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Experiments
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Human o-globin domain

ENm008 genomic structure and environment

| pizs BEPL B BPE] WOPEN iepiie <R g2 16021 IEZZKHIEE o231 I RN

of 50000] 100000| 150000 200000 250000 300000] 350000 400000 450000 500000
©
©
o
<
o 2 2
v o <] — H
RN = & H © o =
M B o a ™ - ao o N ®© =3 o~ —
5 Z a S N ~ © = Q< Z a2 = o =
€ 8 g Z §  FiF B g E g 28 g EE 3 g 2
8 5; ~ = o o mmim o A H = 5& é = B A a é
e s Emea @ 1 T T T TN e N A 1]
® v o o o ©
s - = 1 71
w ou w 0w =
= = om = om
CTCF o o [ ] ([ ] [ ] [ ] ([ ] [ ] ([ ] o o [ ] GM12878
e o [ J [ ] [ [ J [ ] [ ] [ J [ X ] [ ] o0 o [ [ I J K562

|| ) I GM12878
RNA diff
B W | N = e R Fu
CTCE I 4 | . 1 . GM12878
1 K562
N l B | Rl ) 1 i I_H 1 H GM12878
H3K4mes3 [ T i | - K562

DNasel _||_|_ H | PN 111 1 | | 1 GM06990
| | | | [ K562

The ENCODE data for ENmOO8 region was obtained from the UCSC Genome Browser fracks for: RefSeq annotated genes, Affymetrix/
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ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816

cnag e

Sunday, October 14, 12



Human o-globin domain
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Representation
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Not just one solution
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Consistency
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Compactness
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Multi-loops
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FISH validation
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The “Chromatin Globule” model
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A. Sanyal et al. Current Opinion in Cell Biology (2011) 23:325-33.
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Caulobacter crescentus genome
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The 3D architecture of Caulobacter Crescentus
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5C interaction matrix
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus
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Moving the parS sites results in whole genome rotation!
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Moving the parS sites results in whole genome rotation!
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Genome architecture in Caulobacter
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From Sequence to Function
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PLOS COMPUTATIONAL BIOLOGY

Bridging the Resolution Gap in Structural Modeling of 3D

Genome Organization

Marc A. Marti-Renom'*, Leonid A. Mirny?

1 Structural Genomics Laboratory, and Genomics D

Centro de Investigacién Principe Felipe, Valencia, Spain, 2 Harvard-MIT Division of Health

Sciences and Technology, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an “Editors’ Outlook” article for PLoS
Computational Biology

Recent  experimental and  computational —advances — are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.

We present two complementary approaches to address this
challenge: (i) the first approach aims at developing simple polymer
models of chromatin and determining relevant interactions (both

PLoS Computational Biology | www.ploscompbiol.org

physical and biological) that explain experimental observations; (ii
the second approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein “foldability” and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence in
situhybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.

Using cellular and molecular biology, novel chromosome
conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large
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domain reveals formation of chromatin globules
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