3D folding of chromosomal domains in relation to gene expression

Marc A. Marti-Renom

http://sgu.bioinfo.cipf.es

Structural Genomics Unit Bioinformatics & Genomics Department Prince Felipe Research Center (CIPF), Valencia, Spain

Can we relate structure and expression?

Complex genomes

Resolution

Limited knowledge...

Knowledge

Integrative and iterative approach

Structure determination

Integrative Modeling Platform

http://www.integrativemodeling.org

Alber et al. Nature (2007) vol. 450 (7170) pp. 683-94

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 5C data

5C technology

Detecting up to millions of interactions in parallel

http://my5C.umassmed.edu

Dostie et al. Genome Res (2006) vol. 16 (10) pp. 1299-309

5C "copies" the 3C library into a 5C library containing only ligation junctions

Performed at high levels of multiplexing:

2,000 primers detect 1,000,000 unique interactions in 1 reaction

Human α -globin domain

ENm008 genomic structure and environment

ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816

The ENCODE data for ENm008 region was obtained from the UCSC Genome Browser tracks for: RefSeq annotated genes, Affymetrix/CSHL expression data (Gingeras Group at Cold Spring Harbor), Duke/NHGRI DNasel Hypersensitivity data (Crawford Group at Duke University), and Histone Modifications by Broad Institute ChIP-seq (Bernstein Group at Broad Institute of Harvard and MIT).

Human α -globin domain

ENm008 genomic structure and environment

ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816

Integrative Modeling

http://www.integrativemodeling.org

Representation

Harmonic

$$H_{i,j} = k \left(d_{i,j} - d_{i,j}^0 \right)^2$$

Harmonic Lower Bound

$$\begin{cases} if \ d_{i,j} \le d_{i,j}^{0}; & lbH_{i,j} = k \left(d_{i,j} - d_{i,j}^{0} \right) \\ if \ d_{i,j} > d_{i,j}^{0}; & lbH_{i,j} = 0 \end{cases}$$

Harmonic Upper Bound

$$\begin{cases} if \ d_{i,j} \ge d_{i,j}^{0}; & ubH_{i,j} = k \left(d_{i,j} - d_{i,j}^{0} \right)^{2} \\ if \ d_{i,j} < d_{i,j}^{0}; & ubH_{i,j} = 0 \end{cases}$$

Scoring

Optimization

Clustering

Not just one solution

Not just one solution

and we can de-convolute them!

Consistency

GM12878 Cluster #1 2780 model

Fragment

Regulatory elements

GM12878 Cluster #1 2780 model

K562 Cluster #2 314 model

Compactness

GM12878 Cluster #1 2780 model

Multi-loops

GM12878 Cluster #1 2780 model

69Kb

K562 Cluster #2

73

314 model

Expression

GM12878 Cluster #1 2780 model

FISH validation

Summary

5C data results in comprehensive interaction matrices to build a consistent 3D model

Summary

Models allow for 5C data de-convolution

Models allow for 5C data de-convolution

Summary

Selected models reproduce known (and new) interactions

Large-scale changes in conformation correlate with gene expression of resident genes

The models have been partially validated by FISH

GM12878

K562

Phillips and Corces. Cell (2009)

Acknowledgments

Davide Baù Postdoctoral fellow

Amartya Sanyal Postdoctoral Fellow

University of Massachusetts

UMASS Medical School

Bryan Lajoie Bioinformatician

Emidio Capriotti Postdoctoral fellow

Meg Byron Research Associate

Jeanne Lawrence Department of Cell Biology University of Massachusetts Medical School

Worcester, MA, USA

Job Dekker

Program in Gene Function and Expression Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester, MA, USA

Structural Genomics Unit Bioinformatics and Genomics Department Centro de Investigación Príncipe Felipe Valencia, Spain

D. Baù, A. Sanyal, B. Lajoie, E. Capriotti, M. Byron, J. Lawrence, J. Dekker, and M.A. Marti-Renom. Nature Structural & Molecular Biology (2010) *in press (5th of December)*.

http://sgu.bioinfo.cipf.es http://integrativemodeling.org

Thursday, November 25, 2010