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Objective

TO UNDERSTAND THAT SNPs HAVE 
EFFECTS THAT CAN BE PREDICTED 

AND TO LEARN HOW-TO USE 
AutoDock FOR DOCKING SMALL 

MOLECULES IN THE SURFACE OF A 
PROTEIN
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Nomenclature

• SNP: Single Nucleotide Polymorphism. A single change in the DNA sequence, 
which may or may not result in a change in the protein sequence.

• Ligand: Structure (usually a small molecule) that binds to the binding site.

• Receptor: Structure (usually a protein) that contains the active binding site.

• Binding site: Set of aminoacids (residues) that physically interact with the lingad 
(usually within 6 Ångstroms).
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Single Nucleotide Polymorphism
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Single Nucleotide Polymorphism or SNP
is a DNA sequence variation occurring when a single nucleotide - A, T, C, or G - in 
the genome differs between members of the species. 
Usually one will want to refer to SNPs when the population frequency is ≥ 1% 

SNPs occur at any position and can be 
classified on the base of their locations. 

Coding SNPs can be subdivided into two 
groups:
 
Synonymous: when single base substitutions do 
not cause a change in the resultant amino acid 

Non-synonymous: when single base 
substitutions cause a change in the resultant 
amino acid. 

http://www.ncbi.nlm.nih.gov
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SNPs and disease
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Single nucleotide polymorphism are the most common type of genetic variations in 
human accounting for about 90% of sequence differences (Collins et al., 1998).

Studying SNPs distribution in different human populations can lead to important 
considerations about the history of our species (Barbujani and Goldstein, 2004; 
Edmonds et al., 2004).

SNPs can also be responsible of genetic diseases (Ng and Henikoff, 2002; Bell, 2004).   

non synonymous SNPs 

neutral SNPs

disease-related 
SNPs

the mutations are related to a 
Mendelian pathologies   

the mutations do not compromise 
the organism’s health  
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SNP databases
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http://www.ncbi.nlm.nih.gov/projects/SNP/ http://www.uniprot.org/
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Evolution and disease.
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METHODS

Use of Estimated Evolutionary Strength
at the Codon Level Improves the Prediction
of Disease-Related Protein Mutations in Humans

Emidio Capriotti,1 Leonardo Arbiza,2 Rita Casadio,4 Joaquı́n Dopazo,3 Hernán Dopazo,2!

and Marc A. Marti-Renom1!
1Structural Genomics Unit, Centro de Investigación Prı́ncipe Felipe (CIPF), Valencia, Spain; 2Pharmacogenomics and Comparative Genomics
Unit, Centro de Investigación Prı́ncipe Felipe (CIPF), Valencia, Spain; 3Functional Genomics Unit, Bioinformatics Department, Centro de
Investigación Prı́ncipe Felipe (CIPF), Valencia, Spain; 4Laboratory of Biocomputing, CIRB/Department of Biology, University of Bologna,
Bologna, Italy

Communicated by David N. Cooper

Predicting the functional impact of protein variation is one of the most challenging problems in bioinformatics.
A rapidly growing number of genome-scale studies provide large amounts of experimental data, allowing the
application of rigorous statistical approaches for predicting whether a given single point mutation has an impact
on human health. Up until now, existing methods have limited their source data to either protein or gene
information. Novel in this work, we take advantage of both and focus on protein evolutionary information by
using estimated selective pressures at the codon level. Here we introduce a new method (SeqProfCod) to predict
the likelihood that a given protein variant is associated with human disease or not. Our method relies on a
support vector machine (SVM) classifier trained using three sources of information: protein sequence, multiple
protein sequence alignments, and the estimation of selective pressure at the codon level. SeqProfCod has been
benchmarked with a large dataset of 8,987 single point mutations from 1,434 human proteins from
SWISS-PROT. It achieves 82% overall accuracy and a correlation coefficient of 0.59, indicating that the
estimation of the selective pressure helps in predicting the functional impact of single-point mutations.
Moreover, this study demonstrates the synergic effect of combining two sources of information for predicting
the functional effects of protein variants: protein sequence/profile-based information and the evolutionary
estimation of the selective pressures at the codon level. The results of large-scale application of SeqProfCod
over all annotated point mutations in SWISS-PROT (available for download at http://sgu.bioinfo.cipf.es/
services/Omidios/; last accessed: 24 August 2007), could be used to support clinical studies. Hum Mutat
29(1), 198–204, 2008. rr 2007 Wiley-Liss, Inc.

KEY WORDS: SNP; nsSNP; disease; sequence profile; evolutionary strength; bioinformatics

INTRODUCTION

Studies characterizing the relationship between protein variants
and human disease have grown rapidly over the past years, in part
due to genomic-scale sequencing efforts [Krawczak et al., 2000;
Sherry et al., 2001; Stenson et al., 2003]. For example, it is now
known that single nucleotide polymorphisms (SNPs) constitute
about the 90% of human protein sequence variability [Collins
et al., 1998]. Synonymous and nonsynonymous SNPs (nsSNPs)
may occur every !350 bp in coding regions [Cargill et al., 1999]
and about 50% of nsSNPs may be associated to pathologies of
genetic origin. Therefore, predicting which nsSNPs are responsible
for human disease is one of the major challenges in bioinformatics.
Recently, different methods have been developed for predicting

the effect of single point mutations in humans [Arbiza et al., 2006;
Bao and Cui, 2005; Bao et al., 2005; Capriotti et al., 2006; Chan
et al., 2007; Karchin et al., 2005a; Ng and Henikoff, 2003;
Ramensky et al., 2002; Santibanez Koref et al., 2003; Thomas
et al., 2003b; Yue and Moult, 2006]. In spite of the effort, however,

Published online 12 October 2007 in Wiley InterScience (www.
interscience.wiley.com).
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Omidios method
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Omidios has higher accuracy than the previous two methods increasing the 
accuracy up to 82% and the correlation coefficient to 0.59.

Q2 P[D] Q[D] P[N] Q[N] C

Omidios 82 88 84 68 76 0.59

Fr
ac

ti
o

n

Area Omidios = 0.88

Q2: Overall Accuracy C: Correlation Coefficient  DB:  Fraction of database that are predicted with a reliability ≥ the given threshold
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Comparison
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Omidios results in higher accuracy and correlation than the other available methods 
covering the 100% of the dataset (see column %PM). 
Omidios results in higher accuracy with respect to SIFT and although the quality of Omidios 
is comparable to PANTHER, when our prediction are selected by RI index the accuracy of 
our method is higher than PANTHER.   

HM-Dic05: 8987 mutations

HM-Dic06: 2008 mutations

Q2 P[D] Q[D] P[N] Q[N] C PM

Omidios 82 89 84 68 76 59 100

SIFT 71 84 72 51 69 38 97

PANTHER 74 87 75 53 72 43 83

Q2 P[D] Q[D] P[N] Q[N] C PM

Omidios 74 65 79 83 72 48 100

SIFT 71 63 70 78 72 42 96

PANTHER 77 73 71 79 81 52 77

Thursday, September 23, 2010
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Omidios server
http://sgu.bioinfo.cipf.es/services/Omidios
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Structural analysis of missense mutations 
in human BRCA1 BRCT domains
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[CANCER RESEARCH 64, 3790–3797, June 1, 2004]

Structure-Based Assessment of Missense Mutations in Human BRCA1: Implications

for Breast and Ovarian Cancer Predisposition

Nebojsa Mirkovic,1 Marc A. Marti-Renom,2 Barbara L. Weber,3 Andrej Sali,2 and Alvaro N. A. Monteiro4,5

1Laboratory of Molecular Biophysics, Pels Family Center for Biochemistry and Structural Biology, Rockefeller University, New York, New York; 2Departments of

Biopharmaceutical Sciences and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical Research, University of California at San Francisco, San

Francisco, California; 3Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania; 4Strang Cancer Prevention Center, New York, New

York; and 5Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York

ABSTRACT

The BRCA1 gene from individuals at risk of breast and ovarian cancers

can be screened for the presence of mutations. However, the cancer

association of most alleles carrying missense mutations is unknown, thus

creating significant problems for genetic counseling. To increase our

ability to identify cancer-associated mutations in BRCA1, we set out to use

the principles of protein three-dimensional structure as well as the corre-

lation between the cancer-associated mutations and those that abolish

transcriptional activation. Thirty-one of 37 missense mutations of known

impact on the transcriptional activation function of BRCA1 are readily

rationalized in structural terms. Loss-of-function mutations involve non-

conservative changes in the core of the BRCA1 C-terminus (BRCT) fold

or are localized in a groove that presumably forms a binding site involved

in the transcriptional activation by BRCA1; mutations that do not abolish

transcriptional activation are either conservative changes in the core or

are on the surface outside of the putative binding site. Next, structure-

based rules for predicting functional consequences of a given missense

mutation were applied to 57 germ-line BRCA1 variants of unknown

cancer association. Such a structure-based approach may be helpful in an

integrated effort to identify mutations that predispose individuals to

cancer.

INTRODUCTION

Many germ-line mutations in the human BRCA1 gene are associ-
ated with inherited breast and ovarian cancers (1, 2). This information
has allowed clinicians and genetic counselors to identify individuals at
high risk for developing cancer. However, the disease association of
over 350 missense mutations remains unclear, primarily because their
relatively low frequency and ethnic specificity limit the usefulness of
the population-based statistical approaches to identifying cancer-caus-
ing mutations. To address this problem, we use here the three-
dimensional structure of the human BRCA1 BRCT domains to assess
the transcriptional activation functions of BRCA1 mutants. Our study
is made possible by the recently determined sequences (3–6) and
three-dimensional structures of the BRCA1 homologs (7, 8). In addi-
tion, we benefited from prior studies that attempted to rationalize and
predict functional effects of mutations in various proteins (9–12),
including those of BRCA1 (13, 14).
BRCA1 is a nuclear protein that activates transcription and facili-

tates DNA damage repair (15, 16). The tandem BRCT domains at the

COOH-terminus of BRCA1 are involved in several of its functions,
including modulation of the activity of several transcription factors
(15), binding to the RNA polymerase II holoenzyme (17), and acti-
vating transcription of a reporter gene when fused to a heterologous
DNA-binding domain (18, 19). Importantly, cancer-associated muta-
tions in the BRCT domains, but not benign polymorphisms, inactivate
transcriptional activation and binding to RNA polymerase II (18–21).
These observations suggest that abolishing the transcriptional activa-
tion function of BRCA1 leads to tumor development and provides a
genetic framework for characterization of BRCA1 BRCT variants.

MATERIALS AND METHODS

The multiple sequence alignment (MSA) of orthologous BRCA1 BRCT
domains from seven species, including Homo sapiens (GenBank accession
number U14680), Pan troglodytes (AF207822), Mus musculus (U68174),
Rattus norvegicus (AF036760), Gallus gallus (AF355273), Canis familiaris
(U50709), and Xenopus laevis (AF416868), was obtained by using program
ClustalW (22) and contains only one gapped position (Supplementary Fig. 1).
According to PSI-BLAST (23), the latter six sequences are the only sequences
in the nonredundant protein sequence database at National Center for Biotech-
nology Information that have between 30% and 90% sequence identity to the
human BRCA1 BRCT domains (residues 1649–1859).
The multiple structure-based alignment of the native structures of the

BRCT-like domains was obtained by the SALIGN command in MODELLER
(Supplementary Fig. 2). It included the experimentally determined structures
of the two human BRCA1 BRCT domains (Protein Data Bank code 1JNX;
Refs. 8, 24), rat BRCA1 BRCT domains (1L0B; Ref. 7), human p53-binding
protein (1KZY; Ref. 7), human DNA-ligase III! (1IMO; Ref. 25), and human
XRCC1 protein (1CDZ; Ref. 13). Structure variability was defined by the
root-mean-square deviation among the superposed C! positions, as calculated
by the COMPARE command of MODELLER. The purpose of these calcula-
tions was to gain insight into the variability of surface-exposed residues (left
panel in Fig. 2). In conjunction with observed mutation clustering, these data
may point to putative functional site(s) on the surface of BRCT repeats.
Comparative protein structure modeling by satisfaction of spatial restraints,

implemented in the program MODELLER-6 (26), was used to produce a
three-dimensional model for each of the 94 mutants. The crystallographic
structure of the human wild-type BRCA1 BRCT domains was used as the
template for modeling (8). The four residues missing in the crystallographic
structure (1694 and 1817–1819) were modeled de novo (27). All of the models
are available in the BRCA1 model set deposited in our ModBase database of
comparative protein structure models (28).6

For the native structure of the human BRCT tandem repeat and each of the
94 mutant models, a number of sequence and structure features were calcu-
lated. These features were used in the classification tree in Fig. 3 (values for
all 94 mutations are given in Supplementary Tables 1 and 2).
Buriedness. Accessible surface area of an amino acid residue was calcu-

lated by the program DSSP (29) and normalized by the maximum accessible
surface area for the corresponding amino acid residue type. A residue was
considered exposed if its accessible surface area was larger than 40Å2 and if
its relative accessible surface area was larger than 9% and buried otherwise. A
mutation of a more exposed residue is less likely to change the structure and
therefore its function.

Received 9/24/03; revised 1/30/04; accepted 3/15/04.
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Footwear Association of New York/QVC; United States Army award DAMD17-99-1-
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Putative binding site on BRCA1

Williams et al. 2004 Nature Structure Biology. June 2004 11:519

Putative binding site predicted in 2003 
and accepted for publication on March 2004.

Mirkovic et al. 2004 Cancer Research. June 2004 64:3790
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Supervised learning approach

20

Functional Impact of Missense Variants
in BRCA1 Predicted by Supervised Learning
Rachel Karchin1,2*, Alvaro N. A. Monteiro3, Sean V. Tavtigian4, Marcelo A. Carvalho3, Andrej Sali5,6*
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Many individuals tested for inherited cancer susceptibility at the BRCA1 gene locus are discovered to have variants of
unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1
protein. They can be biochemically assayed, but such evaluations are time-consuming and labor-intensive.
Computational methods that classify and suggest explanations for UCV impact on protein function can complement
functional tests. Here we describe a supervised learning approach to classification of BRCA1 UCVs. Using a novel
combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1
C-terminal (BRCT) domain UCVs biochemically assayed to measure transactivation function and to blindly classify 54
documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than
94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized
putative binding site. Clinicians may soon be able to use computational classifiers such as those described here to
better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied
to prioritize the growing number of potential causative loci and variants found by large-scale disease association
studies.

Citation: Karchin R, Monteiro ANA, Tavtigian SV, Carvalho MA, Sali A (2007) Functional impact of missense variants in BRCA1 predicted by supervised learning. PLoS Comput
Biol 3(2): e26. doi:10.1371/journal.pcbi.0030026

Introduction

The BRCA1 gene encodes a large multifunction protein
involved in cell-cycle and centrosome control, transcriptional
regulation, and in the DNA damage response [1–3]. Inherited
mutations in this gene have been associated with an increased
lifetime risk of breast and ovarian cancer (6–8 times that of
the general population) [4]. There are several thousand
known deleterious BRCA1 mutations that result in frame-
shifts and/or premature stop codons, producing a truncated
protein product [5]. In contrast, the functional impact of
most missense variants that result in a single amino acid
residue change in BRCA1 protein is not known. The Breast
Cancer Information Core database (http://research.nhgri.nih.-
gov/bic/), a central repository of BRCA1 and BRCA2mutations
identified in genetic tests, currently contains 487 unique
missense BRCA1 variants (April 2006), of which only 17 have
sufficient genetic/epidemiological evidence to be classified as
deleterious (Clinically Important) and 33 as neutral or of little
clinical importance (Not Clinically Important). As genetic
testing for inherited disease predispositions becomes more
commonplace, predicting the clinical significance of missense
variants and other UCVs will be increasingly important for
risk assessment.

Because most UCVs in BRCA1 and BRCA2 occur at very low
population frequencies (,0.0001) [6], direct epidemiological
measures, such as familial cosegregation with disease, are
often not sufficiently powerful to identify the variants
associated with cancer predisposition. A promising approach
is to supplement epidemiological and clinical analysis of
UCVs with indirect approaches such as biochemical studies of

protein function and bioinformatics analysis [6–8]. In the
future, physicians and genetic counselors may be able to rely
on all these sources of information about UCVs when
counseling their patients.
Previous bioinformatics analysis of BRCA1 UCVs has

depended primarily on measures of evolutionary conserva-
tion in multiple sequence alignments of human BRCA1 and
related proteins from other organisms [9–11]. Two groups
have attempted to include information about BRCA1 protein
structure. Williams et al. predicted the impact of 25 missense
variants in BRCA19s C-terminal BRCT domains by consider-
ing both conservation and location of variant amino acid
residues in an X-ray crystal structure [12]. Variants were
predicted deleterious if their properties were similar to

Editor: Greg Tucker-Kellogg, Lilly Systems Biology, Singapore
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REDUCE [42], then visualized in Chimera with a GRASP
surface representation [43].

Results

We compared the transactivation activity of the wild-type
LexA DBD-BRCA1 or GAL4DBD-BRCA1 fusion construct in
both yeast and mammalian cells with the activity of constructs
containing 36 single missense variants in the BRCT domains
[14]. Variant constructs presenting 50% or more of wild-type
activity are characterized as neutral and those with 45% or
less are characterized as deleterious, thresholds that are in
agreement with available genetic evidence. These functional
characterizations were used as a standard to evaluate the
reliability of nine computational classifiers (Figure 1). We also
provide a post-prediction analysis of these variants (Table
S1). Three classifiers with the highest correlation to the
functional assay were applied to predict the impact of 54
UCVs in the BRCT domains currently listed in the Breast
Information Core database.

Algorithm Evaluation
Based on ROC analysis, the supervised learners Random

Forest, Support Vector Machine, and Naı̈ve Bayes yield the
most reliable computational classifications of the 36 variants
(Figure 2). The area under the ROC curve (AUC) quantifies

the probability that a classifier will give a randomly drawn
deleterious example a lower score than a randomly drawn
neutral example. AUC is 0.992 for Random Forest, 0.947 for
Support Vector Machine and Naı̈ve Bayes, 0.86 for Align-
GVGD Tnig, 0.852 for Align-GVGD Spur, 0.783 for SIFT, and
0.738 for Decision Tree (Figure 2). The Decision Tree
algorithm appears to overfit the training set and generalizes
less well than the other supervised learners.
Three of the supervised learning algorithms (Naı̈ve Bayes,

Support Vector Machine, and Random Forest) produce the
best classifications of the 36 variants, as measured by
accuracy, true positive rate, true negative rate, Matthews
correlation coefficient, and coverage, using default thresholds
(Table 1). According to these statistical measures, the best
sequence analysis methods are Ancestral Sequence and Align-
GVGD. Random Forest, Naı̈ve Bayes, and Support Vector
Machine are the most accurate scoring predictors, according
to the AUC. The methods rankings are slightly different when
evaluated by threshold-dependent statistics that reduce
predictive scores to deleterious/neutral classes or by the
score-based and threshold-independent ROC statistic of
AUC.

BIC BRCA1 UCVs in BRCT Domains
We applied the top performing algorithms (Naı̈ve Bayes,

Support Vector Machine, and Random Forest) to predict the

Figure 1. Computational Classifications of 36 BRCA1 BRCT Variants Functionally Characterized by the Transactivation Assay

For each variant, the local protein structure environment is represented by secondary structure type and whether the amino acid residue is buried
(normalized solvent accessibility , 0.2) or exposed (normalized solvent accessibility ! 0.2). Labels (‘‘1655 S-.F’’) are colored according to whether the
variant was functional in the assays (blue) or nonfunctional (red). Computational classifications in agreement with the assay are indicated by filled
circles. Computational classifications not in agreement with the assay are indicated by outlined circles. Computational classifications yielding
‘‘unclassified’’ are indicated by an outlined black circle. The variant D1692N is fully functional as a transcriptional activator but results in incorrect
splicing in vivo. Results from variant M1775K are unpublished (Foulkes et al.).
A, Ancestral Sequence; B, Rule-based decision tree; D, Decision Tree; F, SIFT; MCC, Matthews correlation coefficient; N, Naı̈ve Bayes; R, Random Forest; S,
Support Vector Machine; T, Align-GVGD Tnig; U, Align-GVGD Spur.
doi:10.1371/journal.pcbi.0030026.g001
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classified as deleterious/nonfunctional if gð~X ; ~XiÞ, 0 and
neutral/functional if gð~X ; ~XiÞ.0.

Naı̈ve Bayes
The Naı̈ve Bayes algorithm estimates the probability that

each variant belongs to deleterious or neutral classes
C 2 fD;Ng by applying the Bayes rule:

PðCj~XÞ}Pð~X jCÞPðCÞ ð3Þ

where the prior class probability P(C) is the fraction of
deleterious (or neutral) missense variants in the training set
and each feature Xi is assumed to be conditionally independ-
ent of the k# 1 other features, given its class membership, so
that

Pð~X jCÞ ¼ Pk
i¼1Pð~XijCÞ ð4Þ

where P(Xi j C) is estimated from the training set. We used the
Naı̈ve Bayes method in R’s e1071 package. Each feature was
approximated to be normally distributed and no smoothing
was applied to the feature distributions.

Decision Tree
We used the rpart package in R [32] to train a Decision

Tree with the following parameters: minsplit ¼ 20 (minimum
number of observations required at a tree node before a split
is attempted) and cp ¼ 0 (no pruning of tree regardless of
whether a split will improve model fit). To reduce overfitting,
we pruned the resulting tree using the standard heuristic ‘‘1
Standard Error rule’’ [33] and 10-fold cross-validation.
According to the 1 Standard Error rule, the pruned tree

with best generalization properties has a cross-validation
error on the training set 1 Standard Error worse than the tree
with the lowest cross-validation error. The pruning process
yielded a reduced set of features: U andWmainchain dihedral
angles, normalized solvent accessibility of wild-type, Gran-
tham difference, volume change, relative entropy, and
positional hidden Markov model conservation score.

Random Forest
We used the randomForest package in R [34] to train a

Random Forest, an algorithm based on a majority vote of a
large number of decision trees, in which the candidate
features at each tree node are randomly sampled [17]. The
user-defined input parameters to randomForest are total
number of trees in the forest and mtry (number of randomly
sampled features considered as candidates for a split at each
tree node). Both were selected with grid-search optimization
as described for the Support Vector Machine [31].

Log Likelihood Ratios
Predictions of Naı̈ve Bayes, Decision Tree, and Random

Forest are in the form of class conditional probabilities,
where the two classes are D (deleterious/nonfunctional) and N
(neutral/functional). For each example, the classifiers report
P(D j~X ) (probability that the variant is deleterious, given
feature vector ~X ) and P(N j~X ) (probability that the variant is
neutral, given feature vector ~X ). To evaluate accuracy, true
positive rate, true negative rate, and Matthews correlation
coefficient, we classified variants as deleterious if P(D j~X ) .

Table 2. Predictive Features Describing Evolutionary Conservation, Impact of Mutation on Protein Structure, and Amino Acid Residue
Properties Used as Input to the Computational Supervised Learning Algorithms

Feature Category Feature Description

Structural Solvent Accessiblity of wild-type amino acid residue (Å2)
Solvent Accessibility of wild-type residue normalized by maximum exposed Sol-
vent Accessibility of that residue type in a GLY-X-GLY tripeptide, using values gi-
ven by Rose et al. [80]
Solvent Accessibility of variant residue
Normalized Solvent Accessibility of variant residue
Number of methyl(ene) groups within 6 Å of the variant sidechain [81]
Number of unsatisfied spatial restraints in the MODELLER objective function after
in silico mutation and simulated annealing refinement of the varianta

U and W backbone dihedral angles at the mutated position
Whether the mutation results in buried charge

Physiochemical differences between wild-type and variant amino acid
residues

Change in formal charge

Change in volume (Å3) [82]
Change in polarity [83]
Grantham difference [37]

Evolutionary conservation of amino acid residues in protein orthologs Relative entropy estimated by amino acids in the variant’s alignment column [84]
Positional hidden Markov model conservation score based on the probabilities of
the wild-type, variant, and most probable amino acid residue in the variant’s
alignment columnb [24]

aViolated restraints suggest that the mutated sidechain introduced steric clashes or unusual geometries into the protein model. Examples of violated restraints include extreme values of
the Lennard-Jones 6–12 potential [85], bond angle potential, bond length potential, sidechain dihedral angle restraints, and nonbonded restraints. Two thresholds are used to identify
violated restraints yielding two features.
bThe probabilities are estimated by a hidden Markov model built with SAM-T2K and the w0.5 script [23].
PHC¼ log(jp(Wild-type) – p(Variant)j) þ log(p(Wild-type)) þ log(P(Most Probable)) – log (p(Variant))
The features were computed for 618 TP53 missense variants, 36 BRCA1 BRCT missense variants biochemically characterized in our companion paper [14], and 54 BRCA1 BRCT UCVs found
in BIC.
doi:10.1371/journal.pcbi.0030026.t002
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REDUCE [42], then visualized in Chimera with a GRASP
surface representation [43].

Results

We compared the transactivation activity of the wild-type
LexA DBD-BRCA1 or GAL4DBD-BRCA1 fusion construct in
both yeast and mammalian cells with the activity of constructs
containing 36 single missense variants in the BRCT domains
[14]. Variant constructs presenting 50% or more of wild-type
activity are characterized as neutral and those with 45% or
less are characterized as deleterious, thresholds that are in
agreement with available genetic evidence. These functional
characterizations were used as a standard to evaluate the
reliability of nine computational classifiers (Figure 1). We also
provide a post-prediction analysis of these variants (Table
S1). Three classifiers with the highest correlation to the
functional assay were applied to predict the impact of 54
UCVs in the BRCT domains currently listed in the Breast
Information Core database.

Algorithm Evaluation
Based on ROC analysis, the supervised learners Random

Forest, Support Vector Machine, and Naı̈ve Bayes yield the
most reliable computational classifications of the 36 variants
(Figure 2). The area under the ROC curve (AUC) quantifies

the probability that a classifier will give a randomly drawn
deleterious example a lower score than a randomly drawn
neutral example. AUC is 0.992 for Random Forest, 0.947 for
Support Vector Machine and Naı̈ve Bayes, 0.86 for Align-
GVGD Tnig, 0.852 for Align-GVGD Spur, 0.783 for SIFT, and
0.738 for Decision Tree (Figure 2). The Decision Tree
algorithm appears to overfit the training set and generalizes
less well than the other supervised learners.
Three of the supervised learning algorithms (Naı̈ve Bayes,

Support Vector Machine, and Random Forest) produce the
best classifications of the 36 variants, as measured by
accuracy, true positive rate, true negative rate, Matthews
correlation coefficient, and coverage, using default thresholds
(Table 1). According to these statistical measures, the best
sequence analysis methods are Ancestral Sequence and Align-
GVGD. Random Forest, Naı̈ve Bayes, and Support Vector
Machine are the most accurate scoring predictors, according
to the AUC. The methods rankings are slightly different when
evaluated by threshold-dependent statistics that reduce
predictive scores to deleterious/neutral classes or by the
score-based and threshold-independent ROC statistic of
AUC.

BIC BRCA1 UCVs in BRCT Domains
We applied the top performing algorithms (Naı̈ve Bayes,

Support Vector Machine, and Random Forest) to predict the

Figure 1. Computational Classifications of 36 BRCA1 BRCT Variants Functionally Characterized by the Transactivation Assay

For each variant, the local protein structure environment is represented by secondary structure type and whether the amino acid residue is buried
(normalized solvent accessibility , 0.2) or exposed (normalized solvent accessibility ! 0.2). Labels (‘‘1655 S-.F’’) are colored according to whether the
variant was functional in the assays (blue) or nonfunctional (red). Computational classifications in agreement with the assay are indicated by filled
circles. Computational classifications not in agreement with the assay are indicated by outlined circles. Computational classifications yielding
‘‘unclassified’’ are indicated by an outlined black circle. The variant D1692N is fully functional as a transcriptional activator but results in incorrect
splicing in vivo. Results from variant M1775K are unpublished (Foulkes et al.).
A, Ancestral Sequence; B, Rule-based decision tree; D, Decision Tree; F, SIFT; MCC, Matthews correlation coefficient; N, Naı̈ve Bayes; R, Random Forest; S,
Support Vector Machine; T, Align-GVGD Tnig; U, Align-GVGD Spur.
doi:10.1371/journal.pcbi.0030026.g001
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variants in TP53 with a four-body ‘‘potential’’ based on
Delauney tessellation [51], to engineered variants in E. Coli
Lac Repressor, HIV protease, and T4 bacteriophage lysozyme
[24,52,53], and to large sets of single nucleotide polymor-
phisms [54–56]. Much of this work has been limited by
overfitting problems. Benchmarking of Support Vector
Machines and Decision Trees in several studies has shown
that high numbers of false positive and false negative
classification errors (;0.30) are generated when the learners
are applied to proteins other than those in their training sets
[24,52]. Supervised learning using four-body potentials is
further limited in application, because each missense variant
is represented by a profile of n features (amino-acid residue
potential scores), where n is the number of amino acid
residues in the protein. Supervised learning algorithms
require fixed-length feature vectors; thus, an algorithm
trained on missense variants represented by n features can
only classify missense variants that are represented by n
features. For example, if the training set is composed of
missense variants in Lac Repressor (327 amino acid residues),
the algorithm cannot be used to classify mutants in Lysozyme
(164 amino acid residues).

Here we identify a set of 16 predictive features that, in
combination with Support Vector Machine, Random Forest,
and Naı̈ve Bayes supervised learning algorithms, avoids the
overfitting problem when the training set is composed of
TP53 variants and the validation set is composed of BRCA1
missense variants. Initially, we used 31 deleterious and eight
neutral BRCA1 BRCT variants that had been functionally
tested as our training set. However, this approach yielded
poor classification performance in a cross-validation test,
presumably because of small sample size (unpublished data).
As an alternative, we selected our features and performed

supervised learning with a training set of 600þ artificially
engineered TP53 missense variants. The ability of computa-
tional learning algorithms trained on TP53 variants to classify
BRCA1 missense variants in agreement with the BRCA1
functional assay (94%þ) suggests that mechanisms underlying
structural and functional defects may be similar in TP53 and
BRCA1.
In comparison, an approach based on sequence analysis

and expected frequencies of structural features inferred from
mutagenesis studies of E. Coli lac repressor and T4 lysozyme
resulted in only 75% agreement with a BRCA1 BRCT trypsin
sensitivity assay of 22 variants [12,50]. We find that the best
supervised learners are in greater agreement with the BRCA1
transactivation assay than several sequence analysis methods
and an empirically designed set of rules and thresholds [7].
The sequence analysis methods that incorporate physi-

ochemical properties of amino acid residues as well as
evolutionary conservation (Ancestral Sequence and Align-
GVGD) are more accurate than SIFT, which only considers
evolutionary conservation. A weakness of these methods is
that, for purposes of classifying deleterious variants, there is
no principled way to choose the optimal set of evolutionarily
related sequences to align and analyze. In this work, we used
sets of aligned sequences taken from published work
(Ancestral Sequence) [9], the SIFT and Align GVGD web-
servers [18,57], and a deep alignment (out to the sea urchin
Strongylocentrotus purpuratus) generated by the creators of
Align GVGD. Different sequence sets produce different
classifications of the variants, and choice is biased by available
genomes and decisions about appropriate thresholds of
relatedness. The problem is illustrated with classifications of
the BRCA1 BRCT missense variant V1665M. Align-GVGD
Tnig, Align-GVGD Spur, and Ancestral Sequence incorrectly

Figure 3. Computational Classifications of 54 Uncharacterized Variants Found in BIC

For each variant, the local protein structure environment is represented by secondary structure type and whether the amino acid residue is buried
(normalized solvent accessibility , 0.2) or exposed (normalized solvent accessibility " 0.2). For the 54 uncharacterized variants, labels (‘‘1652 M-.T’’) are
colored according to consensus prediction from Naı̈ve Bayes, Support Vector Machine, and Random Forest. Predictions of each method are indicated by
filled circles (blue, neutral; red, deleterious).
N, Naı̈ve Bayes. R, Random Forest; S, Support Vector Machine.
doi:10.1371/journal.pcbi.0030026.g003
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Figure 4. Spatial Distribution of Predicted Deleterious and Neutral Missense Variants in the BRCA1 BRCT Domains

(A) Ribbon representation of the two domains with labeled helices (a1, a2, etc.) and strands (b1, b2, etc.). Recreation of Figure 1A [64].
(B) BRCA1 BRCT missense variants reported as neutral (blue) and deleterious (red) in the mammalian transactivation assay shown mapped onto the
BRCA1 BRCT X-ray crystal structure (1t29).
(C) Consensus predictions of Random Forest, Naı̈ve Bayes, and Support Vector Machine for 54 BRCA1 BRCT VUS in the Breast Information Core database
(http://research.nhgri.nih.gov/bic/BIC/) mapped onto the same structure, with predicted neutral shown in blue and predicted deleterious in red.
doi:10.1371/journal.pcbi.0030026.g004
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Protein function from structure
ab-initio localization of binding sites

Rossi. Localization of binding sites in protein structures by optimization of a composite scoring function. 
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Localization of binding sites in protein structures by
optimization of a composite scoring function

ANDREA ROSSI, MARC A. MARTI-RENOM, AND ANDREJ SALI
Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, California Institute for Quantitative
Biomedical Research, University of California, San Francisco, California 94143-2552, USA
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Abstract

The rise in the number of functionally uncharacterized protein structures is increasing the demand
for structure-based methods for functional annotation. Here, we describe a method for predicting the
location of a binding site of a given type on a target protein structure. The method begins by
constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on
the protein surface. The scoring function is a weighted linear combination of the z-scores of various
properties of protein structure and sequence, including amino acid residue conservation, compactness,
protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set
of previously identified instances of the binding-site type on known protein structures. The scoring
function can easily incorporate different types of information useful in localization, thus increasing the
applicability and accuracy of the approach. To test the method, 1008 known protein structures were split
into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various
nucleotides, binding sites were correctly identified in 55%–73% of the cases. The method is completely
automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics
setting.

Keywords: protein function annotation; small ligand binding-site localization

Many protein targets of structural biologists are no longer
chosen because of their function, but rather by their
location in the protein sequence-structure space (Burley
et al. 1999; Brenner 2000, 2001; Sali 2001; Vitkup et al.
2001; Chance et al. 2002; Goldsmith-Fischman and
Honig 2003). Therefore, the number of functionally
uncharacterized protein structures is growing. Of the
36,606 entries in the Protein Data Bank (PDB) (Kouranov
et al. 2006) as of February 23, 2006, 1407 structures were
deposited by structural genomics consortia, 985 (70%)

of which had an unknown function according to the
HEADER record of their PDB files. In contrast, only 174
(0.5%) of the 35,199 protein structures solved outside of
structural genomics had no functional annotations in their
PDB files.

To classify the functions of thousands of uncharacter-
ized protein structures that will become available over the
next few years and millions of comparative models based
on the known structures, automated structure-based func-
tional annotation is required (Wallace et al. 1996, 1997;
Kleywegt 1999; Thornton et al. 2000; Babbitt 2003;
Laskowski et al. 2003). In particular, we need to be able
to identify the locations and types of binding sites on
a given structure, because the binding sites define the
molecular function of a protein.

The most principled computational approach to pre-
dicting the molecular function is to dock a large library of
potential ligands against the surface of the protein. In
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For 20% protein structures function 
is unknown

Structural 
Genomics*

Traditional 
methods

Annotated** 654 28,342

Not 
Annotated 506 (43.6%) 6,815 (19,4%)

Total 
deposited 1,160 35,157

* annotated as STRUCTURAL GENOMICS in the header of the PDB file
**annotated with either CATH, SCOP, Pfam or GO terms in the MSD database

36,317 protein structures, as of August 8th, 2006
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Compactness Conservation Charge density B-factor
Protrusion 
coefficient Convexity score Hydrophobicity

ADP -1.266 -2.009 0.447 -0.414 -1.521 -1.388 -0.118

AMP -1.62 -1.962 0.341 -0.381 -1.909 -1.944 -0.518

ANP -1.007 -2.227 0.176 -0.392 -1.706 -1.595 -0.14

ATP -1.122 -2.156 0.228 -0.274 -1.845 -1.768 0.038

BOG -2.067 -0.012 0.552 -0.465 -0.356 -0.49 -0.781

CIT -2.948 -1.58 0.563 -0.527 -0.922 -0.838 -0.113

FAD 0.505 -2.108 0.366 -0.702 -1.735 -1.725 -0.75

FMN -1.132 -1.98 0.382 -0.387 -1.803 -1.886 -0.695

FUC -3.43 0.016 -0.295 -0.123 0.002 0.132 0.459

GAL -3.186 -0.538 -0.234 -0.068 -0.906 -0.987 0.298

GDP -1.061 -1.471 0.409 -0.81 -1.472 -1.423 0.182

GLC -2.813 -1.247 -0.207 -0.399 -1.247 -1.337 -0.089

HEC -0.172 -0.912 0.286 -0.325 -1.153 -1.27 -1.282

HEM -0.651 -1.571 0.683 -0.51 -1.797 -1.937 -1.47

MAN -3.72 0.131 0.105 -0.52 -0.605 -0.509 0.405

MES -3.049 -0.24 -0.338 -0.479 -0.714 -0.926 0.296

NAD -0.005 -1.852 0.156 -0.232 -1.775 -1.804 -0.858

NAG -3.419 -0.46 -0.126 -0.154 -0.341 -0.523 -0.078

NAP -0.009 -1.898 0.612 -0.321 -1.587 -1.656 -0.336

NDP 0.217 -1.741 0.535 -0.312 -1.463 -1.562 -0.498

Ligand fingerprints
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Abstract
Background: Advances in structural biology, including structural genomics, have resulted in a
rapid increase in the number of experimentally determined protein structures. However, about half
of the structures deposited by the structural genomics consortia have little or no information about
their biological function. Therefore, there is a need for tools for automatically and comprehensively
annotating the function of protein structures. We aim to provide such tools by applying
comparative protein structure annotation that relies on detectable relationships between protein
structures to transfer functional annotations. Here we introduce two programs, AnnoLite and
AnnoLyze, which use the structural alignments deposited in the DBAli database.

Description: AnnoLite predicts the SCOP, CATH, EC, InterPro, PfamA, and GO terms with an
average sensitivity of ~90% and average precision of ~80%. AnnoLyze predicts ligand binding site
and domain interaction patches with an average sensitivity of ~70% and average precision of ~30%,
correctly localizing binding sites for small molecules in ~95% of its predictions.

Conclusion: The AnnoLite and AnnoLyze programs for comparative annotation of protein
structures can reliably and automatically annotate new protein structures. The programs are fully
accessible via the Internet as part of the DBAli suite of tools at http://salilab.org/DBAli/.

Background
Genomic efforts are providing us with complete genetic
blueprints for hundreds of organisms, including humans.

We are now faced with assigning, understanding, and
modifying the functions of proteins encoded by these
genomes. This task is generally facilitated by protein 3D
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AnnoLyze

Number of chains

Initial set* 78,167
LigBase** 30,126

Non-redundant set*** 4,948 (8,846 ligands)

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)
**annotated with at least one ligand in the LigBase database

***not two chains can be structurally aligned  within 3A, superimposing more than 75% of their Cα atoms, result in 
a sequence alignment  with more than 30% identity, and have a length difference inferior to 50aa  

Number of chains

Initial set* 78,167
πBase** 30,425

Non-redundant set*** 4,613 (11,641 partnerships)

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)
**annotated with at least one partner in the πBase database

***not two chains can be structurally aligned  within 3A, superimposing more than 75% of their Cα atoms, result in 
a sequence alignment  with more than 30% identity, and have a length difference inferior to 50aa  
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HTML output

AnnoLyze search

Selection based on local 

similarity

% Seq Id >20%

% Equivalent positions >75%

Similar chains in DBAli

RMSD < 4A

% Seq Id >20%

% Equivalent positions >75%

p-value >4

Chain ID

LigBase protein 

ligands

Ligands from 

LigBase are 

collected and 

binding sites 

annotated based 

on the spatial 

proximity to the 

ligand

DBAli tools

PiBase protein 

partners

Interations from 

PiBase are 

collected and 

interaction 

patches 

annotated based 

on the spatial 

proximity 

between domains

AnnoLyze

Thursday, September 23, 2010



Scoring function

37

AnnoLyze

Aloy et al. (2003) J.Mol.Biol. 332(5):989-98.

interactions are mainly due to the artifacts men-
tioned above (e.g. crystal packing and homo-
multimers). Fusions, on the other hand, are rarely
similar: only 783 out of 24,049 (or 35 out of 468 for
the different fold subset) have iRMSD values
below 5, and we could find no clear relationship
between sequence and interaction similarity. This
suggests that one should also exercise caution
when inferring a domain–domain interaction
between separate proteins based on a similar pair
of domains in a single polypeptide (e.g. see Aloy
et al.28), particularly when identities are low. This
has some bearing on the proposal to use gene
fusion events to predict protein–protein
interactions,29 or fused domain combinations in a
structural genomics initiative to uncover 3D
structures for interacting domains.30 A few
examples of fusions are also discussed below.

Studying specific interactions

The general trends can give a guide to the degree
of sequence similarity needed to be confident in a

similar interaction. However, it is also often
informative to consider a specific interaction, as
would arise in modelling or other studies
involving a few protein families. For some
domain–domain interactions, the data in Figure 2
show that interactions are preserved even at very
low sequence identities, whereas for others the
situation is reversed. For example, if one considers
PID , 20% for the P-loop ATPase superfamily
(c.37.1) interacting with the ubiquitin-like super-
family (d.15.1) all four interactions (c-Raf1 RBD,
1c1y; RalGDS, 1lfd; PI3K, 1he8; kinase byr2, 1k8r)
are similar (iRMSD , 7 Å). In contrast, the five
interactions between the P-loop ATPases and PH
domains (b.55.1; 2 interactions in Dbs, 1kz7; GEF
of TIAM1, 1foe; Nup358, 1rrp), only two of the
eight interactions with PID , 20% have
iRMSD , 10 Å, with the others showing great
differences, iRMSD as high as 18 Å with clearly
different binding surfaces.
There are obviously too many different interact-

ing domain pairs to discuss in detail. However, it
is possible to plot iRMSD versus sequence identity

Figure 2. Plots showing interaction RMSD (iRMSD) versus percentage sequence identity (PID). (A) All the inter-
actions coloured according to their SCOP classification: Family in red, Superfamily in Green and Fold in blue. (B) The
same for the different fold subset. Inset plots the interactions derived from the Pfam/PDB intersection. (C) All the
interactions coloured according to whether or not the domains are in the same polypeptide chain: intermolecular in
red, intramolecular in green and fusions in blue. (D) The same for the different fold subset. Curves show the 90th
and 80th percentiles (i.e. 90% and 80% of the data below the curve). The gap between PID ¼ 0 and 1 is because the
number of structurally equivalent residues is often much smaller than 100, making values between 0 and 1 rare.

Protein Interaction Versus Sequence Divergence 993Ligands Partners
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Sensitivity .vs. Precision

Optimal cut-off Sensitivity (%)
Recall or TPR

Precision (%)

Ligands 30% 71.9 13.7

Partners 40% 72.9 55.7

Precision = TP
TP + FP

Sensitivity = TP
TP + FN

AnnoLyze

Thursday, September 23, 2010
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Example (2azwA)
Structural Genomics Unknown Function

Molecule: MutT/nudix family protein  

Thursday, September 23, 2010
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AnnoLyze
http://www.dbali.org
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Marc A. Marti-Renom
http://bioinfo.cipf.es/sgu/

Structural Genomics Unit
Bioinformatics Department

Prince Felipe Resarch Center (CIPF), Valencia, Spain

Docking of small molecules. Vina.
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DISCLAIMER!
Credit should go to Dr. Oleg Trott, Dr. Ruth Huey and Dr. Garret M. Morris
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http://vina.scripps.edu

1

5/13/085/13/08 Using AutoDock 4 with  ADTUsing AutoDock 4 with  ADT 11

UsingUsing
AutoDock 4AutoDock 4
with ADT:with ADT:
A TutorialA Tutorial

Dr. Ruth HueyDr. Ruth Huey

&&

Dr. Garrett M. MorrisDr. Garrett M. Morris
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What is Docking?What is Docking?

““Predicting the best ways two molecules will interact.Predicting the best ways two molecules will interact.””

(1)(1) Obtain the Obtain the 3D structures3D structures of the two molecules. of the two molecules.

(2)(2) Locate the best Locate the best binding sitebinding site..

(3)(3) Determine the best Determine the best binding modesbinding modes..

5/13/085/13/08 Using AutoDock 4 with  ADTUsing AutoDock 4 with  ADT 33

What is Docking?What is Docking?

““Predicting the Predicting the bestbest  ways two molecules will interact.ways two molecules will interact.””

!! We need to We need to quantifyquantify or  or rankrank solutions; solutions;

!! We need a We need a Scoring FunctionScoring Function or force field. or force field.

““Predicting the best Predicting the best ways two molecules will interactways two molecules will interact..””

!! (ways(ways——plural) plural) The experimentally observed structureThe experimentally observed structure
may be amongst one of may be amongst one of several predicted solutionsseveral predicted solutions..

!! We need a We need a Search MethodSearch Method..

http://autodock.scripps.edu
O. Trott, A. J. Olson,  Journal of Computational Chemistry (2009)

Software News and Update
AutoDock Vina: Improving the Speed and Accuracy of

Docking with a New Scoring Function, Efficient
Optimization, and Multithreading

OLEG TROTT, ARTHUR J. OLSON
Department of Molecular Biology, The Scripps Research Institute, La Jolla, California

Received 3 March 2009; Accepted 21 April 2009
DOI 10.1002/jcc.21334

Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina
achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously
developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions,
judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism,
by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the
results in a way transparent to the user.

© 2009 Wiley Periodicals, Inc. J Comput Chem 00: 000–000, 2009

Key words: AutoDock; molecular docking; virtual screening; computer-aided drug design; multithreading; scoring
function

Introduction

Molecular docking is a computational procedure that attempts to
predict noncovalent binding of macromolecules or, more frequently,
of a macromolecule (receptor) and a small molecule (ligand) effi-
ciently, starting with their unbound structures, structures obtained
from MD simulations, or homology modeling, etc. The goal is to
predict the bound conformations and the binding affinity.

The prediction of binding of small molecules to proteins is of
particular practical importance because it is used to screen vir-
tual libraries of drug-like molecules to obtain leads for further
drug development. Docking can also be used to try to predict the
bound conformation of known binders, when the experimental holo
structures are unavailable.1

One is interested in maximizing the accuracy of these predictions
while minimizing the computer time they take, because the compu-
tational resources spent on docking are considerable. For example,
hundreds of thousands of computers are used for running docking
in FightAIDS@Home and similar projects.2

Theory

In the spectrum of computational approaches to modeling receptor-
ligand binding,

a. molecular dynamics with explicit solvent,
b. molecular dynamics and molecular mechanics with implicit

solvent, and
c. molecular docking

can be seen as making an increasing trade-off of the representational
detail for computational speed.3

Among the assumptions made by these approaches is the com-
mitment to a particular protonation state of and charge distribution
in the molecules that do not change between, for example, their
bound and unbound states. Additionally, docking generally assumes
much or all of the receptor rigid, the covalent lengths, and angles
constant, while considering a chosen set of covalent bonds freely
rotatable (referred to as active rotatable bonds here).

Importantly, although molecular dynamics directly deals with
energies (referred to as force fields in chemistry), docking is
ultimately interested in reproducing chemical potentials, which
determine the bound conformation preference and the free energy of
binding. It is a qualitatively different concept governed not only by
the minima in the energy profile but also by the shape of the profile
and the temperature.4, 5

Docking programs generally use a scoring function, which can be
seen as an attempt to approximate the standard chemical potentials
of the system. When the superficially physics-based terms like the
6–12 van der Waals interactions and Coulomb energies are used
in the scoring function, they need to be significantly empirically
weighted, in part, to account for this difference between energies
and free energies.4, 5

Correspondence to: A.J. Olson; e-mail: olson@scripps.edu

Contract/grant sponsor: NIH; contract/grant number: 2R01GM069832

© 2009 Wiley Periodicals, Inc.
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Thursday, September 23, 2010



What is docking?
Predicting the best ways two molecules interact. 

Obtain the 3D structures of the two molecules
Locate the best binding site (Remember AnnoLyze? :-))
Determine the best binding mode.

Thursday, September 23, 2010



What is docking?

Predicting the best ways two molecules interact. 

We need to quantify or rank solutions
We need a good scoring function for such ranking

Scoring!
Thursday, September 23, 2010



What is docking?

Predicting the best ways two molecules interact. 

X-ray and NMR structures are just ONE of the possible solutions
There is a need for a search solution

Sampling!
Thursday, September 23, 2010



BIOINFORMATICS

REPRESENTATION
SCORING 

SAMPLING
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REPRESENTATION

2
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Defining a DockingDefining a Docking

!! PositionPosition

!! xx, , yy, , zz

!! OrientationOrientation

!! qxqx,,  qyqy,,  qzqz,,  qwqw

!! TorsionsTorsions

!! !!11, , !!22, , ……  !!nn

xx

yy

zz

!!11

5/13/085/13/08 Using AutoDock 4 with  ADTUsing AutoDock 4 with  ADT 55

Key aspects of dockingKey aspects of docking……

!! Scoring FunctionsScoring Functions

!! What are they?What are they?

!! Search MethodsSearch Methods

!! How do they work?How do they work?

!! Which search method should I use?Which search method should I use?

!! DimensionalityDimensionality

!! What is it?What is it?

!! Why is it important?Why is it important?
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Scoring Function in AutoDock 4:Scoring Function in AutoDock 4:
MotivationMotivation

!! To improve scoring functionTo improve scoring function

!! improved hydrogen bondingimproved hydrogen bonding

!! new desolvation energy term & internalnew desolvation energy term & internal
desolvation energydesolvation energy

!! larger training set and new weightslarger training set and new weights

!! To permit protein sidechain, loop or domain flexibilityTo permit protein sidechain, loop or domain flexibility
(new DPF keyword, (new DPF keyword, ““flexresflexres””))

!! treats proteintreats protein’’s moving atoms as part of the non-s moving atoms as part of the non-
translating, non-reorienting part of the torsion treetranslating, non-reorienting part of the torsion tree

!! To simulate the unbound state of the ligand &To simulate the unbound state of the ligand &
proteinprotein
!! extendedextended, , compactcompact and  and crystallographiccrystallographic ligand ligand

conformationsconformations

! 

"G = (Vbound
L#L

#Vunbound
L#L

)+ (Vbound
P#P

#Vunbound
P#P

)+ (Vbound
P#L

#Vunbound
P#L

)#T"Sconf
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SCORING
AutoDock Vina

ΔGbinding = ΔGvdW + ΔGelec + ΔGhbond + ΔGdesolv + ΔGtors

• ΔGvdW

12-6 Lennard-Jones potential
• ΔGelec

Coulombic with Solmajer-dielectric
• ΔGhbond

12-10 Potential with Goodford Directionality
• ΔGdesolv

Stouten Pairwise Atomic Solvation Parameters
• ΔGtors

Number of rotatable bonds

Thursday, September 23, 2010



PROBLEM!
Very CPU time consuming...

Dihidrofolate reductase with a metotrexate (4dfr.pdb)

N=T360/i

N: number of conformations

T: number of rotable bonds

I: incremental degrees

Metotrexato
10 rotable bonds
30º increments (discrete)
1012 plausible conformations!

Thursday, September 23, 2010



SOLUTION
Use of grid maps!

4
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Why Use Grid Maps?Why Use Grid Maps?

!! Saves time:Saves time:
!! Pre-computing the interactions on a grid isPre-computing the interactions on a grid is

typically 100 times faster than traditionaltypically 100 times faster than traditional
Molecular Mechanics methodsMolecular Mechanics methods

!! O(NO(N22)) calculation becomes  calculation becomes O(N)O(N)

!! AutoDock uses AutoDock uses trilinear interpolationtrilinear interpolation
!! to compute the score of a candidate dockedto compute the score of a candidate docked

ligand conformationligand conformation

!! AutoDock needs one map for each atom typeAutoDock needs one map for each atom type
in the in the ligand(s)ligand(s) and  and moving parts of receptormoving parts of receptor
((ifif there are any) there are any)

!! Drawback: The receptor is Drawback: The receptor is conformationallyconformationally
rigid (although rigid (although ‘‘vdW softenedvdW softened’’))

!! Limits the search spaceLimits the search space

5/13/085/13/08 Using AutoDock 4 with  ADTUsing AutoDock 4 with  ADT 1111

Setting up the AutoGrid BoxSetting up the AutoGrid Box
!! Macromolecule atoms in the rigid partMacromolecule atoms in the rigid part
!! Center:Center:

!! center of ligand;center of ligand;
!! center of macromolecule;center of macromolecule;
!! a picked atom; a picked atom; oror
!! typed-in x-, y- and z-coordinates.typed-in x-, y- and z-coordinates.

!! Grid point spacingGrid point spacing::
!! default is default is 0.3750.375ÅÅ (from 0.2 (from 0.2ÅÅ to 1.0 to 1.0ÅÅ: ).: ).

!! Number of grid points in each dimension:Number of grid points in each dimension:
!! only give only give even numberseven numbers (from  (from   2 2 !!  2 2 !!   2  to 2  to     126 126 !!   126 126 !!   126).126).
!! AutoGrid adds one point to each dimension.AutoGrid adds one point to each dimension.

!! Grid Maps depend on the orientation of the macromolecule.Grid Maps depend on the orientation of the macromolecule.
!! Make sure all the flexible parts of the macromolecule are inside the gridMake sure all the flexible parts of the macromolecule are inside the grid

To make a To make a ‘‘moleculemolecule’’ PDB file to show where the grid box is, use the script  PDB file to show where the grid box is, use the script ‘‘makeboxmakebox’’::
!! % makebox mol.gpf > mol.gpf.box.pdb% makebox mol.gpf > mol.gpf.box.pdb

5/13/085/13/08 Using AutoDock 4 with  ADTUsing AutoDock 4 with  ADT 1212

Relaxed Complex MethodRelaxed Complex Method

Lin, J. H., Perryman, A. L.,Lin, J. H., Perryman, A. L., Schames Schames, J. R., and, J. R., and
McCammon, J. A. (2002).  McCammon, J. A. (2002).  ““Computational drug designComputational drug design
accommodating receptor flexibility: The relaxed complexaccommodating receptor flexibility: The relaxed complex
scheme.scheme.””  Journal of the American Chemical SocietyJournal of the American Chemical Society, , 124124::
5632-5633.5632-5633.

McCammon, J. (2005). McCammon, J. (2005). ““Target flexibility in molecularTarget flexibility in molecular
recognition.recognition.””  Biochimica et Biophysica ActaBiochimica et Biophysica Acta, , 17541754: 221-224.: 221-224.

Perryman, A. L. & McCammon, J. A. (2002).Perryman, A. L. & McCammon, J. A. (2002).  AutoDockingAutoDocking
dinucleotides dinucleotides to the HIV-1 integrase core domain:to the HIV-1 integrase core domain:
Exploring possible binding sites for viral and genomicExploring possible binding sites for viral and genomic
DNA.DNA.  J Med ChemJ Med Chem, , 4545: 5624-5627.: 5624-5627.

Schames, J.R., Henchman, R.H., Siegel, J.S., Sotriffer,
C.A., Ni, H., and McCammon, J.A. (2004) Discovery of aDiscovery of a
novel binding trench in HIV integrasenovel binding trench in HIV integrase.. J Med Chem, 47(8):
p. 1879-81.

Docking of the 5CITEP inhibitor to snapshots of a 2 nsDocking of the 5CITEP inhibitor to snapshots of a 2 ns
HIV-1 integrase MD trajectory indicated a previously uncharacterized trenchHIV-1 integrase MD trajectory indicated a previously uncharacterized trench
adjacent to the active site that intermittently opens. Further docking studies ofadjacent to the active site that intermittently opens. Further docking studies of
novel ligands with the potential to bind to both regions showed greater selectivenovel ligands with the potential to bind to both regions showed greater selective
affinity when able to bind to the trench. Our ranking of ligands is open toaffinity when able to bind to the trench. Our ranking of ligands is open to
experimental testing, and our approach suggests a new target for HIV-1experimental testing, and our approach suggests a new target for HIV-1
therapeutics.therapeutics.

Saves lots of time (compared to classical MM/MD)
Need to map each atom to a grid point
Limits the search space!
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AutoGrid Vina
Use of grid maps!

4
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Why Use Grid Maps?Why Use Grid Maps?

!! Saves time:Saves time:
!! Pre-computing the interactions on a grid isPre-computing the interactions on a grid is

typically 100 times faster than traditionaltypically 100 times faster than traditional
Molecular Mechanics methodsMolecular Mechanics methods

!! O(NO(N22)) calculation becomes  calculation becomes O(N)O(N)

!! AutoDock uses AutoDock uses trilinear interpolationtrilinear interpolation
!! to compute the score of a candidate dockedto compute the score of a candidate docked

ligand conformationligand conformation

!! AutoDock needs one map for each atom typeAutoDock needs one map for each atom type
in the in the ligand(s)ligand(s) and  and moving parts of receptormoving parts of receptor
((ifif there are any) there are any)

!! Drawback: The receptor is Drawback: The receptor is conformationallyconformationally
rigid (although rigid (although ‘‘vdW softenedvdW softened’’))

!! Limits the search spaceLimits the search space
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Setting up the AutoGrid BoxSetting up the AutoGrid Box
!! Macromolecule atoms in the rigid partMacromolecule atoms in the rigid part
!! Center:Center:

!! center of ligand;center of ligand;
!! center of macromolecule;center of macromolecule;
!! a picked atom; a picked atom; oror
!! typed-in x-, y- and z-coordinates.typed-in x-, y- and z-coordinates.

!! Grid point spacingGrid point spacing::
!! default is default is 0.3750.375ÅÅ (from 0.2 (from 0.2ÅÅ to 1.0 to 1.0ÅÅ: ).: ).

!! Number of grid points in each dimension:Number of grid points in each dimension:
!! only give only give even numberseven numbers (from  (from   2 2 !!  2 2 !!   2  to 2  to     126 126 !!   126 126 !!   126).126).
!! AutoGrid adds one point to each dimension.AutoGrid adds one point to each dimension.

!! Grid Maps depend on the orientation of the macromolecule.Grid Maps depend on the orientation of the macromolecule.
!! Make sure all the flexible parts of the macromolecule are inside the gridMake sure all the flexible parts of the macromolecule are inside the grid

To make a To make a ‘‘moleculemolecule’’ PDB file to show where the grid box is, use the script  PDB file to show where the grid box is, use the script ‘‘makeboxmakebox’’::
!! % makebox mol.gpf > mol.gpf.box.pdb% makebox mol.gpf > mol.gpf.box.pdb
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Relaxed Complex MethodRelaxed Complex Method

Lin, J. H., Perryman, A. L.,Lin, J. H., Perryman, A. L., Schames Schames, J. R., and, J. R., and
McCammon, J. A. (2002).  McCammon, J. A. (2002).  ““Computational drug designComputational drug design
accommodating receptor flexibility: The relaxed complexaccommodating receptor flexibility: The relaxed complex
scheme.scheme.””  Journal of the American Chemical SocietyJournal of the American Chemical Society, , 124124::
5632-5633.5632-5633.

McCammon, J. (2005). McCammon, J. (2005). ““Target flexibility in molecularTarget flexibility in molecular
recognition.recognition.””  Biochimica et Biophysica ActaBiochimica et Biophysica Acta, , 17541754: 221-224.: 221-224.

Perryman, A. L. & McCammon, J. A. (2002).Perryman, A. L. & McCammon, J. A. (2002).  AutoDockingAutoDocking
dinucleotides dinucleotides to the HIV-1 integrase core domain:to the HIV-1 integrase core domain:
Exploring possible binding sites for viral and genomicExploring possible binding sites for viral and genomic
DNA.DNA.  J Med ChemJ Med Chem, , 4545: 5624-5627.: 5624-5627.

Schames, J.R., Henchman, R.H., Siegel, J.S., Sotriffer,
C.A., Ni, H., and McCammon, J.A. (2004) Discovery of aDiscovery of a
novel binding trench in HIV integrasenovel binding trench in HIV integrase.. J Med Chem, 47(8):
p. 1879-81.

Docking of the 5CITEP inhibitor to snapshots of a 2 nsDocking of the 5CITEP inhibitor to snapshots of a 2 ns
HIV-1 integrase MD trajectory indicated a previously uncharacterized trenchHIV-1 integrase MD trajectory indicated a previously uncharacterized trench
adjacent to the active site that intermittently opens. Further docking studies ofadjacent to the active site that intermittently opens. Further docking studies of
novel ligands with the potential to bind to both regions showed greater selectivenovel ligands with the potential to bind to both regions showed greater selective
affinity when able to bind to the trench. Our ranking of ligands is open toaffinity when able to bind to the trench. Our ranking of ligands is open to
experimental testing, and our approach suggests a new target for HIV-1experimental testing, and our approach suggests a new target for HIV-1
therapeutics.therapeutics.

Center of grid *
center of ligand
center of receptor
a selected atom or coordinate

Box dimension *
Grid resolution (spacing)

default 0.375 Angstroms
Number of grid points (dimension)

use ONLY even numbers
MAKE SURE ALL LIGAND IS INSIDE GRID AND CAN MOVE!

With VINA much simplified (*)
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Search algorithms
Simulated Annealing
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Use of a Genetic Algorithm as a sampling method

1

2
3

4

111010.010110.001011.010010

Φ1 Φ2
...

Φ1= 1×25 + 1×24 + 1×23 + 0×22 + 1×21 + 0×20 = 58°

•Each conformation is described as a set of rotational 
angles.

•64 possible angles are allowed to each of the bond in 
the ligand.

•Each plausible dihedral angle is codified in a set of 
binary bits (26=64)

•Each conformation is codified by a so called 
chromosome with 4 × 6 bits (0 or 1)

Search algorithms
Genetic Algorithm
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Population (ie, set of chromosomes or configurations)

011010.010110.011010.010111
111010.010110.001011.010010
001010.010101.000101.010001
101001.101110.101010.001000
001010.101000.011101.001011

 Chromosome

 Gene

Search algorithms
Genetic Algorithm
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Genetic operators...

011010.010110.011010.010111

011010.011110.011110.010111

 Single 
mutation

Search algorithms
Genetic Algorithm
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001010.010101.000101.010001

011010.010110.011010.010111

001010.010101.011010.010111

011010.010110. 000101.010001

 Recombination

Genetic operators...

Search algorithms
Genetic Algorithm
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011010.010110.011010.010111
111010.010110.001011.010010
001010.010101.000101.010001
101001.101110.101010.001000
001010.101000.011101.001011

111110.010010.011110.010101
101010.110110.011011.011010
001010.010101.000101.010001
101101.101010.101011.001100
011010.100000.011001.101011

Migration

Genetic operators...

Search algorithms
Genetic Algorithm
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AutoDock Example
Discovery of a novel binding trench in HIV Integrase

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81
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ISENTRESS example

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81

One structure known with 5CITEP
Not clear (low resolution)
Binding near to DNA interacting site
Loop near the binding

Docking + Molecular Dynamics
AMBER snapshots
AutoDock flexible torsion thetetrazolering 
and indole ring. 
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ISENTRESS example

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81

The butterfly compounds were docked to the protein
conformations using AutoDock. The identical docking
protocol was used as with the original 5CITEP docking.
The same two dihedrals in the tetrazole/keto-enol were
allowed to rotate, giving four flexible dihedrals per
compound. The results of docking the butterfly com-
pounds to the different protein snapshots are displayed
in the histograms in Figure 3. Each histogram is
constructed from all the docked energies of a single
butterfly compound. The bars in green represent dock-
ing to open snapshots, the bars in red represent docking

to closed snapshots, and the bars in blue represent
docking to the X-ray structure.

Those butterfly compounds that could take advantage
of both the active site and the trench docked to the open
MD snapshots at lower energies than those butterfly
compounds that could not. The compounds showed no
significant energetic difference when docking to MD
snapshots of the closed trench, or to the X-ray structure.

All 10 compounds docked with better energies to open
snapshots than to closed or X-ray structures. The
greatest difference in energies was seen with compounds
that could take full advantage of the trench (D and I,
with a ∼2 kcal/mol preference for the open snapshots).
Notably, the structures of these ligands are most similar
to the two conformations of the 5CITEP that we saw
earlier when combined. Figure 4 illustrates a typical
docking conformation for these two compounds to an
open protein conformation.

The energies for docking to closed snapshots and to
the X-ray structure are approximately the same for all
10 compounds. This reinforces the idea that the X-ray
structure can be thought of as a closed conformation.

Discussion. The structure of HIV-1 IN in the vicinity
of the active site region is not confidently known. By
combining MD with flexible-ligand docking, we have
shown the existence of a new and possibly important
binding region, the trench. This open protein conforma-
tion was noted in a majority of the snapshots, suggesting
that it is energetically stable. The trench is lined with
residues from the loop region that had been built in
previously (Ile141-Asn144). This reinforces the useful-
ness of the approach whereby MD simulations be run
on proteins that have ambiguous loops built in and
reconstructed.

Figure 1. The two predominant docking conformations of
5CITEP to an open MD snapshot of integrase. The ligand in
green shows 5CITEP in the orientation similar to the crystal
structure of the complex. The ligand in yellow shows 5CITEP
in its “flipped” orientation. Residues lining both ligand posi-
tions are highlighted.

Figure 2. The 10 butterfly compounds. The R group is
modeled after the 5CITEP inhibitor. The compounds comprise
all possible arrangements of the two R groups.

Figure 3. The energy docking histograms for the butterfly
compounds. Data from the open snapshots are shown in green,
from the closed snapshots in red, and from the X-ray structure
in blue. The single horizontal bars indicate overlapping data.
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These results bring up some important issues. We
have discovered a potentially important part of the IN
enzyme which should be considered for drug targeting.
Earlier work suggests that residues 141-148 constitute
an important region for the enzymatic mechanism, and
that its behavior could point to the need for flexibility
for efficient catalytic activity.9 Additionally, the region
between residues 139-152 had been identified as the
one interacting with DNA.10

Some of the butterfly compounds were able to take
advantage of the open trench and others were not,
providing a testable prediction that we feel is reliable
and reproducible, within the limitation of the theory
applied. This is especially true because the butterfly
compounds showed no significant energetic difference
when docking to MD snapshots that were closed.

The work shown here used ligand shape as the
optimizing factor. We did not look at variations in
functional groups, charge, or spacer length. These are
obvious next steps for pharmacophore development of
HIV-1 IN. The Relaxed-Complex method has proven an
effective tool for the general ranking of compounds

within families. Given a new family of inhibitors, we
could theoretically rank binding as well.
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Figure 4. Compounds D (blue) and I (red) superimposed in
the same open MD snapshot. Each ligand samples the active
site and the trench for maximal binding energy.
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The butterfly compounds were docked to the protein
conformations using AutoDock. The identical docking
protocol was used as with the original 5CITEP docking.
The same two dihedrals in the tetrazole/keto-enol were
allowed to rotate, giving four flexible dihedrals per
compound. The results of docking the butterfly com-
pounds to the different protein snapshots are displayed
in the histograms in Figure 3. Each histogram is
constructed from all the docked energies of a single
butterfly compound. The bars in green represent dock-
ing to open snapshots, the bars in red represent docking

to closed snapshots, and the bars in blue represent
docking to the X-ray structure.

Those butterfly compounds that could take advantage
of both the active site and the trench docked to the open
MD snapshots at lower energies than those butterfly
compounds that could not. The compounds showed no
significant energetic difference when docking to MD
snapshots of the closed trench, or to the X-ray structure.

All 10 compounds docked with better energies to open
snapshots than to closed or X-ray structures. The
greatest difference in energies was seen with compounds
that could take full advantage of the trench (D and I,
with a ∼2 kcal/mol preference for the open snapshots).
Notably, the structures of these ligands are most similar
to the two conformations of the 5CITEP that we saw
earlier when combined. Figure 4 illustrates a typical
docking conformation for these two compounds to an
open protein conformation.

The energies for docking to closed snapshots and to
the X-ray structure are approximately the same for all
10 compounds. This reinforces the idea that the X-ray
structure can be thought of as a closed conformation.

Discussion. The structure of HIV-1 IN in the vicinity
of the active site region is not confidently known. By
combining MD with flexible-ligand docking, we have
shown the existence of a new and possibly important
binding region, the trench. This open protein conforma-
tion was noted in a majority of the snapshots, suggesting
that it is energetically stable. The trench is lined with
residues from the loop region that had been built in
previously (Ile141-Asn144). This reinforces the useful-
ness of the approach whereby MD simulations be run
on proteins that have ambiguous loops built in and
reconstructed.

Figure 1. The two predominant docking conformations of
5CITEP to an open MD snapshot of integrase. The ligand in
green shows 5CITEP in the orientation similar to the crystal
structure of the complex. The ligand in yellow shows 5CITEP
in its “flipped” orientation. Residues lining both ligand posi-
tions are highlighted.

Figure 2. The 10 butterfly compounds. The R group is
modeled after the 5CITEP inhibitor. The compounds comprise
all possible arrangements of the two R groups.

Figure 3. The energy docking histograms for the butterfly
compounds. Data from the open snapshots are shown in green,
from the closed snapshots in red, and from the X-ray structure
in blue. The single horizontal bars indicate overlapping data.
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Next, AutoDockNext, AutoDock……

!! Now for some specifics aboutNow for some specifics about
AutoDockAutoDock……

!! More information can be found in theMore information can be found in the
User GuideUser Guide!!

5/13/085/13/08 Using AutoDock 4 with  ADTUsing AutoDock 4 with  ADT 2626

AutoDock / ADTAutoDock / ADT

Python, interpretedPython, interpretedC & C++, compiledC & C++, compiled

Graphical User Interface.Graphical User Interface.
PMVPMV ! !  PythonPython

GUI-less, self-logging &GUI-less, self-logging &
rescriptablerescriptable

Command-line.Command-line.

awk, shell & Python scripts.awk, shell & Python scripts.

Text editorsText editors

Visualizing, set-upVisualizing, set-upNumber crunchingNumber crunching

2000200019901990

ADTADTAutoDock & AutoGridAutoDock & AutoGrid
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Community (1991 - mid 2005)Community (1991 - mid 2005)

!! AutoDock licensesAutoDock licenses

!! Papers citing AutoDockPapers citing AutoDock
(source: Science Citation(source: Science Citation
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Number of Citations for Docking ProgramsNumber of Citations for Docking Programs
——ISI Web of Science (2005)ISI Web of Science (2005)

Sousa, S.F., Fernandes, P.A. & Ramos, M.J. (2006)
Protein-Ligand Docking: Current StatusProtein-Ligand Docking: Current Status
and Future Challengesand Future Challenges Proteins, 65:15-26
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and Future Challengesand Future Challenges Proteins, 65:15-26
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Practical ConsiderationsPractical Considerations

!! What problem does AutoDock solve?What problem does AutoDock solve?
!! FlexibleFlexible ligands (4.0  ligands (4.0 flexibleflexible protein). protein).

!! What range of problems is feasible?What range of problems is feasible?
!! Depends on the search method:Depends on the search method:

!! LGALGA >  > GAGA >>  >> SASA >>  >> LSLS

!! SASA : can output trajectories,  : can output trajectories, DD < about 8 torsions. < about 8 torsions.

!! LGALGA :  : DD < about 8-32 torsions. < about 8-32 torsions.

!! When is AutoDock not suitable?When is AutoDock not suitable?
!! No 3D-structures are available;No 3D-structures are available;

!! Modelled structure of poor quality;Modelled structure of poor quality;

!! Too many (32 torsions, 2048 atoms, 22 atom types);Too many (32 torsions, 2048 atoms, 22 atom types);

!! Target protein too flexible.Target protein too flexible.
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1990 (AutoDock)

Number crunching (CPU expensive)

Command-line!

C & C++ compiled

Vina AutoDock Tools

2000

Visualizing set-up

Graphical user interphase

Python interpreter
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Number of Citations for Docking ProgramsNumber of Citations for Docking Programs
——ISI Web of Science (2005)ISI Web of Science (2005)

Sousa, S.F., Fernandes, P.A. & Ramos, M.J. (2006)
Protein-Ligand Docking: Current StatusProtein-Ligand Docking: Current Status
and Future Challengesand Future Challenges Proteins, 65:15-26
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Trends in Citations of Docking ProgramsTrends in Citations of Docking Programs
——ISI Web of Science (2005)ISI Web of Science (2005)

Sousa, S.F., Fernandes, P.A. & Ramos, M.J. (2006)
Protein-Ligand Docking: Current StatusProtein-Ligand Docking: Current Status
and Future Challengesand Future Challenges Proteins, 65:15-26
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Practical ConsiderationsPractical Considerations

!! What problem does AutoDock solve?What problem does AutoDock solve?
!! FlexibleFlexible ligands (4.0  ligands (4.0 flexibleflexible protein). protein).

!! What range of problems is feasible?What range of problems is feasible?
!! Depends on the search method:Depends on the search method:

!! LGALGA >  > GAGA >>  >> SASA >>  >> LSLS

!! SASA : can output trajectories,  : can output trajectories, DD < about 8 torsions. < about 8 torsions.

!! LGALGA :  : DD < about 8-32 torsions. < about 8-32 torsions.

!! When is AutoDock not suitable?When is AutoDock not suitable?
!! No 3D-structures are available;No 3D-structures are available;

!! Modelled structure of poor quality;Modelled structure of poor quality;

!! Too many (32 torsions, 2048 atoms, 22 atom types);Too many (32 torsions, 2048 atoms, 22 atom types);

!! Target protein too flexible.Target protein too flexible.

Thursday, September 23, 2010



Vina 1.1.1
Things to know before using AutoDock

11

5/13/085/13/08 Using AutoDock 4 with  ADTUsing AutoDock 4 with  ADT 3131

Using AutoDock: Step-by-StepUsing AutoDock: Step-by-Step

!! Set up ligand PDBQTSet up ligand PDBQT——using using ADTADT’’s s ““LigandLigand”” menu menu

!! OPTIONAL:OPTIONAL: Set up flexible receptor PDBQT Set up flexible receptor PDBQT——usingusing
ADTADT’’s s ““Flexible ResiduesFlexible Residues”” menu menu

!! Set up macromolecule & grid mapsSet up macromolecule & grid maps——using using ADTADT’’s s ““GridGrid””
menumenu

!! Pre-compute AutoGrid maps for all atom types in your set ofPre-compute AutoGrid maps for all atom types in your set of
ligandsligands——using using ““autogrid4autogrid4””

!! Perform dockings of ligand to targetPerform dockings of ligand to target——using using ““autodock4autodock4””,,
and in parallel if possible.and in parallel if possible.

!! Visualize AutoDock resultsVisualize AutoDock results——using using ADTADT’’s s ““AnalyzeAnalyze”” menu menu

!! Cluster dockingsCluster dockings——using using ““analysisanalysis”” DPF command in DPF command in
““autodock4autodock4”” or  or ADTADT’’s s ““AnalyzeAnalyze”” menu for parallel docking menu for parallel docking
results.results.
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AutoDock 4 File FormatsAutoDock 4 File Formats

Prepare the Following Input FilesPrepare the Following Input Files
!! Ligand PDBQT fileLigand PDBQT file

!! Rigid Macromolecule PDBQT fileRigid Macromolecule PDBQT file

!! Flexible Macromolecule PDBQT file (Flexible Macromolecule PDBQT file (““FlexresFlexres””))

!! AutoGrid Parameter File (GPF)AutoGrid Parameter File (GPF)
!! GPF depends on atom types in:GPF depends on atom types in:

!! Ligand PDBQT fileLigand PDBQT file

!! OptionalOptional    flexible residue PDBQT files)flexible residue PDBQT files)

!! AutoDock Parameter File (DPF)AutoDock Parameter File (DPF)

Run AutoGrid 4Run AutoGrid 4
!! Macromolecule PDBQT + GPF  Macromolecule PDBQT + GPF  !!   Grid Maps, GLG  Grid Maps, GLG

Run AutoDock 4Run AutoDock 4
!! Grid Maps + Ligand PDBQT  + [Grid Maps + Ligand PDBQT  + [Flexres Flexres PDBQT +]PDBQT +]

DPF  DPF  !!  DLG DLG (dockings & clustering) (dockings & clustering)

Run ADT to Analyze DLGRun ADT to Analyze DLG
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Things you need to do before usingThings you need to do before using
AutoDock 4AutoDock 4

Ligand:Ligand:
!! Add all hydrogens, compute Gasteiger charges, and mergeAdd all hydrogens, compute Gasteiger charges, and merge

non-polar H; also assign AutoDock 4 atom typesnon-polar H; also assign AutoDock 4 atom types

!! Ensure total charge corresponds to Ensure total charge corresponds to tautomeric tautomeric statestate

!! Choose torsion tree root & rotatable bondsChoose torsion tree root & rotatable bonds

Macromolecule:Macromolecule:
!! Add all hydrogens, computeAdd all hydrogens, compute Gasteiger  Gasteiger charges, and mergecharges, and merge

non-polar H; also assign AutoDock 4 atom typesnon-polar H; also assign AutoDock 4 atom types

!! Assign Stouten atomic solvation parametersAssign Stouten atomic solvation parameters

!! Optionally, create a flexible residues PDBQT in addition toOptionally, create a flexible residues PDBQT in addition to
the rigid PDBQT filethe rigid PDBQT file

!! Compute AutoGrid mapsCompute AutoGrid maps
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Vina 1.1.1
Good that we have AutoDock Tools (ATD)

http://autodock.scripps.edu/resources/adt
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Good we have a nice tutorial

http://vina.scrippts.edu/tutorial.html
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What is Docking?What is Docking?

““Predicting the best ways two molecules will interact.Predicting the best ways two molecules will interact.””

(1)(1) Obtain the Obtain the 3D structures3D structures of the two molecules. of the two molecules.

(2)(2) Locate the best Locate the best binding sitebinding site..

(3)(3) Determine the best Determine the best binding modesbinding modes..
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What is Docking?What is Docking?

““Predicting the Predicting the bestbest  ways two molecules will interact.ways two molecules will interact.””

!! We need to We need to quantifyquantify or  or rankrank solutions; solutions;

!! We need a We need a Scoring FunctionScoring Function or force field. or force field.

““Predicting the best Predicting the best ways two molecules will interactways two molecules will interact..””

!! (ways(ways——plural) plural) The experimentally observed structureThe experimentally observed structure
may be amongst one of may be amongst one of several predicted solutionsseveral predicted solutions..

!! We need a We need a Search MethodSearch Method..
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