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Box 2 | Genome compartments

Inter- and intrachromosomal interaction maps for mammalian genomes28,64,111 have revealed a pattern of interactions that 
can be approximated by two compartments — A and B — that alternate along chromosomes and have a characteristic 
size of ~5 Mb each (as shown by the compartment graph below top heat map in the figure). A compartments (shown in 
orange) preferentially interact with other A compartments throughout the genome. Similarly, B compartments (shown  
in blue) associate with other B compartments. Compartment signal can be quantified by eigenvector expansion of the 
interaction map64,111,112. The A or B compartment signal is not simply biphasic (representing just two states) but is 
continuous112 and correlates with indicators of transcriptional activity, such as DNA accessibility, gene density, replication 
timing, GC content and several histone marks. These indicators suggest that A compartments are largely euchromatic, 
transcriptionally active regions.

Topologically associating domains (TADs) are distinct from the larger A and B compartments. First, analysis of embryonic 
stem cells, brain tissue and fibroblasts suggests that most, but not all, TADs are tissue-invariant58,59, whereas A and B 
compartments are tissue-specific domains of active and inactive chromatin that are correlated with cell-type-specific gene 
expression patterns64. Second, A and B compartments are large (often several megabases) and form an alternating pattern 
of active and inactive domains along chromosomes. By contrast, TADs are smaller (median size around 400–500 kb; see 
zoomed in section of heat map in the figure) and can be active or inactive, and adjacent TADs are not necessarily of 
opposite chromatin status. Thus, it seems that TADs are hard-wired features of chromosomes, and groups of adjacent TADs 
can organize in A and B compartments (see REF. 50 for a more extensive discussion). 

Shown in the figure are data for human chromosome 14 for IMR90 cells (data taken from REF. 59). In the top panel, Hi-C 
data were binned at 200 kb resolution, corrected using iterative correction and eigenvector decomposition (ICE), and 
the compartment graph was computed as described in REF. 112. The lower panel shows a blow up of a 4 Mb fragment of 
chromosome 14 (specifically, 74.4 Mb to 78.4 Mb) binned at 40 kb.
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SUMMARY

We have determined the three-dimensional (3D)
architecture of the Caulobacter crescentus genome
by combining genome-wide chromatin interaction
detection, live-cell imaging, and computational mod-
eling. Using chromosome conformation capture car-
bon copy (5C), we derive !13 kb resolution 3D
models of the Caulobacter genome. The resulting
models illustrate that the genome is ellipsoidal
with periodically arranged arms. The parS sites,
a pair of short contiguous sequence elements known
to be involved in chromosome segregation, are posi-
tioned at one pole, where they anchor the chromo-
some to the cell and contribute to the formation of
a compact chromatin conformation. Repositioning
these elements resulted in rotations of the chromo-
some that changed the subcellular positions of most
genes. Such rotations did not lead to large-scale
changes in gene expression, indicating that genome
folding does not strongly affect gene regulation.
Collectively, our data suggest that genome folding
is globally dictated by the parS sites and chromo-
some segregation.

INTRODUCTION

The three-dimensional (3D) architecture of the genome both
reflects and regulates its functional state (Dekker, 2008; Than-
bichler and Shapiro, 2006a). For example, chromosome segre-
gation impacts bacterial locus subcellular positioning (Jun and
Mulder, 2006; White et al., 2008), and chromatin loops that place
promoters and distant enhancers within close spatial proximity
play important roles in eukaryotic transcriptional regulation

(Tolhuis et al., 2002; Vernimmen et al., 2007). Such examples
suggest that studies of the high-resolution folding of genomes
will yield insight into genome biology. However, until recently
such studies, which require comprehensive assessments of
the spatial positioning of many loci, have represented major
technical challenges.
The recent development of several high-throughput technolo-

gies, including automated fluorescent imaging (Viollier et al.,
2004) and chromosome conformation capture (3C)-based ap-
proaches (Dekker et al., 2002; Dostie et al., 2006; Duan et al.,
2010; Fullwood et al., 2009; Lieberman-Aiden et al., 2009; Simo-
nis et al., 2006; Zhao et al., 2006), has begun to enable studies of
genome-wide chromosome folding. Fluorescent microscopy-
based approaches allow the accurate determination of the
subcellular positions of increasing numbers of defined chromo-
somal loci, while high-throughput 3C-based approaches enable
quantification of interloci interaction frequencies that can sub-
sequently be used to infer the average 3D distances between
these loci. Studies utilizing one or both of these approaches
have highlighted the potential of genome-wide studies of chro-
mosome structure and have begun to reveal specific features
of chromosome folding, including the transcription-based com-
partmentalization of the human nucleus (Lieberman-Aiden et al.,
2009; Simonis et al., 2006) and the correlation between a locus’
genomic and subcellular positioning in bacteria (Nielsen et al.,
2006; Teleman et al., 1998; Wang et al., 2006b). However, the
detailed structures of genomes are only beginning to be re-
vealed, and many details, including the identities of the se-
quence elements that define such structures, await further
elucidation.
We sought to determine the high-resolution 3D structure of an

entire genome and to utilize the resulting structure to identify the
sequence elements that define its architecture. Toward this
goal, we studied the synchronizable bacterium, Caulobacter
crescentus (hereafter Caulobacter), whose single circular chro-
mosome is organized such that the origin and terminus of repli-
cation reside near opposite poles of the cell and other loci lie
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We developed a general approach that combines chromosome 
conformation capture carbon copy (5C) with the Integrated 
Modeling Platform (IMP) to generate high-resolution three-
dimensional models of chromatin at the megabase scale. 
We applied this approach to the ENm008 domain on human 
chromosome 16, containing the a-globin locus, which is 
expressed in K562 cells and silenced in lymphoblastoid cells 
(GM12878). The models accurately reproduce the known 
looping interactions between the a-globin genes and their 
distal regulatory elements. Further, we find using our approach 
that the domain folds into a single globular conformation in 
GM12878 cells, whereas two globules are formed in K562 
cells. The central cores of these globules are enriched for 
transcribed genes, whereas nontranscribed chromatin is more 
peripheral. We propose that globule formation represents a 
higher-order folding state related to clustering of transcribed 
genes around shared transcription machineries, as previously 
observed by microscopy.

Currently, efforts are directed at producing high-resolution genome 
annotations in which the positions of functional elements or specific 
chromatin states are mapped onto the linear genome sequence1. 
However, these linear representations do not indicate functional or 
structural relationships between distant elements. For instance, recent 
insights suggest that widely spaced functional elements cooperate to 
regulate gene expression by engaging in long-range chromatin loop-
ing interactions. The three-dimensional (3D) organization of chromo-
somes is thought to facilitate compartmentalization2,3, chromatin 
organization4 and spatial sequestration of genes and their regulatory 
elements5–7, all of which may modulate the output and functional 
state of the genome. A general approach for determining the spatial 
organization of chromatin can aid in the identification of long-range 
relationships between genes and distant regulatory elements as well as 
in the identification of higher-order folding principles of chromatin 
in general.

Chromosome conformation capture (3C)-based assays use formalde-
hyde cross-linking followed by restriction digestion and intramolecular  

ligation to study chromatin looping interactions7–12. 3C-based assays 
have been used to show that specific elements such as promoters, 
enhancers and insulators are involved in the formation of chromatin 
loops5,7,13–16. The frequencies at which loci interact reflect chromatin 
folding7,17, and thus comprehensive chromatin interaction data sets 
can help researchers build spatial models of chromatin.

Previously, chromatin conformation has been modeled using 
 polymer models8,18 and molecular-dynamics simulations19, which 
have proven valuable for understanding general features of chromatin  
fibers, including flexibility and compaction20,21. However, such methods 
only partially leverage the current wealth of experimental data on chro-
matin folding. Recently, experimentally driven approaches, in combi-
nation with computational modeling, have resulted in low-resolution  
models for the topological conformation of the immunoglobulin 
heavy chain22, the HoxA23 loci and the yeast genome24. However, 
those methods were limited by the resolution and completeness of the 
input experimental data22, by insufficient model representation, scor-
ing and optimization23, or by limited analysis of the 3D models24.

To overcome such limitations, we developed a new approach that 
couples high-throughput 5C experiments9 with the IMP25. We applied 
this approach to determine the higher-order spatial organization of 
a 500-kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster 
of ubiquitously expressed housekeeping genes is the tissue-specific  

-globin locus that is expressed only in erythroid cells. This 500-kb 
domain corresponds to the ENm008 region extensively studied by the 
ENCODE pilot project (Fig. 1b)1.

The -globin locus has been used widely as a model to study the 
mechanism of long-range and tissue-specific gene regulation15,26–30. 
The -globin genes are upregulated by a set of functional elements 
characterized by the presence of DNase I–hypersensitive sites (HSs) 
located 33 to 48 kb upstream of the  gene. One of these elements, HS40, 
is considered to be of particular importance31,32. This element can act 
as an enhancer in reporter constructs and its deletion greatly affects 
activation of the -globin genes33. HS40 is bound by several erythroid  
transcription factors including GATA factors and NF-E2 (ref. 34). 
Notably, previous 3C studies have demonstrated direct long-range  

1Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain. 2Program in Gene Function and 
Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 3Department of 
Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 4These authors contributed equally to this work. Correspondence should be 
addressed to J.D. (job.dekker@umassmed.edu) or M.A.M.-R. (mmarti@cipf.es).
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The three-dimensional folding of the -globin gene 
domain reveals formation of chromatin globules
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Progesterone-regulated transcription in breast cancer
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Eukaryotic DNA is packaged into chromatin through
its association with histone proteins. The nucleosome
core particle consists of 146 bp wrapped around a histone
octamer consisting of two copies each of the core histone
proteins H2A, H2B, H3, and H4. Concomitant with the
recruitment of the ternary complex of phospho (p) PR/
pErk/pMsk1 to the MMTV promoter, histone H3 be-
comes phosphorylated at serine 10 and acetylated at ly-
sine 14, only on the nucleosome containing the HREs and
not on adjacent nucleosomes (Fig. 2, middle panel) (53).
Phosphoacetylation of histone H3 can be blocked by in-
hibiting Erk or Msk1 activation resulting in a marked
reduction of MMTV promoter activation by hormone.
Blocking H3 phosphoacetylation precludes displacement
of a repressive complex containing HP1!, as well as the
recruitment of the Brg1-containing chromatin remodel-
ing complex, thus preventing displacement of histone H2A/
H2B dimers and subsequent promoter activation.

Most reports on the rapid action of PR have focused in
the cell signaling pathways activated by progestins (17,
18, 55), but how these pathways are integrated with the

transcriptional function of PR has remained elusive. We
have shown that some of the kinases activated by proges-
tins in the cytoplasm phosphorylate PR and form a com-
plex with the activated PR. The complex of activated PR
and accompanying kinases is recruited to the target sites
in chromatin where the kinases modify chromatin pro-
teins locally as a prerequisite for chromatin remodeling
and gene regulation. Thus, we propose that the “non-
genomic” and “genomic” pathways of progestin action
converge on chromatin to enable gene regulation.

Hormone-Induced ATP-Dependent
Chromatin Remodeling Needs
Cooperation of Various Enzymatic
Activities

Modulation of the structure and dynamics of nucleo-
somes is an important regulatory mechanism in all DNA-
based processes and is primarily catalyzed by chromatin
remodeling complexes. Such complexes can either modify

FIG. 1. Initial steps of PR activation. Progestins bind to cytoplasmic PR/ER complexes, anchored in the cell membrane by palmitoyl residues, and
activate the Src/Ras/Erk pathway, leading to nuclear accumulation of activated pErk. The majority of PR is nuclear and associated with chaperones
(Hsps). Upon binding of progestins, PR homodimers dissociate from chaperones, and a fraction of PR is phosphorylated by pErk, which also
phosphorylates Msk1. A “PR-activated complex” composed of pPR/pErk/pMsk1 is formed. Progesterone induction also activates other kinase
signaling pathways as Janus kinase (JAK)/Stat, phosphatidylinositol kinase (PI3K)/serine-threonine kinase (Akt), and Cdk2 (red asterisk).

Mol Endocrinol, November 2010, 24(11):2088–2098 mend.endojournals.org 2091
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Chromosomes are organized into
Topologically Associated Domains (TADs)
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Are TADs homogeneous?
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Do TADs have specific chromatin signatures?
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Do TADs respond differently to Pg treatment?
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Modeling 3D TADs
15 genomic regions with 105 TADs in total

i
i+2

i+1

i+n

500 rounds

0 100 200 300 400 500 600

Iteration

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

IM
P

 O
F

Cluster #1
394 models

0
50

10
0

dR
M

SD
 (n

m
)

15
0

20
0

25
0

Cluster #3
168 models

+Pg-Pg

Saturday, July 6, 13



Model Accuracy
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Accessibility changes of TADs
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TADs respond differently
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Model for TAD regulation
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