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Objective

TO UNDERSTAND THAT SNPs HAVE
EFFECTS THAT CAN BE PREDICTED
AND TO LEARN HOW-TO USE
AutoDock FOR DOCKING SMALL
MOLECULES IN THE SURFACE OF A
PROTEIN



Nomenclature

SNP: Single Nucleotide Polymorphism. A single change in the DNA sequence,
which may or may not result in a change in the protein sequence.

Ligand: Structure (usually a small molecule) that binds to the binding site.
Receptor: Structure (usually a protein) that contains the active binding site.

Binding site: Set of aminoacids (residues) that physically interact with the lingad
(usually within 6 Angstroms).
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Single Nucleotide Polymorphism

Single Nucleotide Polymorphism or SNP

is a DNA sequence variation occurring when a single nucleotide - A, T, C, or G - in
the genome differs between members of the species.

Usually one will want to refer to SNPs when the population frequency is = 1%
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SNPs occur at any position and can be
classified on the base of their locations.
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Coding SNPs can be subdivided into two S T rowasen
groups:
Synonymous: when single base substitutions do wron wrnon

not cause a change in the resultant amino acid

Non-synonymous: when single base
substitutions cause a change in the resultant
amino acid.
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SNPs and disease

Single nucleotide polymorphism are the most common type of genetic variations in
human accounting for about 90% of sequence differences (Collins et al., 1998).

Studying SNPs distribution in different human populations can lead to important
considerations about the history of our species (Barbujani and Goldstein, 2004;
Edmonds et al., 2004).

SNPs can also be responsible of genetic diseases (Ng and Henikoff, 2002; Bell, 2004).
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SNP databases
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Evolutionary information for SNP
analysis of p53 protein.

Arbiza et al. Selective pressures at a codon-level predict deleterious mutations in human disease genes.

J Mol Biol (2006) vol. 358 (5) pp. 1390-404
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Deletersous mutations affecting biological function of proteins are
constantly being repected by purifving selection from the gene pool. The
noTesynonymous /synonymous substitution rate ratio (w) is a measure of
selective pressumne on amino ackd replacement mutations for protein-coding
genes. Different mwethods have been developed in order to predict non
synonymows changes affecting gene function. However, none has
considersd  the estimation of selective constraints acting on protein
residues. Here, we have used codon-based maximum likelthood models
in order o estimate the selective pressures on the individual amino acid
residues of a welkknown model protein: p53. We demonstrate that the
number of residues under strong purifyving selection in p53 is much higher
than those that are strictly conserved during the evolution of the species. In
agreement with theoretical expectations, residues that have been noted to
be of stroactural relevance, or in direct association with DNA, were among
those showing the highest signals of purifying selection. Conversely, those
changing according to a neutral, or rearly neutral mode of evolution, were
obscrved to be irrelevant for protein function. Finally, using more than 40
human disease genes, we demonstrate that residues evolving under strong
selective pressures (w<01) are significantly assocated (p<0.01) with
human disease. We hypothesize that non-synonymous change on amino
ackds showing w<0.1 will most bkely affect protein function. The
application of this evolutionary prediction at a genomic scale will provide
an @ priori hypothesis of the phenotypic effect of non-synonymous coding
single nucleotide polymorphisms (SNPs) in the human genome

© 2006 Elsevier Lad. All rights reserved

Keywords: comparative genomics; deleterious mutations; human diseases;
purifying selection; codon-based models
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Natural selection &
human disease

SNPs can cause alterations of gene function by...

« Alterations at expression level

« Alternative splicing

« Alteration (or loss) of gene product function

Changes in the stability of the protein
Functionally important residues
Phylogenetic conservation
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Natural selection working at codon level

nsSNP’s functional prediction
JMB 2006; HM 2008, NatGen 2008
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Main Question

e Could an estimator of the selective pressures acting at codon level
(w) be used as a predictor of the phenotype effect of SNP’s ?

Site-specific models average dN/dS over

Detecting Positive & Negative Selection lineages but differentiate over sites

Bayes Empirical Bayes (BEB) analysis
Positively selected sites (*: P>95%; *+:. P>09%)

Pr({w>1) post mean +- SE for w
1M 0.007 0.156 +- 0.298
2 E 0.009 0.169 +- 0.353
3 E 0.009 D169 +- 0,353
4 P 0.125 0.893 +- 1.263
5 q 0.010 0.182 +- 0.370
6 S 0.015 0.212 +- 0.436
7D 0.010 0.180 +- 0.375
8 P 0.368 C2. 207+~ 2.473 Positive
95 0.007 0.160 +- 0.310
10 ¥ 0.139 0.969 +- 1.480
11 E 0.009 Ll Purifying
12 p 0.091 192 +- 1.043
13 p 0.014 0.208 +- 0,450
dN 14 L 0.013 0.200 +- 0.411
0N = — 15 § 0.009 0.178 +- 0.371
16 0 0.010 0.182 +- 0.370
as 17 E 0.011 0.186 +- 0.405



p53 evolutionary analysis

Many mutant forms are involved in different types of human cancer
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Figure 1. p53 mutations distri-
bution. Mutation frequencies col-
lected in the IARC TP53 RI10
database (18,145 non-synonymous
mutations) are plotted against
the protein domains. The DNA-
binding (p53DB) domain contains
six residues considered mutational
hotspots in cancer.

Table 1. Summary of p53 domains, mutations and w statistics according to M8 and SLR models

p53 alignment Mutations w statistics
Domains Codons Indels* Total M psh Model Min. Median Mean Max.
TA 1-60 38 96 1.6 MS 0.030 0334 0.379 1.747
SIER 0.000 0.269 0.369 1.865
PR 61-97 22 151 4.2 MS 0.029 0314 0.376 1.338
SLR 0.000 0307 0.376 1447
DB 100-300 5 17,389 §7.0 MS 0.027 0.039 0.116 1423
SLR 0.000 0.029 0.095 2018
™R 325-355 0 178 5.1 MS 0028 0.067 0.126 0456
SIR 0.000 0.068 0.103 0379
CO 361-393 11 18 1.6 MR 0.027 0216 0.255 0878
SLR 0.000 0.176 0.226 (1882

Mutations were deduced from the IARC TP53 database.

* Insertions/deletions.
¥ Mean number of mutations per site.




p53 evolutionary analysis
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Beyond p53...

Disease Proteins,

Immune, Cancer ~ 250 proteins SwissProt Database, ~3,000 proteins

Table 3. Evaluation of alternative tw.,..¢ values and
mutational frequencies in discase

Mammals Vertebrates 1.0 - '
Weut-off PAML SLR PAML SLR -
0.03 09748 0.0095 0.0504 0.0061 :
0.05 0.0114 0.0075 0.0026 0.0008 2
0.10 3010 0.0076 0.0016 0.0009 0.8 - :
0.12 0.0007 0.0077 0.0010 0.0023 |
0.15 0.0025 0.0078 ;0012 0.0018 '
020 0.0715 0.0074 0.00%9 0.0019 :
025 0.1938 0.0074 0.0044 0.0043 0.6 - :
0.30 0.0188 0.0076 0.0035 0.0065 ;
040 0.0486 0.0101 0.0176 0.0254 3
0.50 0.1849 0.0223 0.0534 0.1M10
G 43 43 43 13 0.4 -
R 24,375 24,37 17,424 17,435
ME 8970 8970 S081 8083
One-tail K=S tests reject the null hypothesis, which considers that 0.2 -
the frequency of mutations are not differentially distributed X
above and bellow the given w ... The alternative hypothesis, PR 5 Sadmiere e )
which considers that disease-associated mutations are preferen- —
tially associated with values below the wquof is accepted with 0.0 -
the highest confidence using twpanm. estimations on mammal ’ . .

(Weuronr=0.10) and vertebrate (v  .ox=0.12) datasets. The K-S & :
test on SLR estimates reject the null hypothesis for all values of Disease Polymorphlsm
Wew-off €valuated. This is the consequence of the undesirable
behaviour of the SLR method, which drops low values of w to 0
('sw the text and Figure 6 for explanation).
\u mber of genes evaluated.
> Number of residues evaluated.
“ Number of mutations evaluated.




Evolution and disease

Capiriotti et al. Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans.
Hum Mutat (2008) vol. 29 (1) pp. 198-204

HUMAN MUTATION 29(1), 198-204, 2008

METHODS

Use of Estimated Evolutionary Strength
at the Codon Level Improves the Prediction

. . . .
of Disease-Related Protein Mutations in Humans
."

ORUM
Emidio Capriotti,1 Leonardo Arbiza,? Rita Casadio,* Joaquin Dopazo,) Hernan Dopazo,Z * —
and Marc A. Marti-Renom'* (. f", 3 ,\\ _r".
!Structural Genomics Unit, Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain; “Pharmacogenomics and Comparative Genomics
Unit, Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain; *Functional Genomics Unit, Bioinformatics Department, Centro de
Investigacidn Principe Felipe (CIPF), Vlencia, Spain; *Laboratory of Biocomputing, CIRB/Department of Biology, University of Bologna,
Bologna, Italy

Communicated by David N. Cooper

Predicting the functional impact of protein variation is one of the most challengi bl in bioi

A rapidly growing number of genome-scale studies provide large amounts of experimental data, allowing the
li of rigorous statisti for predicting whether a given single point mutation has an impact

on human health. Up until now, existing methods have limited their source data to either protein or gene

information. Novel in this work, we take advantage of both and focus on protein evolutionary information by

using estimated selective pressures at the codon level. Here we introduce a new method (SeqProfCod) to predict

the likelihood that a given protein variant is associated with human disease or not. Our method relies on a

support vector machine (SVM) classifier trained using three sources of information: protein sequence, multiple

protein li and the estimation of selective pressure at the codon level. SeqProfCod has been

benchmarked with a large dataset of 8,987 single point mutations from 1,434 human proteins from

SWISS-PROT. It achieves 82% overall accuracy and a correlation coefficient of 0.59, indicating that the

estimation of the selective pressure helps in predicting the functional impact of smgle-pmnt mutauons

Moreover, this study demonstrates the synergic effect of bining two sources of i for

the functional effects of protein variants: protein file-based infc ion and the

estimation of the selective pressures at the codon level. The results of large-scale application of Squ’rofCod

over all annotated point mutations in SWISS-PROT ilable for download at h bioinfo.cipf.es,

services/Omidios/; last accessed: 24 August 2007), could be used to support clinical studies. Hum Mutat

29(1), 198-204, 2008.  © 2007 Wiley-Liss, Inc.

INTRODUCTION

Studies characterizing the relationship between protein variants
and human disease have grown rapidly over the past years, in part
due to genomic-scale sequencing efforts [Krawczak et al., 2000;
Sherry et al., 2001; Stenson et al., 2003]. For example, it is now
known that single nucleotide polymorphisms (SNPs) constitute
about the 90% of human protein sequence variability [Collins
et al., 1998]. Synonymous and nonsynonymous SNPs (nsSNPs)
may occur every ~350bp in coding regions [Cargill et al., 1999]
and about 50% of nsSNPs may be associated 1o pathologies of

1

KeY wOrDS: SNP; nsSNP; disease; sequence profile; evolutionary strength; bioinformatics
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genetic origin. Therefore, predicting which nsSNPs are res
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for human disease is one of the major challenges in Moinformatics

Recently, different methods have been developed for predicting
the effect of single point mutations in humans [Arbiza et al., 2006;
Bao and Cui, 2005; Bao et al., 2005; Capriotti et al., 2006; Chan
et al, 2007; Karchin et al, 2005a; Ng and Henikoff, 2003;
Ramensky et al., 2002; Santibanez Koref et al., 2003; Thomas
et al., 2003b; Yue and Moult, 2006]. In spite of the effort, however,
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Sequence and evolutive -
based predictors

Mutation C->W Sequence Environment Profile Codon
ACDEFGHIKLMNPQRSTVWY ACDEFGHIKLMNPQRSTVWY MR AS @ dS dN
06000000000000000000 0000000000000000000000000

RBF Kernel
‘ Output ‘ O(i) where i = disease or neutral polymorphism

SEQ: Mutation+ Sequence Environment
SEQPROF: Mutation+ Sequence Environment + Profile
SEQCOD Mutation+ Sequence Environment + Codon
OMIDIOS: Mutation+ Sequence Environment + Profile + Codon

Profile: MR and AS sequence profile information
Codon: omega, dS,dN: selective pressure at codon level, synonymous and
non-synonymous rate at branch level.
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Classification results

Mutation Disease Neutral Proteins
Single point mutation with
A ‘ reported effect 21,185 12,944 8,241 3,587
SwIS$r0t Single point mutation with
e reported effect and profile 8,718 3,852 4,866 2,538

SeqCod and SegProf methods reach the same level of accuracy of about 79%
and when the two different types of evolutive information are used the resulting
predictor Omidios overcomes the others showing an overall accuracy of 82%

Q2 P[D] Q[D] PIN] Q[N] C
Seq 73 86 72 54 74 0.43
SeqCod 79 87 82 64 74 0.53
SeqProf 79 88 81 63 75 0.54
Omidios 82 89 84 68 76 0.59

D = Disease related N = Neutral



True Positive Rate

Omidios method

Omidios has higher accuracy than the previous two methods increasing the
accuracy up to 82% and the correlation coefficient to 0.59.

Q2 P[D] Q[D] PI[N] QI[N] C
Omidios 82 88 84 68 /6 0.59
1.0 g - Seq 1.0 —
’/_‘.} s .
- SeqProf ‘
0.8 ¢/ — == SeqProfCod 0.8 —
/,’ o
‘ 0.7 -
4 o
06 /[ § 0.6 4,
s
044 1 0.4 —
]
0.2 ( 0.2
r Area Omidios = 0.88 0.1
001 T T T T o l '
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4

False Positive Rate

Q2: Overall Accuracy C: Correlation Coefficient DB: Fraction of database that are predicted with a reliability > the given threshold

18
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Comparison

Omidios results in higher accuracy and correlation than the other available methods
covering the 100% of the dataset (see column %PM).

Omidios results in higher accuracy with respect to SIFT and although the quality of Omidios
is comparable to PANTHER, when our prediction are selected by Rl index the accuracy of
our method is higher than PANTHER.

Q2 P[D] QD] P[N] QIN] C PM

Omidios 82 89 84 68 76 59 100
SIFT 71 84 72 51 69 38 97
PANTHER 74 87 75 53 72 43 83
Q2 P[D] Q[D] P[N] QIN] C PM

Omidios 74 65 79 83 72 48 100
SIFT 71 63 70 78 72 42 96
PANTHER 77 73 71 79 81 52 77

19



Omidios server

http://sgu.bioinfo.cipf.es/services/Omidios

566 The Omidios server
- ] » B ¢ i+ o # cwhup://sgu.bioinfo.cipf.es/services/Omidios/ O ~Q- JMBDopazo ©
ﬁ
[SCU - HOME
Daal
Eva-CM
Omidios
. SARA
n TDIKernel
Omidios (a.k.a SeqProfCod) @
SWISS -PROT id:
( submit )
Example: AQPZ_HUMAN
HELP:
PLEASE NOTE. Our servers have been optimized for Firefox and Safari, If you are using
Internet Explorer, the CSS may not be properly rendered.,
To use Omidios you need 10
Enter a SWISS-PROT id of the sequence of interest
INFO:
The Omidios server s designed to take a query SWISS-PROT id and search for
all annotated and predicted protein variants (nsSNP) in our database.
The whole set of predictions is available for downlcading
MySQL dump format
- Tab separated format.
Individual training and testing datasets for SeqProfCod are also available for downloading
« SP-DecDS dataset
SP-DecDb dataset N
e
v
4
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Structural analysis of missense mutations
in human BRCA1 BRCT domains

Mirkovic et al. Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition.
Cancer Res (2004) vol. 64 (11) pp. 3790-7

[CANCER RESEARCH 64, 37903797, June 1, 2004]

Structure-Based Assessment of Missense Mutations in Human BRCA1: Implications

for Breast and Ovarian Cancer Predisposition

Nebojsa Mirkovic,! Marc A. Marti-Renom,? Barbara L. Weber,® Andrej Sali,” and

varo N. A. Monteiro*®

"Laboratory of Molecular Biophysics, Pels Family Center for Biochemistry and Siructural Biology, Rockefeller University, New York, New. York; *Departments of
ical Sciences and Pha Chemistry, and California Institute for Quunnmnw Biomedical Rmmrch University of Cuhfomm at San Francisco, San

Framm.o California; Abramson Family Cancer Research Institute, University

; *Strang Cancer Prevention Center, New York, New

York: and *Department of Cell and Developmental Biology, Weill Medical Coliege of Cornell University, New York, New York

ABSTRACT

The BRCAI gene from individuals at risk of breast and ovarian cancers
can be screened for the presence of mutations. However, the cancer
association of most alleles carrying missense mutations is unknown, thus
creating significant problems for genetic counseling. To increase our
ability to identify cancer-associated mutations in BRCAI, we set out to use
the principles of protein three-dimensional structure as well as the corre-
lation between the cancer-associated mutations and those that abolish
transcriptional activation. Thirty-one of 37 missense mutations of known
impact on the transcriptional activation function of BRCA1 are readily
rationalized in structural terms. Loss-of-function mutations involve non-
conservative changes in the core of the BRCA1 C-terminus (BRCT) fold
or are localized in a groove that presumably forms a binding site involved
in the transcriptional activation by BRCA1; mutations that do not abolish
transcriptional activation are either conservative changes in the core or
are on the surface outside of the putative binding site. Next, structure-
based rules for predicting i of a given mi
mutation were applied to 57 germ-line BRCA1 variants of unknown
cancer association. Such a structure-based approach may be helpful in an
integrated effort to identify mutations that predispose individuals to
cancer.

INTRODUCTION

Many germ-line mutations in the human BRCAI gene are associ-
ated with inherited breast and ovarian cancers (1, 2). This information
has allowed clinicians and genetic counselors to identify individuals at
high risk for developing cancer. However, the disease association of
over 350 missense mutations remains unclear, primarily because their
relatively low frequency and ethnic specificity limit the usefulness of
the population-based statistical approaches to identifying cancer-caus-
ing mutations. To address this problem, we use here the three-
dimensional structure of the human BRCA1 BRCT domains to assess
the transcriptional activation functions of BRCA1 mutants. Our study
is made possible by the recently determined sequences (3—6) and
three-dimensional structures of the BRCA1 homologs (7, 8). In addi-
tion, we benefited from prior studies that attempted to rationalize and
predict functional effects of mutations in various proteins (9-12),
including those of BRCAT1 (13, 14).

BRCAL is a nuclear protein that activates transcription and facili-
tates DNA damage repair (15, 16). The tandem BRCT domains at the
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COOH-terminus of BRCA1 are involved in several of its functions,
including modulation of the activity of several transcription factors
(15), binding to the RNA polymerase II holoenzyme (17), and acti-
vating transcription of a reporter gene when fused to a heterologous
DNA-binding domain (18, 19). Importantly, cancer-associated muta-
tions in the BRCT domains, but not benign polymorphisms, inactivate
transcriptional activation and binding to RNA polymerase IT (18-21).
These observations suggest that abolishing the transcriptional activa-
tion function of BRCAI leads to tumor development and provides a
genetic framework for characterization of BRCA1 BRCT variants.

MATERIALS AND METHODS

The multiple sequence alignment (MSA) of orthologous BRCA1 BRCT
domains from seven species, including Homo sapiens (GenBank accession
number U14680), Pan troglodytes (AF207822), Mus musculus (U68174),
Rattus norvegicus (AF036760), Gallus gallus (AF355273), Canis familiaris
(U50709), and Xenopus laevis (AF416868), was obtained by using program
ClustalW (22) and contains only one gapped position (Supplementary Fig. 1).
According to PSI-BLAST (23), the latter six sequences are the only sequences
in the nonredundant protein sequence database at National Center for Biotech-
nology Information that have between 30% and 90% sequence identity to the
human BRCA1 BRCT domains (residues 1649-1859).

The multiple structure-based alignment of the native structures of the
BRCT-like domains was obtained by the SALIGN command in MODELLER
(Supplementary Fig. 2). It included the experimentally determined structures
of the two human BRCA1 BRCT domains (Protein Data Bank code 1JNX;
Refs. 8, 24), rat BRCA1 BRCT domains (1LOB; Ref. 7), human p53-binding
protein (1KZY: Ref. 7), human DNA-ligase IIla (1IMO; Ref. 25), and human
XRCC1 protein (ICDZ; Ref. 13). Structure variability was defined by the
root-mean-square deviation among the superposed Ca positions, as calculated
by the COMPARE command of MODELLER. The purpose of these calcula-
tions was to gain insight into the variability of surface-exposed residues (left
panel in Fig. 2). In conjunction with observed mutation clustering, these data
may point to putative functional site(s) on the surface of BRCT repeats.

Comparative protein structure modeling by satisfaction of spatial restraints,
implemented in the program MODELLER-6 (26), was used to produce a
three-dimensional model for each of the 94 mutants. The crystallographic
structure of the human wild-type BRCA1 BRCT domains was used as the
template for modeling (8). The four residues missing in the crystallographic
structure (1694 and 1817-1819) were modeled de novo (27). All of the models
are available in the BRCA1 model set deposited in our ModBase database of
comparative protein structure models (28).°

For the native structure of the human BRCT tandem repeat and each of the
94 mutant models, a number of sequence and structure features were calcu-
lated. These features were used in the classification tree in Fig. 3 (values for
all 94 i are given in Tables 1 and 2).

Buriedness. Accessible surface area of an amino acid residue was calcu-
lated by the program DSSP (29) and normalized by the maximum accessible
surface area for the corresponding amino acid residue type. A residue was

18 U.S.C. Section 1734 solely to indicate this fact.

Note: The authors declare that they have no competing financial interests. Supple-
mental data for this article are available at Cancer Research Online (http:
cancerres@aacrjournals.org).
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Research Institute, MRC 3 West, 12902 Magnolia Drive, Tampa, FL 33612. Phone:
(813) 745-6321; Fax: (813) 903-6847; E-mail: monteian@moffitt.usf edu.

exposed if its accessible surface area was larger than 40A% and if
its relative accessible surface area was larger than 9% and buried otherwise. A
mutation of a more exposed residue is less likely to change the structure and
therefore its function.

© http://salilab.org/modbase.
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Human BRCA1 and its two BRCT domains
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Missense mutations in BRCT domains by function
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Putative binding site on BRCAT1
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and accepted for publication on March 2004.
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Supervised learning approach
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Functional Impact of Missense Variants
in BRCA1 Predicted by Supervised Learning
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1 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Institute of Computational Medicine, Johns Hopkins
University, Baltimore, Maryland, United States of America, 3 Risk Assessment, Detection, and Intervention Program, H. Lee Moffitt Cancer Center and Research Institute,
Tampa, Florida, United States of America, 4 International Agency for Research on Cancer, Lyon, France, 5 Department of Pharmaceutical Chemistry, University of California
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Many individuals tested for inherited cancer susceptibility at the BRCAT gene locus are discovered to have variants of
unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1
protein. They can be biochemically assayed, but such i are time- and labor-i i
Computational methods that classify and suggest explanations for UCV impact on protein function can complement
functional tests. Here we describe a supervised learning approach to classification of BRCAT UCVs. Using a novel
combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1
C-terminal (BRCT) domain UCVs biochemically yed to transactivation function and to blindly classify 54
documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than
94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized
putative binding site. Clinicians may soon be able to use computational classifiers such as those described here to
better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied
to prioritize the growing ber of p ial loci and variants found by large-scale disease association
studies.
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Introduction

The BRCAI gene encodes a large multifunction protein
involved in cell-cycle and centrosome control, transcriptional
regulation, and in the DNA damage response [1-3]. Inherited
mutations in this gene have been associated with an increased
lifetime risk of breast and ovarian cancer (6-8 times that of
the general population) [4]. There are several thousand
known deleterious BRCAI mutations that result in frame-
shifts andlor premature stop codons, producing a truncated
protein product [5]. In contrast, the functional impact of
most missense variants that result in a single amino acid
residue change in BRCA1 protein is not known. The Breast
Cancer Information Core database (http://research.nhgri.nih.-
govlbicl), a central repository of BRCAI and BRCA2 mutations
identified in genetic tests, currently contains 487 unique
missense BRCA variants (April 2006), of which only 17 have
sufficient geneticlepidemiological evidence to be classified as
deleterious (Clinically Important) and 33 as neutral or of little

protein function and bioinformatics analysis [6-8]. In the
future, physicians and genetic counselors may be able to rely
on all these sources of information about UCVs when
counseling their patients.

Previous bioinformatics analysis of BRCAI UCVs has
depended primarily on measures of evolutionary conserva-
tion in multiple sequence alignments of human BRCAI and
related proteins from other organisms [9-11]. Two groups
have attempted to include information about BRCA1 protein
structure. Williams et al. predicted the impact of 25 missense
variants in BRCA1's C-terminal BRCT domains by consider-
ing both conservation and location of variant amino acid
residues in an X-ray crystal structure [12]. Variants were
predicted deleterious if their properties were similar to
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clinical importance (Not Clinically Important). As genetic 28, 2006 (doi:10.1371/journal.pcbi.0030026.e0r). ﬂ ﬁ-sheet B buried
testing for inherited disease predispositions becomes more f r :

s for Hed ¢ precispositions . Copyright: © 2007 Karchin et al. This is an open-access article distributed under E exposed Correctly or incorrectly classified as deleterious
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variants and other UCVs will be increasingly important for
risk assessment.

Because most UCVs in BRCAT and BRCA2 occur at very low
population frequencies (<0.0001) [6], direct epidemiological
measures, such as familial cosegregation with discase, are
often not sufficiently powerful to identify the variants
associated with cancer predisposition. A promising approach
is to supplement epidemiological and clinical analysis of
UCVs with indirect approaches such as biochemical studies of

. PLoS Computational Biology | www.ploscompbiol.org

use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: Align-GVGD, Align Grantham Variation Grantham Deviation; AUC,
area under the ROC curve; BIC, breast information core database; BRCT, BRCA1 C-
terminal domains; BRCT-C, BRCT C-terminal domain; BRCT-N, BRCT N-terminal
domain; GD, Grantham Deviation; GV, Grantham Variation; ROC, receiver operating
characteristic; Rule-based decision tree, empirically derived rules encoded in a
decision tree; SIFT, Sorting Intolerant from Tolerant; UCV, variant of unknown
clinical significance
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Features

Feature Category

Feature Description

Structural

Physiochemical differences between wild-type and variant amino acid
residues

Evolutionary conservation of amino acid residues in protein orthologs

Solvent Accessiblity of wild-type amino acid residue (A?)

Solvent Accessibility of wild-type residue normalized by maximum exposed Sol-
vent Accessibility of that residue type in a GLY-X-GLY tripeptide, using values gi-
ven by Rose et al. [80]

Solvent Accessibility of variant residue

Normalized Solvent Accessibility of variant residue

Number of methyl(ene) groups within 6 A of the variant sidechain [81]

Number of unsatisfied spatial restraints in the MODELLER objective function after
in silico mutation and simulated annealing refinement of the variant®

® and ¥ backbone dihedral angles at the mutated position

Whether the mutation results in buried charge

Change in formal charge

Change in volume (A% [82]

Change in polarity [83]

Grantham difference [37]

Relative entropy estimated by amino acids in the variant’s alignment column [84]
Positional hidden Markov model conservation score based on the probabilities of
the wild-type, variant, and most probable amino acid residue in the variant’s
alignment column® [24]

Violated restraints suggest that the mutated sidechain introduced steric clashes or unusual geometries into the protein model. Examples of violated restraints include extreme values of
the Lennard-Jones 6-12 potential [85], bond angle potential, bond length potential, sidechain dihedral angle restraints, and nonbonded restraints. Two thresholds are used to identify

violated restraints yielding two features.

The probabilities are estimated by a hidden Markov model built with SAM-T2K and the w0.5 script [23].
PHC = log(|p(Wild-type) - p(Variant)|) 4+ log(p(Wild-type)) + log(P(Most Probable)) - log (p(Variant))
The features were computed for 618 TP53 missense variants, 36 BRCA1 BRCT missense variants biochemically characterized in our companion paper [14], and 54 BRCA1 BRCT UCVs found

in BIC.
doi:10.1371/journal.pcbi.0030026.t002
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Protein function from structure

ab-initio localization of binding sites

Rossi. Localization of binding sites in protein structures by optimization of a composite scoring function.
Protein Science (2006) vol. 15 (10) pp. 2366-2380
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Localization of binding sites in protein structures by
optimization of a composite scoring function

ANDREA ROSSI, MARC A. MARTI-RENOM, anpo ANDREJ SALI
Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, California Institute for Quantitative
Biomedical Research, University of California, San Francisco, California 94143-2552, USA

(ReceIvED March 28, 2006; FiNaL Revision July 10, 2006; Acceprep July 11, 2006)

Abstract

The rise in the number of functionally uncharacterized protein structures is increasing the demand
for structure-based methods for functional annotation. Here, we describe a method for predicting the
location of a binding site of a given type on a target protein structure. The method begins by
constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on
the protein surface. The scoring function is a weighted linear combination of the z-scores of various
properties of protein structure and sequence, including amino acid residue conservation, compactness,
protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set
of previously identified instances of the binding-site type on known protein structures. The scoring
function can easily incorporate different types of information useful in localization, thus increasing the
applicability and accuracy of the approach. To test the method, 1008 known protein structures were split
into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various
nucleotides, binding sites were correctly identified in 55%—-73% of the cases. The method is completely
automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics
setting.

Keywords: protein function annotation; small ligand binding-site localization

Many protein targets of structural biologists are no longer
chosen because of their function, but rather by their
location in the protein sequence-structure space (Burley
et al. 1999; Brenner 2000, 2001; Sali 2001; Vitkup et al.
2001; Chance et al. 2002; Goldsmith-Fischman and
Honig 2003). Therefore, the number of functionally
uncharacterized protein structures is growing. Of the
36,606 entries in the Protein Data Bank (PDB) (Kouranov
et al. 2006) as of February 23, 2006, 1407 structures were
deposited by structural genomics consortia, 985 (70%)

Reprint requests to: Andrea Rossi or Andrej Sali, Departments of

i ical Sciences and P ical Chemistry, California
Institute for Quantitative Biomedical Research, University of California,
San Francisco Byers Hall, Office 503B, 1700 4th Street, San Francisco, CA
941432552, USA; e-mail: ilab.org or ilab.org; fax:
(415) 514-4231.

Article published online ahead of print. Article and publication date
are at hitp://www.proteinscience.org/cgi/doi/10.1110/ps.062247506.

of which had an unknown function according to the
HEADER record of their PDB files. In contrast, only 174
(0.5%) of the 35,199 protein structures solved outside of
structural genomics had no functional annotations in their
PDB files.

To classify the functions of thousands of uncharacter-
ized protein structures that will become available over the
next few years and millions of comparative models based
on the known structures, automated structure-based func-
tional annotation is required (Wallace et al. 1996, 1997;
Kleywegt 1999; Thornton et al. 2000; Babbitt 2003;
Laskowski et al. 2003). In particular, we need to be able
to identify the locations and types of binding sites on
a given structure, because the binding sites define the
molecular function of a protein.

The most principled computational approach to pre-
dicting the molecular function is to dock a large library of
potential ligands against the surface of the protein. In

Protein Science (2006), 15:1-15. Published by Cold Spring Harbor Laboratory Press. Copyright © 2006 The Protein Society 1

32




For 20% protein structures function
IS unknown

Structural Traditional
Genomics* methods

Annotated** 654 28,342

Not

Annotated 506 (43.6%) 6,815 (19.4%)

Total

deposited 1,160 35,157

* annotated as STRUCTURAL GENOMICS in the header of the PDB file
**annotated with either CATH, SCOP, Pfam or GO terms in the MSD database
36,317 protein structures, as of August 8th, 2006
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Representation

Surface geometry

Sequence conservation

Structure conservation

Solvent accessibility

Electrostatics
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ADP
AMP

ANP
ATP
BOG
CIT
FAD
FMN
FUC
GAL
GDP
GLC
HEC
HEM
MAN
MES
NAD
NAG
NAP
NDP

Ligand fingerprints

Compactness

-1.266
-1.62

-1.007
-1.122
-2.067
-2.948
0.505
-1.132
-3.43
-3.186
-1.061
-2.813
-0.172
-0.651
-3.72
-3.049
-0.005
-3.419
-0.009
0.217

Conservation

-2.009
-1.962

-2.227
-2.156
-0.012
-1.58
-2.108
-1.98
0016
-0.538
-1.471
-1.247
-0.912
-1.571
0.131
-0.24
-1.852
-0.46
-1.898
-1.741

Charge density

0.447
0.341

0.176
0.228
0.552
0.563
0.366
0.382
-0.295
-0.234
0.409
-0.207
0.286
0.683
0.105
-0.338
0.156
-0.126
0.612
0.535

36

B-factor

-0.414
-0.381

-0.392
-0.274
-0.465
-0.527
-0.702
-0.387
-0.123
-0.068
-0.81
-0.399
-0.325
-0.51
-0.52
-0.479
-0.232
-0.154
-0.321
-0.312

Protrusion
coefficient

-1.521
-1.909

-1.706
-1.845
-0.356
-0.922
-1.735
-1.803
0.002
-0.906
-1.472
-1.247
-1.153
-1.797
-0.605
-0.714
-1.775
-0.341
-1.587
-1.463

Convexity score

-1.388
-1.944

-1.595
-1.768
-0.49
-0.838
-1.725
-1.886
0.132
-0.987
-1.423
-1.337
-1.27
-1.937
-0.509
-0.926
-1.804
-0.523
-1.656
-1.562

Hydrophobicity
-0.118
-0.518

-0.14

0.038
-0.781
-0.113
-0.75
-0.695
0.459
0.298
0.182
-0.089
-1.282
-1.47

0.405

0.296
-0.858
-0.078
-0.336
-0.498



Ligand fingerprints
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GAL




FAD
NAD
NAP
HEM
ANP
NDP

ATP
FMN
ADP
GDP
AMP
HEC

o
—

GAL
GLC
BOG
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MES
FUC
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Prediction accuracy

1 Minimized
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Protein function from structure

Comparative annotation. AnnoLite and AnnoLyze.

Marti-Renom et al. The AnnoLite and AnnoLyze programs for comparative annotation of protein structures.
BMC Bioinformatics (2007) vol. 8 (Suppl 4) pp. S4
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Abstract

Background: Advances in structural biology, including structural genomics, have resulted in a
rapid increase in the number of experimentally determined protein structures. However, about half
of the structures deposited by the structural genomics consortia have little or no information about
their biological function. Therefore, there is a need for tools for automatically and comprehensively
annotating the function of protein structures. We aim to provide such tools by applying
comparative protein structure annotation that relies on detectable relationships between protein
structures to transfer functional annotations. Here we introduce two programs, Annolite and
Annolyze, which use the structural alignments deposited in the DBAIi database.

Description: Annolite predicts the SCOP, CATH, EC, InterPro, PfamA, and GO terms with an
average sensitivity of ~90% and average precision of ~80%. AnnoLyze predicts ligand binding site
and domain interaction patches with an average sensitivity of ~70% and average precision of ~30%,
correctly localizing binding sites for small molecules in ~95% of its predictions.

Conclusion: The Annolite and Annolyze programs for comparative annotation of protein
structures can reliably and automatically annotate new protein structures. The programs are fully
accessible via the Internet as part of the DBAIi suite of tools at http://salilab.org/DBAIi/.

Background We are now faced with assigning, understanding, and
Genomic efforts are providing us with complete genetic ~ modifying the functions of proteins encoded by these
blueprints for hundreds of organisms, including humans. ~ genomes. This task is generally facilitated by protein 3D
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pages

DBAIli..o database

http://www.dbali.org

Structural Genomics

Download

Statistics

AnnolLite

ModClus from list

ModClus from chain

SALIGN

ModDom

R e e e e
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http://salilab.org/DBAli/
http://salilab.org/DBAli/

AnnolLyze

Panner binding Av, resu Hesdues n predicied Dinding S
sle conservaton (SZe propononal 10 the ocal consenvalon;
seq. d

19205051525354555657 5877787980
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Benchmark

Initial set-
LigBase~
Non-redundant set

Initial set-
mTBase
Non-redundant set

42

Number of chains

78,167
30,126
4,948 (8,846 ligands)

Number of chains

78,167
30,425
4,61 3 (11,641 partnerships)



DBAIi tools

Chain ID

Selection based on local
similarity
% Seq ld >20%
% Equivalent positions >75%

HTML output

Method

Similar chains in DBAIi

RMSD < 4A
% Seq |d >20%
% Equivalent positions >75%
p-value >4

AnnolLyze search [€————

PiBase protein

LigBase protein partners

ligands

Ligands from Interations from

) PiBase are
LigBase are
collected and
collected and ) .
L . interaction
binding sites
patches

annotated based
on the spatial
proximity to the
ligand

annotated based
on the spatial
proximity
between domains

43

Inherited ligands: 4
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AnnolLyze

Sensitivity .vs. Precision




Example (2azwA)
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Annolyze
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Docking of small molecules. Vina.

Marc A. Marti-Renom
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DISCLAIMER!

redit should go to Dr. Oleg Trott, Dr. Ruth Huey

http://autodock.scripps.edu

http://vina.scripps.edu
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and Dr. Garret M. Morris

Software News and Update
AutoDock Vina: Improving the Speed and Accuracy of
Docking with a New Scoring Function, Efficient
Optimization, and Multithreading

OLEG TROTT, ARTHUR J. OLSON
Department of Molecular Biology, The Scripps Research Institute, La Jolla, California

Received 3 March 2009; Accepted 21 April 2009
DOI 10.1002jcc.21334
Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina
achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously
developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions,
judging by our tests on the training set used in AutoDock 4 development. Further speed-up s achieved from paralleism,
by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the

results in a way transparent to the user.

© 2009 Wiley Periodicals, Inc.  J Comput Chem 00: 000-000, 2009

Key words: AutoDock: molecular docking: virtual screening:

function
Introduction

Molecular docking is a computational procedure that attempts to

i binding of more frequently.
of a macromolecule (receptor) and a small molecule (ligand) effi-
ciently, starting with their unbound structures, structures obtained
from MD simulations, or homology modeling, etc. The goal is to
predict the bound conformations and the binding affinity.

The prediction of binding of small molecules to proteins is of
particular practical importance because it is used to screen vir-
tual libraries of drug-like molecules to obtain leads for further
drug development. Docking can also be used to try to predict the

iputer-aided drug design: multithreading: scoring

canbe seen as making an increasing trade-off of
detail for computational speed*

Among the assumptions made by these approaches is the com-
mitment to a particular protonation state of and charge distribution
in the molecules that do not change between, for example, their
bound and unbound states. Additionally, docking generally assumes
much or all of the receptor rigid, the covalent lengths, and angles
constant, while considering a chosen set of covalent bonds freely
rotatable (referred to as active rotatable bonds here).

Importantly, although molecular dynamics directly deals with
energies (referred to as force fields in chemistry), docking is
ultimately interested in reproducing chemical potentials, which

bound conformation of known binders, when th i holo
structures are unavailable."

Oneisi in maximizi of
‘while minimizing the computer time they take, because the compu-
tational resources spent on docking are considerable. For example,
hundreds of thousands of computers are used for running docking
in FightAIDS@Home and similar projects.

Theory

In the spectrum of computational approaches to modeling receptor-
ligand binding,

&

. molecular dynamics with explicit solvent,

molecular dynamics and molecular mechanics with implicit
solvent, and

. molecular docking

4

o

p the free energy of
binding. It is a qualitatively different concept governed not only by
the minima in the energy profile but also by the shape of the profile
and the temperature.*>

Docking ing function, which can be
seen as an attempt to approximate the standard chemical potentials
of the system. When the superficially physics-based terms like the
6-12 van der Waals interactions and Coulomb energies are used
in the scoring function, they need to be significantly empirically
weighted, in part, to account for this difference between energies
and free energies

Correspondence to: A.J. Olson; e-mail: olson@scripps.edu
[¢ sponsor: NIH; number:

©2009 Wiley Periodicals, Inc.

O. Troftt, A. J. Olsdn, Journal of Computational Chemistry (2009)
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Summary

* INTRO

* DOCKING

« SEARCH METHODS
« EXAMPLE

* Vina 1.0 with ADT



What is docking?

Predicting the best ways two molecules interact.

< Obtain the 3D structures of the two molecules
< Locate the best binding site (Remember AnnoLyze?)
& Determine the best binding mode.




What is docking?

Predicting the best ways two molecules interact.

& We need to quantify or rank solutions
< We need a good scoring function for such ranking




What is docking?

Predicting the best ways two molecules interact.

& X-ray and NMR structures are just ONE of the possible solutions
<& There is a need for a search solution




BIOINFORMATICS

REPRESENTATION

SCORING
SAMPLING



REPRESENTATION

v A




SCORING

AutoDock Vina

AGbinding = AGvdW + AC;elec + AC;hbond + AGdesolv + AGtors
AG’(JCIW ”‘i 1|
12-6 Lennard-Jones potential | —— |
AGelec
Coulombic with Solmajer-dielectric - ;. #
AGypond e
12-10 Potential with Goodford Directionality £
AG’desolv
Stouten Pairwise Atomic Solvation Parameters
AG

tors

Number of rotatable bonds

http://vina.scripps.edu/manual.html


http://autodock.scripps.edu/resources/science/equations
http://autodock.scripps.edu/resources/science/equations

SAMPLING

AutoDock Vina

> Global search algorithms
& Simulated annealing (Goodsell et al. 1990)
& Distributed SA (Morris et al. 1996)
&Genetic Algorithm (Morris et al. 1998)

<Local search algorithms
&Solis & Wets (Morris et al. 1998)

<Hybrid global-local search
<Lamarckian GA (Morris et al. 1998)



PROBLEM!

Very CPU time consuming...

Dihidrofolate reductase with a metotrexate (4dfr.pdb)

N=T360/i

N: number of conformations
I: number of rotable bonds
[: incremental degrees
Metotrexato
10 rofable bonds
30° increments (discrete)
10'? plausible conformations!



SOLUTION

Use of grid maps!

<& Saves lots of time (compared to classical MM/MD)
< Need to map each atom to a grid point
< Limits the search space!



AutoGrid Vina

Use of grid maps!

& Center of grid * L t=e g
¢ center of ligand h
& center of receptor
¢ a selected atom or coordinate

¢ Box dimension *

¢ Grid resolution (spacing)
¢ default 0.375 Angstroms

¢ Number of grid points (dimension)
& use ONLY even numbers

& MAKE SURE ALL LIGAND IS INSIDE GRID AND CAN MOVE!

With VINA much simplified (*)




Search algorithms

Simulated Annealing

Ligand starts at initial state (random or user-
defined)

The temperature of the system is reduced with
time and the moves of the atoms are accepted
depending on its energy compared to previous
Y energy (with a probability proportional to the
i temperature!)

fx)| [Fameme

Cost| ==

Solution X =il

Repeat until reaching final solution.



Search algorithms
Genetic Algorithm

Use of a Genetic Algorithm as a sampling method

e Each conformation is described as a set of rotational
angles.

e 64 possible angles are allowed to each of the bond in OH
the ligand.

e Each plausible dihedral angle is codified in a set of
binary bits (26=64)

e Each conformation is codified by a so called
chromosome with 4 x 6 bits (0 or 1)

111010.010110.001011.010010
(I)] (1)2 H

D= 1x25+ 1x2%+ 1x23 + 0x2? + 1x2' + 0x20 = 58°



Search algorithms
Genetic Algorithm

Population (ie, set of chromosomes or configurations)

<:> 0 011010.010110.011010.010111

111010.010110.001011.010010

@)
HO 001010.010101.000101.010001
NH; 101001.101110.101010.001000
001010.101000.011101.001011
Q on Gene

«—— Chromosome




Search algorithms
Genetic Algorithm

Genetic operators...

HoN OH

) Oﬁ 011010.010110.011010.010111

Single
mutation

\4

HPOMOH 011010.011110.011110.010111

HoN O



Search algorithms
Genetic Algorithm

Genetic operators...

H\
O%O
H,N  OH
@ OH
/
H
H,N O
H\
OA@MOH
HoN O
O—(: :>—\I\r O
/
H
Ho OH

001010.010101.000101.010001
011010.010110.011010.010111

Recombination

001010.010101.011010.010111
011010.010110. 000101.010001



Search algorithms
Genetic Algorithm

Genetic operators...

011010.010110.011010.010111 . . 111110.010010.011110.010101
111010.010110.001011.010010  Migration  101010.110110.011011.011010
001010.010101.000101.010001 » 001010.010101.000101.010001
101001.101110.101010.001000 101101.101010.101011.001100

001010.101000.011101.001011 011010.100000.011001.101011



Search algorithms

Default parameters in AutoDock Vina

Simulated annealing

< Initial temperature
S rtd = 61600 K

& Temperature reduction factor
S rtrf = 0.95 K/cycle

<& Termination criteria
<& accepted moves (accs = 25,000)
< rejected moves (rejs = 25,000)
<& annealing cycles (cycles = 50)

Genetic algorithm

< Population size
& ga pop_size = 300

& Crossover rate
& ga _crossover_rate = 0.8

< Mutation rate
¢ ga mutation rate = 0.02

<& Solis and Wets local search (LGA only)
& sw_max_its = 300

<& Termination criteria
¢ ga _num_evals = 25,000 (short)
¢ ga _num_evals = 250,000 (medium)
¢ ga _num_evals = 2,500,000 (large)
¢ ga _num_generations = 27,000



AutoDock Example

Discovery of a novel binding trench in HIV Integrase

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81
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Product News

Research &
Development News

Corporate News

Flnancial News FDA Approves ISENTRESS™ (raltegravir) Tablets, First-in- ABOUT ENTRESS
Corporate Responsibility  Class Oral HIV-1 Integrase Inhibitor ) Fut Pragcriting Information
A Patent Product Informaton
Fact Sheet WHITEHOUSE STATION, N.J., Oct. 12, 2007 - Merck & Co., Inc., announced -
Executive Speeches today that the U.S. Food and Drug Administration (FDA) granted ISENTRESS™
Webcasts (mlmrav_ir) tablets accelerated approval for use in combination with other
antiretroviral agents for the treatment of HIV-1 infection in treatment-
VIOXX® (rofecoxib) experienced adult patients who have evidence of viral replication and HIV-1
Information Center strains resistant to multiple antiretroviral agents.
This indication is based on analyses of plasma HIV-1 RNA levels up through 24
A Contact Newsroom weeks In two controlled studies of ISENTRESS [pronounced I-sen-tris]. These
® cast studies were conducted in clinically advanced, three-class antiretroviral
) [nucleoside reverse transcriptase inhiditors (NRTIs), non-nucleoside reverse
RSS transcriptase inhibitors (NNRTIs) and protease inhibitors (Pis)] treatment-

experienced adults. The use of other active agents with ISENTRESS is
associated with a greater likelihood of treatment response. The safety and
efficacy of ISENTRESS have not been established in treatment-naive adult
patients or pediatric patients. There are no study results demonstrating the
effect of ISENTRESS on clinical progression of HIV-1 infection, Longer term
data will be required before the FDA can consider traditional approval for
ISENTRESS.




ISENTRESS example

-One structure known with 5CITEP
<& Not clear (low resolution)
¢ Binding near to DNA interacting site
< Loop near the binding
Docking + Molecular Dynamics
& AMBER snapshots

& AutoDock flexible torsion thetetrazolering
and indole ring.

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81



ISENTRESS example

Glu:152 Gin:1 4:‘3
L] - r

y
Asp:116  Phe:138

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81



ISENTRESS example

£ 4:
sedhve EZ
&, oy
W
eI

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81
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ISENTRESS example

Pro:142

Gln:148 " Gl TR0

Glu:152

L r"-r‘""_ ‘

His:1148 g
)
¢ J

r by
Asp:116 | Phe:13@

“Lys:159 *a Asp:64

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81




ISENTRESS example
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Vina 1.0

Where to get help...

.
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A hatp:/ vina.scripps.edu/

AutoDock Vina

AutoDock Vina is a new program for
drug discovery, molecular docking and
virual screening, offering multi-core
enhanced accuracy and ease of use [

AutoDock Vina has been designed and
implemented by Dr, Oleg Trodt in the
Molecular Graphics Lab at The Scripps
Research Institute,

The image on the left illustrates the
results of flexible docking (green)

i on the crystal structures
of (a) indinavir, (b) atorvastatin, (¢)
imatinib, and (d) oseltamivir.

http://vina.scripps.edu

[
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Progressive building

Conformational search

Vina 1.0

Alternatives

MIMUMBA
COBRA
WIZRAD

Binding site description ﬁ GRID

Genetic algorithms

i GOLD

Others

FLEXX
DOCK
GROW
GroupBUILD
LUDI
LEGEND
SPROUT
BUILDER
GENSTAR

Virtual screening —‘ AutoDOCK
MCSS
CONCEPTS

Molecular dynamcis

Databases

CAVEAT

CLIX
NEWLEAD
LEAPFROG

FOUNDATION
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AutoDock 4.0

Why AutoDock over others
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Why AutoDock over others

ADAM
SANDOCK 1%
0.5% Soft Sousa, S.F., Fernandes, P.A. & Ramos, M.J. (2006)

Docking Protein-Ligand Docking: Current Status
and Future Challenges Proteins, 65:15-26

Prodock

MCDOCK 1%

QXP 4%
1% PRO 4%
LEADS
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6%
GOLD
15%
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Number of Citations

AutoDock 4.0

Why AutoDock over others

Docking Programs - Trends Most Common Docking Programs
2001 2002 2003
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42%
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2005

Bl AutoDock

B DOCK
FlexX

B GOLD

B ICM

10%

Sousa, S.F.,, Fernandes, P.A. & Ramos, M.). (2006)
Protein-Ligand Docking: Current Status
and Future Challenges Proteins, 65:15-26
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Vina and ADT
Vina AutoDock Tools
¢ 1990 (AutoDock) & 2000
O < Visualizing set-up
& Command-line! <& Graphical user interphase

& C & C++ compiled <& Python interpreter e




AutoDock / Vina

Practical considerations

What problem does AutoDock solve?
Flexibleligands (4.0 flexible protein).

What range of problems is feasible?

Depends on the search method:

LGA> >>SA>>
S/ : can output trajectories, I < about 8 torsions.

[LGA : D < about 8-32 torsions.
When is AutoDock not suitable?
No 3D-structures are available;
Modelled structure of poor quality;
"1'0o0 many (32 torsions, 2048 atoms, 22 atom types);
‘T'arget protein too flexible.



AutoDock 4.0

Using AutoDock step-by-step

Set up ligand PDBQT'—using AD'I's “Ligand” menu

OPTIONAL.: Set up flexible receptor PDBQ'T'—using
ADT's “Flexible Residues” menu

Set up macromolecule & grid maps—using ADT's “Grid”
menu

Perform dockings of ligand to target—using "autodock4’,
and in parallel if possible.

Visualize AutoDock results—using AD'l's "Analyze” menu

Cluster dockings—using “analysis” DPEF command in
“autodock4” or AD'I's "Analyze” menu for parallel docking
results.



AutoDock 4.0

Things to know before using AutoDock

Ligand:

Add all hydrogens, compute Gasteiger charges, and merge
non-polar H; also assign AutoDock 4 atom types

Ensure total charge corresponds to tautomeric state
Choose torsion tree root & rotatable bonds

Macromolectile:

Add all hydrogens, compute Gasteiger charges, and merge
non-polar H; also assign AutoDock 4 atom types

Assign Stouten atomic solvation parameters

Optionally, create a flexible residues PDBQ'T in addition to
the rigid PDBQ'1T file



AutoDock 4.0

Good that we have AutoDock Tools (ATD)

444

’

7 4

Done 100%
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http://autodock.scripps.edu/resources/adt
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Vina 1.0

Good we have a nice tutorial

€ 7

Recycle Bin PMY-1.5.1

'
Cygwan_set,, Acrg

Adobe Reader  Shortout to
9 MWED

AutoDockTools

Verson 1,51 reveson 1

les\MGLIools

s\AutoDocklIoo

}"'Michel Sanner

[c) 19932008 Molecular Graphics Laboreory, The Scripps Research Insbiute
ALL RIGHTS RESERVED

%
Microsoft
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http://vina.scrippts.edu/tutorial.html
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