Databases Alignment & structure classification

GOALS

- 1. Known structures
- 2. Structure comparison
- 3. Structure classification
- 4. Number of folds in nature
- 5. Sequences VS fold structures

1. Known structures

PDB

PDB search

PDB search

Showing 1 - 2	Showing 1 - 2 of 2 Results : 25 = Page: 1 o						
Filter: Check	All View:	Detailed :		Reports: Select one	: Sort: a Relevance :		
≥ 2RO2 ≛ 🖹 🕹	Solution stru Authors:	Locture of domain I of the negative pola Gallego, J. P., Dufour, D. P., Gago, S. P., de la Pena, M.	rity CChMVd hammerhead ribozyme	•			
	Release:	2008-12-30	Classification:	RNA 🖉			
<u>a</u>	Experiment:	SOLUTION NMR	Residue Count:	23			
×.	Compound:	1 Polymer (Display Full Polymer Details Display for All Results)					
Q.	Citation:	Structure-function analysis of the ribozyme natural hammerheads (2009) Nucleic Acids Res. 37: 368-381 (Display F	s of chrysanthemum chlorotic mottle viroid	1: a loop-loop interacti	on motif conserved in most		
	Search Hit:	Title: Solution structure of domain I of the negation	ive polarity CChMVd hammerhead ribozyme				
Ø 2RPK ≛ ≣ ♣	Solution Stru Authors:	ucture of Domain II of the Positive Pola Gallego, J. P., Dufour, D. P., de la Pena, M. P., Gago, S.	arity CCHMVD Hammerhead Ribozyr	me			
	Release:	2008-12-30	Classification:	RNA P			
Ś	Experiment:	SOLUTION NMR	Residue Count:	20			
2	Compound:	1 Polymer (Display Full Polymer Details Display for	All Results]				
1	Citation:	Structure-function analysis of the ribozyme natural hammerheads (2009) Nucleic Acids Res. 37: 368-381 (Display F	s of chrysanthemum chlorotic mottle viroid	1: a loop-loop interacti	on motif conserved in most		
	Search Hit:	Title: Solution Structure of Domain II of the Posit	tive Polarity CCHMVD Hammerhead Ribozyme				

Advanced search

Search Advanced Browse	Everything Author Macromolecule Sequence Ligand Image: Comparison of the sequence Ligand Image: Comparison of the sequence Image: C	
I PDB-101 Hide Structural View of Biology Understanding PDB Data Molecule of the Month Educational Resources	Advanced Search Interface Nacromolecule Type 1	
Author Profiles I MyPDB Hide Login to your Account Register a New Account I Home Hide	Search based on whether the structure contains chains of certain molecule types (e.g. protein vs. DNA) Contains Protein Yes Contains DNA No Contains RNA Yes Contains No Contains Contains No Contains Contains No Contains No Contains No Contains Conta	Result Cou
levis & Publications Isage/Reference Policies Neposition Policies Vebsite FAQ Neposition FAQ Iontact Us Jout Us	AND X-ray Resolution 1 0	
areers xternal Links itemap lew Website Features	Search by X-ray resolution (mmCJF item _refine.ls_d_res_high) Between 0 and 3	Result Co
Deposition Hide Deposit Services		Add Search Criteri

PDB comparison tool

RCSB PDB Protein Comparison Tool

Calculate pairwise sequence or structure alignments.

Compare the following two pro	teins 🛈
ID 1: 3J1T.A	Cytoplasmic dynein 1 heavy chain 1, seryl t-RNA synthetase chimera KQQEVIADKQMSVKEDLDK
ID 2: 3J1U.A	Cytoplasmic dynein 1 heavy chain 1, seryl t-RNA synthetase chimera KQQEVIADKQMSVKEDLDK
Select Comparison Method	•
Select Comparison Method Pairwise Sequence Alignment	Compare
T Smith-Waterman Needleman-Wunsch	you can use the auto-suggest feature. It supports searching by
Pairwise Structure Alignment jFATCAT - rigid iFATCAT - flexible	8)
JCE algorithm JCE Circular Permutation	ptions)
If external server: TM-Align external server: TopMatch external server: Dali	wa Web Start applications, view our troubleshooting Java Web Start page for more help.

PDB format

http://www.wwpdb.org/documentation/format33/v3.3.html

HEADER	MOTOR PROTEIN/STRUCTURAL PROTEIN 25-JUN-12 3J10
TITLE	LOW AFFINITY DYNEIN MICROTUBULE BINDING DOMAIN - TUBULIN COMPLEX
COMPND	MOL_ID: 1;
COMPND	2 MOLECULE: CYTOPLASMIC DYNEIN 1 HEAVY CHAIN 1, SERYL T-RNA SYNTHETASE
COMPND	3 CHIMERA;
COMPND	4 CHAIN: A;
COMPND	5 FRAGMENT: SEE REMARK 999;
COMPND	6 SYNONYM: CYTOPLASMIC DYNEIN HEAVY CHAIN 1, DYNEIN HEAVY CHAIN,
COMPND	7 CYTOSOLIC;
COMPND	8 ENGINEERED: YES;
COMPND	9 MOL_ID: 2;
COMPND	10 MOLECULE: TUBULIN ALPHA-1B CHAIN;
COMPND	11 CHAIN: B;
COMPND	12 SYNONYM: ALPHA-TUBULIN UBIQUITOUS, TUBULIN K-ALPHA-1, TUBULIN ALPHA-
COMPND	13 UBIQUITOUS CHAIN;
COMPND	14 MOL_ID: 3;
COMPND	15 MOLECULE: TUBULIN BETA-2B CHAIN;
COMPND	16 CHAIN: C;
COMPND	17 SYNONYM: BETA TUBULIN
SOURCE	MOL_ID: 1;
SOURCE	2 ORGANISM_SCIENTIFIC: MUS MUSCULUS;
SOURCE	3 ORGANISM_COMMON: MOUSE;
SOURCE	4 ORGANISM_TAXID: 10090;
SOURCE	5 GENE: DYNC1H1, DHC1, DNCH1, DNCHC1, DYHC;
SOURCE	6 EXPRESSION_SYSTEM: ESCHERICHIA COLI;
SOURCE	7 EXPRESSION_SYSTEM_TAXID: 562;
SOURCE	8 MOL_ID: 2;
SOURCE	9 ORGANISM_SCIENTIFIC: BOS TAURUS;
SOURCE	10 ORGANISM_COMMON: BOVINE;
SOURCE	11 ORGANISM_TAXID: 9913;
SOURCE	12 MOL_ID: 3;
SOURCE	13 ORGANISM_SCIENTIFIC: BOS TAURUS;
SOURCE	14 ORGANISM_COMMON: BOVINE;
SOURCE	15 ORGANISM_TAXID: 9913
KEYWDS	MOTOR PROTEIN-STRUCTURAL PROTEIN COMPLEX
EXPDTA	ELECTRON MICROSCOPY
AUTHOR	W.B.REDWINE, R.HERNANDEZ-LOPEZ, S.ZOU, J.HUANG, S.L.RECK-PETERSON,
AUTHOR	2 A.E.LESCHZINER

Assymetric Unit VS Biological

Assymetric Unit VS Biological

Asymmetric unit with one biological assembly

Asymmetric unit with a portion of a biological assembly

Entry 2hhb contains one hemoglobin molecule (4 chains) in the asymmetric

unit.

Entry **1hho** contains **half** a hemoglobin molecule (**2 chains**) in the asymmetric unit. A crystallographic two-fold axis generates the other 2 chains of the hemoglobin molecule.

2. Structure comparison

Structure-Structure alignments

General steps in a bioinformatics procedure:

Representation Scoring Optimizer Representation

Structures

All atoms and coordinates

Dihedral space or distance space

Reduced atom representation

Vector representation

Secondary Structure

Accessible surface (and others)

Scoring

Raw scores

Aminoacid substitutions

 $RMSD(x, y) = \sqrt{\left(\frac{1}{N}\right) \sum_{i=1}^{N} \left(\left\| \mathbf{x}(i) - \mathbf{y}(i) \right\|^{2} \right)}$

Root Mean Square Deviation

Secondary Structure (H,B,C)

Accessible surface (B,A [%])

Angles or distances

Wednesday, March 13, 13

Scoring Significance of an alignment (score)

Probability that the optimal alignment of two random sequences/structures of the same length and composition as the aligned sequences/structures have at least as good a score as the evaluated alignment.

Sometimes approximated by Z-score (normal distribution).

Karlin and Altschul, 1990 PNAS 87, pp2264

Optimizer Global dynamic programming alignment

Backtracking to get the best alignment

Needleman and Wunsch (1970) J. Mol Biol, 3 pp443

Optimizer

Local dynamic programming alignment

Backtracking to get the best alignment

Smith and Waterman (1981) J. Mol Biol, 147 pp195

Optimizer

Global .vs. local alignment

Optimizer

Multiple alignment

Pairwise alignments

Example – 4 sequences A, B, C, D.

6 pairwise comparisons then cluster analysis

Multiple alignments

Following the tree from step 1

Align B-D with A-C

Coverage .vs. Accuracy

Same RMSD ~ 2.5Å

Coverage ~90% C α

Coverage ~75% C α

Structural alignment by properties conservation (SALIGN-MODELLER)

Wednesday, March 13, 13

Structural alignment by properties conservation (SALIGN-MODELLER)

http://salilab.org/salign

Wednesday, March 13, 13

Vector Alignment Search Tool (VAST)

Gibrat JF et al. (1996) Curr Opin Struct Biol 3 pp377

Vector Alignment Search Tool (VAST)

http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml

NCBI > Structure Home	> 3D Macromolecular Structures > VAST				
S NCBI	Structure 🎸	7651			
HOME SEARCH QUICE	Structure Home 3D M	lacromolecular Structures	Conserved Domains	PubChem	BioSystems
VAST: Vector	Alignment Search Tool		ABOUT SEARCH HELP	w-POB PUBLICATIONS	RESOLACES NEWS
About VAST					
VAST, short for purely geometric	Vector Alignment Search Tool, is a compu criteria, and to identify distant homologs	uter algorithm developed at NCBI and u that cannot be recognized by sequence	used to identify similar protein ce comparison.	3-dimensional struc	tures by
VAST is applied computed result	on every protein in the Molecular Modeling s are accessible from a structure's summa	g Database (MMDB) during MMDB data ary page; to retrieve them, you can eit	processing in order to identify ther:	similar 30 structure	s. The pre-
1. view the "she molecule or f VAST Help de	w annotation [*] graphic for any protein mo or any 3D domain it contains in order to v secument provides additional details and ill	lecule of interest on a structure summ view a list of structures that are similar ustrated examples.	ary page, then click on the bar in shape to the molecule or 3	r graphic for the ove D domain you select	trall protein ted. The
 follow the lin domains in the 	k for "Similar Structures: VAST" in the up the structure. Then select the protein or 3D	per right corner of a structure summar domain of interest to view a list of str	y page to open a tabular list o uctures that are similar in sha	f the protein molecu pe to the region you	ies and 3D selected.
Show "Simila	r Structures" for PDB ID or MMDB ID:	Go			
If you have a ne compare your st	why determined protein structure that is n ructure against all those in MMDB. The VA	ot yet in MMDB, then you can use the ST Search Help document provides ad	VAST Search service to input iditional information about usin	your data in PDB file g the VAST Search	a format and page.
Whether you net structure viewing additional details	rieve similar structures from the summary program to view a superposition of the o about viewing structure alignments in	y page of a publicly available structure query structure and similar structures, n Cn3D.	or through a VAST search, yo as shown in the illustration be	ou can then use the low. The Cn3D Tutor	free Cn3D rial provides
	Example 3D a evolutionary rela	alignment of VAST similar structures, stores in the structures is too ship among lipocalins from bacteria	showing the ancient a, insects, and human		
	2ACO neighbors -	Cn30 4.3	LO X		
	File View Select St	tyle Window CCO Help			
	- 2ACD_8 E - 1224_A To - 21/20_A M - amino acids	col lipocalin Bic dimer in complex with vaccer bacco horrworm insecticyanin in complex with uman apolopyrotein D (Apod) in complex with that are identical in all three proteins	nic acid h bilivendin DC gamma progesterome		

Incremental combinatorial extension (CE)

Shindyalov IN, amd Bourne PE. (1998) Protein Eng. 9 pp739

Incremental combinatorial extension (CE)

http://source.rcsb.org/jfatcatserver/ceHome.jsp

Matching molecular models obtained from theory (MAMMOTH)

Ortiz AR, (2002) Protein Sci. 11 pp2606

Matching molecular models obtained from theory (MAMMOTH)

http://ub.cbm.uam.es/software/online/mammoth.php

Centro de Biología Molecular Severo Ochoa

Publications

Currently we are under testing, so this service may not be functioning properly. Sorry for the inconvenience

Research

Home

- MAMMOTH (Matching Molecular Models Obtained from Theory) es un método de alineamiento estructural de proteínas independiente de su secuencia. Esto permite la comparación de la estructura experimental de una proteína con un modelo arbitrario de baja resolución. También permite la comparación de dos estructuras experimentales, así como la búsqueda de estructuras similares en una base de datos.
- Versión: 1.0
- Uso gratuito para fines educacionales y de investigación.
- Referencia: Ortiz AR, Strauss CE, Olmea O (2002) Protein Sci. 11:2606-21.

Alinea tus propias proteínas.

Sube el archivo de coordenadas (PDB) de tu primera proteína:	Browse
 Sube el archivo de coordenadas (PDB) de tu segunda proteína: 	Browse
 Tu correo electrónico para el envío de los resultados: 	
Alinear Borrar	
29	

3. Structure classification

Classification of the structural space

SCOP_{1.75} database

http://scop.berkeley.edu/

Murzin A. G., el at. (1995). J. Mol. Biol. 247, 536-540.

- ✓ Largely recognized as "standard of gold"
- ✓ Manually classification
- ✓ Clear classification of structures in:

CLASS

FOLD

SUPER-FAMILY

FAMILY

✓ Some large number of tools already available

Manually classification Not 100% up-to-date Domain boundaries definition

Class	Number of folds	Number of superfamilies	Number of families
All alpha proteins	284	507	928
All beta proteins	174	354	815
Alpha and beta proteins (a/b)	147	244	902
Alpha and beta proteins (a+b)	376	552	1170
Multi-domain proteins	66	66	100
Membrane and cell surface proteins	57	109	127
Small proteins	90	129	230
Total	1194	1961	4272

Structural Classification of Proteins and ASTRAL release 1.75B (January 2013)

Browse Stats & History ASTRAL Subsets Downloads Related Resources References Help About

Welcome to the new SCOP+ASTRAL website!

This release is part of a series of planned releases based on SCOP 1.75 before the advent of a major reclassification, SCOP 2.0.

This website now provides integrated access to data previously found in the <u>SCOP</u> and <u>ASTRAL</u> databases. For prior releases of **SCOP** and **ASTRAL**, click on the <u>Stats & History</u> tab above. For more info, click on the <u>About</u> tab above.

Search SCOP (example): Search

Classes in SCOP 1.75B:

- 1. 25 a: All alpha proteins [46456] (284 folds)
- 2. M b: All beta proteins [48724] (174 folds)
- 2. 2. Alpha and beta proteins (a/b) [51349] (147 folds)
- 4. 4. Alpha and beta proteins (a+b) [53931] (376 folds)
- 5. diff e: Multi-domain proteins (alpha and beta) [56572] (66 folds)
- 6. 🍯 f: Membrane and cell surface proteins and peptides [56835] (57 folds)
- 7. 3 g: Small proteins [56992] (90 folds)
- 8. h: Coiled coil proteins [57942] (7 folds)
- 9. 3-e* i: Low resolution protein structures [58117] (25 folds)
- 10. _____j: Peptides [58231] (120 folds)
- 11. 🔆 k: Designed proteins [58788] (44 folds)

Copyright © 1994-2013 The SCOP and ASTRAL authors scop@mrc-lmb.cam.ac.uk and astral@compbio.berkeley.edu

<u>a: All alpha proteins</u> -> <u>a.3: Cytochrome c</u> -> <u>a.3.1: Cytochrome c</u> -> (class) (fold) (superfamily)

Search

a.3.1.4: Two-domain cytochrome c

(family)

Structural Classification of Proteins and ASTRAL release 1.75B (January 2013)

Browse Stats & History ASTRAL Subsets Downloads Related Resources References Help About

Search SCOP (example):

Lineage for Family a.3.1.4: Two-domain cytochrome c

- 1. Root: SCOP 1.75B
- 2. Class a: All alpha proteins [46456] (284 folds)
- Fold <u>a.3: Cytochrome c</u> [46625] (1 superfamily) core: 3 helices; folded leaf, opened
- Superfamily <u>a.3.1: Cytochrome c</u> [46626] (9 families) S covalently-bound heme completes the core

 Family a.3.1.4: Two-domain cytochrome c [46680] (2 protein domains) duplication: consists of two cytochrome c type domains

Protein Domains:

- <u>Cytochrome c4</u> [46681] (2 species)
 - Species <u>Pseudomonas stutzeri</u> [TaxId:316] [46682] (3 PDB entries)
 - 2. Thiobacillus ferrooxidans [TaxId:920] [88972] (1 PDB entry)
- 2. 🔬 Flavocytochrome c sulfide dehydrogenase, FCSD, cytochrome subunit [46683] (1 species)
 - Species Chromatium vinosum [TaxId:1049] [46684] (1 PDB entry)

More info for Family a.3.1.4: Two-domain cytochrome c

Timeline for Family a.3.1.4: Two-domain cytochrome c:

Family a.3.1.4: Two-domain cytochrome c appears in SCOP 1.75A

Lineage for d1etpa1 (1etp A:1-92)

- 1. Root: SCOP 1.75B
- 2. Class a: All alpha proteins [46456] (284 folds)
- Fold <u>a.3: Cytochrome c</u> [46625] (1 superfamily) core: 3 helices; folded leaf, opened
- Superfamily <u>a.3.1: Cytochrome c</u> [46626] (9 families) S covalently-bound heme completes the core
- Family <u>a.3.1.4: Two-domain cytochrome c</u> [46680] (2 protein domains) duplication: consists of two cytochrome c type domains
- Protein Cytochrome c4 [46681] (2 species)
- Zecies <u>Pseudomonas stutzeri</u> [TaxId:316] [46682] (3 PDB entries)

Domain d1etpa1: 1etp A:1-92 [15962] complexed with hem

Details for d1etpa1

PDB Entry: <u>letp (more details)</u> PDB Description: crystal structure of cytochrome c4 from pseudomonas stutzeri PDB Compounds: (A:) cytochrome c4

SCOP Domain Sequences for d1etpa1:

Sequence; same for both SEQRES and ATOM records: (download)

>dletpal a.3.1.4 (A:1-92) Cytochrome c4 {Pseudomonas stutzeri [TaxId: 316]}
agdaeagqgkvavcgachgvdgnspapnfpklagqgeryllkqlqdikagstpgapegvg
rkvlemtgmldplsdqdlediaayfssqkgsv

SCOP Domain Coordinates for d1etpa1:

Click to download the <u>PDB-style file with coordinates for d1etpa1</u>. (The format of our PDB-style files is described <u>here</u>.)

Timeline for d1etpa1:

CATH_{3.5} database

http://www.cathdb.info

What's New?

The CATH website has recently undergone a big overhaul. We really hope you find the new pages more useful, easier to use and quicker to load. Please get in touch and let us know what you think.

Searching CATH

- Search by ID / keyword
- Search by FASTA sequence
- Search by PDB structure

Example pages

- PDB "Idan"
- Domain "1cukA01"
 Relatives of "1cukA01"
- Relatives of "ToukA01"
 Superfamily "HUPs"
- Functional Family

Uses FSSP for superimposition

- ✓ Recognized as "standard of gold"
- ✓ Semi-automatic classification
- ✓ Clear classification of structures in: CLASS

ARCHITECTURE TOPOLOGY HOMOLOGOUS SUPERFAMILIES

- ✓ Some large number of tools already available
- ✓ Easy to navigate

Semi-automatic classification Domain boundaries definition

173,536 CATH Domains 2,626 CATH Superfamilies 51,334 PDBs

Orengo, C.A., et al. (1997) Structure. 5. 1093-1108.

Browse - tree

		Top of CATH Hierarchy (4 Classes)	
Details on the currently select	cted CATH node	I Mainly Alpha	
are displayed in the panel be	DOW.	4 G 2 Mainly Beta 5 Architectures, 386 Folds, 875 Superfamilies, 37038 Doma	ins
Nop10-like Sno	RNP	Image: Second	ins
		International Street Activity of the street Activity of the strength of the	ins
C View Superfa	mily	I 2.20.20 Anthopleurin-A 20 Folds, 31 Superfamilies, 683 Doma	ins
	_	I 2.20.25 N-terminal domain of TfIIb 3 Superfamilies, 21 Doma	ins
CATH ID	2.20.28.40	2.20.28 Rubrerythrin, domain 2 6 Superfamilies, 342 Doma	ins
Non-redundant	1	H 2.20.28.10 Not yet named 5 Superfamilies, 209 Doma	ins
Sequences (<35% seq		H 2.20.28.20 Not yet named 131 Doma	ins
id)		H 2.20.28.30 RNA polymerase ii, chain L 11 Doma	ins
Domains	3	1 2.20.28.40 Nop10-like SnoRNP 61 Doma	ins
Example Domain	2apoB00	H 2.20.28.50 degv family protein 3 Doma	ins
	(PDB)	Duter Surface Protein A; domain 2 3 Doma	ins
		2.20.60 Heparin-binding Growth Factor, Midkine; Chain A I Superfamilies, 1 Doma	ins
1		I 2.20.70 Ubiquitin Ligase Nedd4; Chain: W; J Superfamilies, 1 Doma	ins
1		I 2.20.80 Lipovitellin-phosvitin complex, chain A, domain 4 1 Superfamilies, 60 Doma	ins
		I 2.20.90 Lipovitellin-phosvitin complex; beta-sheet shell regions I Superfamilies, 1 Doma	ins
V I		I 2.20.100 TSP-1 type 1 repeat I Superfamilies, I Doma	ins
51		2.20.110 Histone H3 K4-specific methyltransferase SET7/9 N-terminal domain I Superfamilies, 3 Doma	ins
		I 2.20.120 Multimodular pneumococcal cell wall endolysin, domain 3 I Superfamilies, 3 Doma	ins
		2.20.130 S-adenosyl-L-methionine-dependent methyltransferases I Superfamilies, 6 Doma	ins
		D D 140 a64-52 back nestals fold	lar

Browse - sunburst

CATH Home Search - Bro	wse Download About S	upport	Search CATH by keyword	is or ID	
SUPERFAMILY LINKS	GO Diversity	EC Diversity	Species Diversity	Superfamily Sum	mary
Summary Superfamily Superposition	Unique GO annotations	Unique EC annotations	Unique species annotations	A general summary of inform for this superfamily.	mation
Classification / Domains			Structures		
Structural Neighbourhood				Domains:	140
Functional Annotations Taxonomy				Domains (< 95% seq id):	15
Multi-Domain Organisation			4	Domains (< 35% seq id):	4
Functional Families	(R3) Unique GO terms >	Onique EC terms >	(433) Unique species >	Unique PDBs:	41
Overview of the Structural Clusters (SC) and	Structural Diversity	Domain Organisation	Enzyme Function	Alignments	
Functional Families (FF) within this CATH Superfamily	Structural domains within this	View multi-domain architectures via	Evolution of Enzyme Function via	Structural Clusters:	2
	superfamily	ArchSchema (Laskowski/EBI)	FunTree (Furnham/EBI)	FunFam Clusters:	2
		_	101	Function	

O TATA-box-b SC:O-

Unique EC: Unique GO: 2

93

Wednesday, March 13, 13

Sequence/Structure Diversity

Overview of the sequence / structure diversity of this superfamily compared to other superfamilies in CATH. Click on the chart to view the data in more detail.

Classification of the structural space Not an easy task!

Domain definition AND domain classification

Day, et al. (2003) Protein Sciences, 12 pp2150

Table 2. SCOP, CATH, and Dali codes associated with the 30 most populated metafolds

4. Number of folds in nature

KiG-like: Ifta fibronection	e Roseman: 3chy CieV	TEM burnet: 1394 TEM	Atly roll: Ince	s-bylait Iris 56
c: -	Clobin: larin myoglobin	4-belis bundle: 240b	er m bygraupe lippb Protein G	IF-band: 4cb cabindin
Trypnin dike serine protesse: 1qq4 a-lytic protesse	n Thioredoxin -like: lev4 QST A1-1	ob fait Inju CapA	KG48e: LetS aseris	Cytochrome C: Ihre
Roserum: Ight transposon yfi resolvase	SED burst: 1shg 0-spectrin SED	FAPNADEP) binding domain: Lebd oxidoreducture	er knotin: 1anb neurotoxin BMK MB	C-type lectin: 2afp type II antifueze prot.
Lipecalin : life tary acid binding prot.	settal: Ind boxing Ergsin	The finance of the second seco	er - A - Contraction - Contrac	acid proteose: 1gf1 HIV-1 proteose

5. Sequences VS fold structures

Structure is three to ten times more conserved than sequence--a study of structural response in protein cores.

Illergård K, Ardell DH, Elofsson A.

Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.

Structure is three to ten times more conserved than sequence—A study of structural response in protein cores

Kristoffer Illergård,¹ David H. Ardell,^{2,3} and Arne Elofsson^{1*}

¹ Center for Biomembrane Research and Stockholm Bioinformatics Center, Department of Biochemistry

and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden

² Department of Natural Sciences, School of Natural Sciences, University of California, Merced, California 95344

³ Linnaeus Centre for Bioinformatics, Uppsala University, SE-751 24 Uppsala, Sweden

INTRODUCTION

Evolutionary changes of individual protein domain primary structures that become fixed in populations are mainly replacements of single amino acid residues and short insertions or deletions. Since most threedimensional structures of proteins are determined by their sequences¹ and solvent interactions, higher-order structure will also change in response to these changes. The extent of higher-order structural perturbation in response to sequence evolution will depend on the type and location of sequence changes. Some single mutations will completely disrupt structure, while others that conserve the physicochemical properties of the sequence will barely affect structure at all.²

Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- ♦ The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.