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The “Chromatin Globule” model
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of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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PolII

HBB

Eraf

Factory

in-out position of active genes, relative to factories, was related to
differential positioning relative to the chromosome territory. To test
this, we assessed the position of the infrequently transcribed gene Uros
relative to the chromosome 7 territory (Supplementary Fig. 2 online).
Although Uros is actively transcribed only 29% of the time, it was
found outside its chromosome territory in 79% of cases. In contrast,
the inactive gene Fgfr2 was outside the chromosome territory in only
19% of cases (Supplementary Fig. 2 online). These results confirm
that expressed genes are often located outside chromosome territories
and inactive genes are more often inside chromosome territories. But
these data do not show a correlation between positioning relative to
the chromosome territory and the on-off transcriptional behavior of
active genes. Instead, our data suggest that genes with transcriptional
potential are preferentially located outside chromosome territories,
but this alone is not sufficient for transcription.

RNAP II factories are limiting in vivo
We noticed that the number of RNAP II foci in erythroid cells was
markedly lower than that reported for fibroblast-like cell lines. Figure 6
shows deconvoluted, projected images derived from 3D image stacks
showing all the RNAP II transcription factories in single cell nuclei

from various tissues. We found that erythroid cells had, on average,
only 100–300 RNAP II foci per nucleus. Many other tissue types
have equivalent numbers of RNAP II foci, suggesting that erythroid
cells do not have abnormally low numbers of RNAP II foci.
In contrast, limited-passage mouse embryonic fibroblasts (MEFs)
have a much greater number and higher density of RNAP II foci,
similar to previous reports for HeLa and fibroblast cell lines. We
conclude that the number of transcription factories in tissues is far
more restricted than indicated by previous estimates from cultured
cells. It is, perhaps, not surprising that colocalization of transcribed
genes was not observed in a recent study using cultured fibroblast-like
cells27. Our data indicate that erythroid and other differentiated or
committed tissue types have a limited number of available transcription
sites. Coupled with estimates from expressed-sequence tag databases,
which show that erythroid cells express at least 4,000 genes (data not
shown), we conclude that many genes are obliged to seek out and
share the same factory.

3C analysis
Finally, we corroborated the colocalization of transcribed alleles by a
completely independent method. 3C generates a population-average
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Figure 6 Comparison of RNAP II foci in several tissue types and MEFs. (a) Deconvoluted maximum-intensity projections of image stacks of nuclei
immunostained for RNAP II. E10, embryonic blood; E14, fetal liver erythroid; AS, adult anemic spleen erythroid; Sp, normal adult spleen; Th, adult thymus;
Br, fetal brain. Scale bar, 10 mm. (b) Numbers of RNAP II foci counted for each nucleus shown in a.

Figure 5 Actively transcribed genes colocalize to
shared transcription factories. (a) Single optical
section of a triple-label DNA immuno-FISH on
erythroid cell, showing Hbb (green), Eraf (red)
and RNAP II foci (blue). The merged and
separate channels of the signals are shown in the
side panels. On the left of the main panel, an
Hbb signal alone associates with an RNAP II
focus. On the right, two colocalizing signals
associate with the same RNAP II focus. Scale
bar, 5 mm. (b) A separate optical section of the
same cell showing the second Eraf allele, which
does not associate with an RNAP II focus.
(c) Box and whiskers plot of the distributions of
3D measurements of the separation distance
between Hbb and Eraf loci (n ¼ 84), divided into
RNAP II–associated versus nonassociated.
(d) Triple-label RNA immuno-FISH on erythroid
cell showing Hbb-b1 (red), Eraf (green) and
RNAP II (blue). Left panels, colocalized trans-
cription signals associating with the same RNAP
II focus. Right panels, separate transcription
signals associating with distant RNAP II foci.
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We developed a general approach that combines chromosome 
conformation capture carbon copy (5C) with the Integrated 
Modeling Platform (IMP) to generate high-resolution three-
dimensional models of chromatin at the megabase scale. 
We applied this approach to the ENm008 domain on human 
chromosome 16, containing the a-globin locus, which is 
expressed in K562 cells and silenced in lymphoblastoid cells 
(GM12878). The models accurately reproduce the known 
looping interactions between the a-globin genes and their 
distal regulatory elements. Further, we find using our approach 
that the domain folds into a single globular conformation in 
GM12878 cells, whereas two globules are formed in K562 
cells. The central cores of these globules are enriched for 
transcribed genes, whereas nontranscribed chromatin is more 
peripheral. We propose that globule formation represents a 
higher-order folding state related to clustering of transcribed 
genes around shared transcription machineries, as previously 
observed by microscopy.

Currently, efforts are directed at producing high-resolution genome 
annotations in which the positions of functional elements or specific 
chromatin states are mapped onto the linear genome sequence1. 
However, these linear representations do not indicate functional or 
structural relationships between distant elements. For instance, recent 
insights suggest that widely spaced functional elements cooperate to 
regulate gene expression by engaging in long-range chromatin loop-
ing interactions. The three-dimensional (3D) organization of chromo-
somes is thought to facilitate compartmentalization2,3, chromatin 
organization4 and spatial sequestration of genes and their regulatory 
elements5–7, all of which may modulate the output and functional 
state of the genome. A general approach for determining the spatial 
organization of chromatin can aid in the identification of long-range 
relationships between genes and distant regulatory elements as well as 
in the identification of higher-order folding principles of chromatin 
in general.

Chromosome conformation capture (3C)-based assays use formalde-
hyde cross-linking followed by restriction digestion and intramolecular  

ligation to study chromatin looping interactions7–12. 3C-based assays 
have been used to show that specific elements such as promoters, 
enhancers and insulators are involved in the formation of chromatin 
loops5,7,13–16. The frequencies at which loci interact reflect chromatin 
folding7,17, and thus comprehensive chromatin interaction data sets 
can help researchers build spatial models of chromatin.

Previously, chromatin conformation has been modeled using 
 polymer models8,18 and molecular-dynamics simulations19, which 
have proven valuable for understanding general features of chromatin  
fibers, including flexibility and compaction20,21. However, such methods 
only partially leverage the current wealth of experimental data on chro-
matin folding. Recently, experimentally driven approaches, in combi-
nation with computational modeling, have resulted in low-resolution  
models for the topological conformation of the immunoglobulin 
heavy chain22, the HoxA23 loci and the yeast genome24. However, 
those methods were limited by the resolution and completeness of the 
input experimental data22, by insufficient model representation, scor-
ing and optimization23, or by limited analysis of the 3D models24.

To overcome such limitations, we developed a new approach that 
couples high-throughput 5C experiments9 with the IMP25. We applied 
this approach to determine the higher-order spatial organization of 
a 500-kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster 
of ubiquitously expressed housekeeping genes is the tissue-specific  

-globin locus that is expressed only in erythroid cells. This 500-kb 
domain corresponds to the ENm008 region extensively studied by the 
ENCODE pilot project (Fig. 1b)1.

The -globin locus has been used widely as a model to study the 
mechanism of long-range and tissue-specific gene regulation15,26–30. 
The -globin genes are upregulated by a set of functional elements 
characterized by the presence of DNase I–hypersensitive sites (HSs) 
located 33 to 48 kb upstream of the  gene. One of these elements, HS40, 
is considered to be of particular importance31,32. This element can act 
as an enhancer in reporter constructs and its deletion greatly affects 
activation of the -globin genes33. HS40 is bound by several erythroid  
transcription factors including GATA factors and NF-E2 (ref. 34). 
Notably, previous 3C studies have demonstrated direct long-range  

1Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain. 2Program in Gene Function and 
Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 3Department of 
Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 4These authors contributed equally to this work. Correspondence should be 
addressed to J.D. (job.dekker@umassmed.edu) or M.A.M.-R. (mmarti@cipf.es).
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 169 5C primers on + strand
 170 5C primers on – strand

 28,730 chromatin interactions ~13Kb

The 3D architecture of Caulobacter Crescentus
4,016,942  bp & 3,767 genes
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus
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Moving the parS sites 400 Kb away from Ori
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Moving the parS sites results in whole genome rotation!
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Moving the parS sites results in whole genome rotation!
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From Sequence to Function
Genome architecture in Caulobacter
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