for separating true and false positives
(eqn 2; Figure 3, grey line with dotted circles). The particular
functional form guaranteed an approximate saturation for long
alignments. For alignments shorter than 11 residues eqn 2
yielded values above 100%. However, this was acceptable as
100% identity for fragments of 10–11 residues does not imply
structural similarity (Cerpa et al., 1996; Minor and Kim, 1996;
Muñoz and Serrano, 1996). The new curve saturated around
20% for alignments over more than 250 residues.

Defining a curve for pairwise sequence similarity

Compiling sequence identity neglects the physico-chemical
nature of amino acids. Any multiple sequence alignment
illustrates that, for example, the feature hydrophobicity is more
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RNA structure alignment by a unit-vector approach
Emidio Capriotti and Marc A. Marti-Renom∗
Bioinformatics and Genomics Department, Structural Genomics Unit, Centro de Investigación Príncipe Felipe (CIPF),
Valencia, Spain

ABSTRACT
Motivation: The recent discovery of tiny RNA molecules such as
µRNAs and small interfering RNA are transforming the view of RNA as
a simple information transfer molecule. Similar to proteins, the native
three-dimensional structure of RNA determines its biological activity.
Therefore, classifying the current structural space is paramount for
functionally annotating RNA molecules. The increasing numbers
of RNA structures deposited in the PDB requires more accurate,
automatic and benchmarked methods for RNA structure comparison.
In this article, we introduce a new algorithm for RNA structure
alignment based on a unit-vector approach. The algorithm has been
implemented in the SARA program, which results in RNA structure
pairwise alignments and their statistical significance.
Results: The SARA program has been implemented to be of
general applicability even when no secondary structure can be
calculated from the RNA structures. A benchmark against the ARTS
program using a set of 1275 non-redundant pairwise structure
alignments results in ∼6% extra alignments with at least 50%
structurally superposed nucleotides and base pairs. A first attempt
to perform RNA automatic functional annotation based on structure
alignments indicates that SARA can correctly assign the deepest
SCOR classification to >60% of the query structures.
Availability: The SARA program is freely available through a World
Wide Web server http://sgu.bioinfo.cipf.es/services/SARA/
Contact: mmarti@cipf.es
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Recent discoveries of new RNA functions are changing our view of
RNA molecules and reinforcing the so-called ‘RNA world’ origin of
life (Bartel, 2004; Dorsett and Tuschl, 2004; Doudna, 2000; Staple
and Butcher, 2005). RNA is now known to play an important role in
biological functions such as enzymatic activity (Staple and Butcher,
2005), gene transcriptional regulation (Bartel, 2004; Dorsett and
Tuschl, 2004; Staple and Butcher, 2005) and protein biosynthesis
regulation (Doudna, 2000). Therefore, much attention is lately being
paid to the structural determination of RNA molecules. Such efforts
have increased the pace of deposition of RNA structures in the
Protein Data Bank (PDB) (Berman et al., 2002). Currently (January
2008), the PDB database stores more than 1300 RNA structures.
Such a wealth of data may allow, for first time, the analysis and
characterization of the RNA structural space, which will help to
characterize RNA function.

RNA folding is a hierarchical process by which base pairing
formation affects the final three-dimensional (3D) conformation
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of the RNA molecule (Tinoco and Bustamante, 1999). Hence,
algorithms for RNA secondary structure prediction have classically
been used for characterizing RNA structure and function. Although
more than two decades have past since the development of the
first algorithms for RNA secondary structure prediction (Nussinov
and Jacobson, 1980; Zuker and Sankoff, 1984; Zuker and Stiegler,
1981), there has been limited development in RNA tertiary structure
analysis and, in particular, in RNA structure comparison. Only
recently, the PRIMOS/AMIGOS (Duarte et al., 2003; Wadley
et al., 2007), FR3D (Sarver et al., 2008), ARTS (Dror et al.,
2005, 2006) and DIAL (Ferre et al., 2007) programs have been
developed for structurally comparing two RNA molecules. The
PRIMOS/AMIGOS programs search for structural similarities of
consecutive RNA fragments with five or more nucleotides by
comparing specific η and θ pseudo angles as well as the sugar
pucker phase. The FR3D program uses a base-centered approach
for conducting a geometric search of local and composite RNA
structures. The COMPADRES program, which implements the
PRIMOS algorithm, has been applied for searching local structural
motifs in known RNA structures (Wadley and Pyle, 2004). The
ARTS program, which represents RNA structures by a set of
contiguous four phosphate atoms or quadrats, detects similarities
between quadrats after a rigid superimposition of two RNA
structures followed by an optimization based on a bipartite graph
strategy. Finally, the DIAL program, which implements a scoring
function combining nucleotide, dihedral angles and base-paring
similarities, compares the two RNA structures using a dynamic
programming algorithm.

Although the PRIMOS/AMIGOS, ARTS and DIAL programs,
result in accurate RNA structure alignments, they have some
limitations: (i) the PRIMOS/AMIGOS program have limited
applicability to searching only for local motifs regardless of global
similarities between two structures, (ii) the DIAL method, in its
default version, only calculates an alignment score and requires
substantial computational time to return a statistical evaluation of
its significance and (iii) ARTS requires the existence of secondary
structure elements in both structures to compute the final alignment.
To overcome such limitations, we have developed a new RNA 3D
alignment method (SARA), which does not require the assignment
of base pairs from structure and provides a statistical assessment
of the significance of the resulting alignment. The SARA algorithm
uses a unit-vector approach inspired by the MAMMOTH program
for protein structure alignment (Ortiz et al., 2002). The SARA
program has been benchmarked for its alignment accuracy against
the ARTS program as well as for its use in RNA function prediction.
Its general applicability will allow an all-against-all comparison
of known RNA structures, which will help in characterizing the
relationship between sequence, structure and function of RNA
molecules.
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ABSTRACT

Recent interest in non-coding RNA transcripts
has resulted in a rapid increase of deposited RNA
structures in the Protein Data Bank. However, a
characterization and functional classification of the
RNA structure and function space have only been
partially addressed. Here, we introduce the SARA
program for pair-wise alignment of RNA structures
as a web server for structure-based RNA function
assignment. The SARA server relies on the SARA
program, which aligns two RNA structures based
on a unit-vector root-mean-square approach. The
likely accuracy of the SARA alignments is assessed
by three different P-values estimating the statistical
significance of the sequence, secondary structure
and tertiary structure identity scores, respectively.
Our benchmarks, which relied on a set of 419 RNA
structures with known SCOR structural class, indi-
cate that at a negative logarithm of mean P-value
higher or equal than 2.5, SARA can assign the cor-
rect or a similar SCOR class to 81.4% and 95.3% of
the benchmark set, respectively. The SARA server is
freely accessible via the World Wide Web at http://
sgu.bioinfo.cipf.es/services/SARA/.

INTRODUCTION

It is now known that RNA molecules are essential for a
wide range of biological processes (1–6), which is changing
the view of RNA as a simple vector of genetic information
and reinforcing the hypothesis on the original ‘RNA
world’ (7,8). Biosynthesis and transcription regulation
(1–3,5), enzymatic action (5) and chromosome replication
(4) are some of the functions that RNA molecules are now
known to perform. RNA structure determination, which
is accelerating its pace of deposition in the Nucleic Acid
Database (NDB) (9) and the Protein Data Bank (PDB)
(10), is thus becoming an essential and necessary tool
for RNA function annotation. Although there are not

standard rules to infer function, at least for proteins
(11–13), structure similarity is arguably one of the most
reliable methods for comparative function annotation
(14,15).

Several methods have already been developed for the
alignment of two or more protein 3D structures (16).
However, only few are available for RNA structure com-
parison (17–23). The PRIMOS and AMIGOS programs
identify RNA structure motifs and compare RNA struc-
tures by describing them as a set of pseudo angles from the
C4’ and P atom trace (18,20). Both programs are limited
to the comparison of RNA structures with the same
number of nucleotides and only a newer version of
AMIGOS can perform a comparison of a given structure
against a set of RNA structures. The ARTS program was
introduced as a general method for RNA structure align-
ment (17,24). ARTS describes RNA molecules with a set
of ‘quadrats’ composed by four phosphate atoms of two
consecutive base-pairs and uses a bipartite graph to find
the maximum number of aligned ‘quadrats’ between
two RNA structures. The DIAL program, developed to
compare RNA structures using a dynamic programming
algorithm (19), computes global, local and semi-global
alignments by taking into account sequence similarity,
dihedral angles and base-pair information from the two
aligned structures. DIAL can also return the Boltzmann
pair probabilities of the resulting alignments. However,
such computation would double the runtime, hence the
default in the DIAL server is not to calculate the pair
probabilities. More recently, the SARSA server was devel-
oped to align two or more RNA structures using a struc-
tural alphabet of 23 nucleotide conformations (22). Both,
the DIAL and SARSA servers were developed and bench-
marked for their ability detecting short RNA motifs in a
set of RNA structures. In contrast, the SARA program
(21), which implementation for function assignment of
RNA structures is here introduced, was recently devel-
oped to align two RNA structures based on a unit-
vector alignment strategy (25). Given its implementation,
an alignment by SARA shorter than 20 nt is likely to be
indistinguishable from random structure alignments.
The SARA program can be considered as an alternative
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