Course outline

Theory Practice

- Day 1 Introduction to structure determination Chromatin structure and Hi-C data Introduction to linux and python (FACULTATIVE) The Integrative Modeling Platform and Chimera
- Day 2 The Integrative Modeling Platform applied to chromatin TADbit introduction and installation Topologically Associated Domains detection and analysis

Day 3 The TADbit documentation: examples and code snippets 3D modeling of real Hi-C data Analysis of the results

3D structure determination

Davide Baù & François Serra

Genome Biology Group (CNAG) Structural Genomics Group (CRG)

Structural Genomics Group

http://www.marciuslab.org

Data groups

Experimental observations

Statistical rules

Laws of physics

The importance of the 3D structure

The biochemical function of a molecule is defined by its interactions

The biological function is in large part a consequence of these interations

The 3D structure is more informative than sequence alone

Evolution tends to conserve function and function depends more directly on structure than on sequence

Structure prediction vs determination

Thursday, April 23, 2009

Data integration

The four stages of integrative modeling

Stage 1: Gathering experimental and statistical Information

Stage 2: Choosing How To Represent And Evaluate Models

Stage 3: Finding Models That Score Well

Stage 4: Analyzing Resulting Models and Information

Advantages of integrative modeling

- It facilitates the use of new information
- It maximizes accuracy, precision and completeness of the models
- It facilitates assessing the input information and output models
- It helps in understanding and assessing experimental accuracy

Russel, D., Lasker, K., Webb, B., Velázquez-Muriel, J., Tjioe, E., Schneidman-Duhovny, D., Peterson, B., et al. (2012). PLoS Biology, 10(1), e1001244

Integrative Modeling Platform

http://www.integrativemodeling.org

From: Russel, D. et al. PLOS Biology 10, e1001244 (2012).

The simulating annealing procedure

En example of nergy optimization

Integrative Modeling Platform

http://www.integrativemodeling.org

From: Russel, D. et al. PLOS Biology 10, e1001244 (2012).

Russel, D., Lasker, K., Webb, B., Velázquez-Muriel, J., Tjioe, E., Schneidman-Duhovny, D., Peterson, B., et al. (2012). PLoS Biology, 10(1), e1001244

PROTEINS

COMPLEXES

GENOMES

Proteins

Single data type

Amino Acids

Complexes Multiple data types

S. cerevisiae ribosome

Fitting of comparative models into 15Å cryo-electron density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.

The modeled fraction of the proteins ranges from 34-99%.

C. Spahn, R. Beckmann, N. Eswar, P. Penczek, A. Sali, G. Blobel, J. Frank. Cell 107, 361-372, 2001.

The nuclear pore complex

Integrative Modeling of the NPC

F. Alber et al. Natute (2007) Vol 450

Representation

 θ

436 proteins!

τ	$N^1_{ au}$	N_{τ}^2	К	$\{B_j^\kappa\}$	n _ĸ	r	τ	N_{τ}^{1}	N_{τ}^2	К	$\{B_j^\kappa\}$	n_{κ}	r
Nup192	1	1	1,2,5	00	2	3.0	Nup1	0	1	1,5	000000000	9	1.5
			3	-	1	-				2	00 0000000	2	1.5
Nup188	1	1	1,2,5	99	2	3.0				3	-	1	-
			3	-	1	-				4	ംക്കാരം	7	1.5
Nup170	1	1	1,2,5	99	2	2.9	Nsp1	2	2	1,5	*****	12	1.3
			3	-	1	-				2		3	1.3
Nup157	1	1	1,2,5	889	3	2.5				3	-	1	-
			3	-	1	-				4		9	1.3
Nup133	1	1	1,2,5		2	2.7	Gle1	1	0	1,2,5		2	2.1
			3	-	1	-				3	-	1	-
Nup120	1	1	1,2,5		2	2.6	Nup60	0	1	1,5		4	1.6
			3	-	1	-				2,3	0 000	1	1.6
Nup85	1	1	1,2,5	000	3	2.0				4	ಾಲ	3	1.6
			3	-	1	-	Nup59	1	1	1,5		4	1.6
Nup84	1	1	1,2,5		3	2.0				2		2	1.6
			3	-	1	-				3	-	1	-
Nup145C	1	1	1,2,5		2	2.3				4	00 00	2	1.6
•			3	-	1	-				1,5	888	3	1.8
Seh1	1	1	1,2,3,5	9	1	2.2	Nup57	1	1	2,3		1	1.8
Sec13	1	1	1,2,3,5	٩	1	2.1				4	ee	2	1.8
Gle2	1	1	1,2,3,5	٢	1	2.3	Nup53	1	1	1,5		3	1.7
Nic96	2	2	1,2,5	33	2	2.4				2,3	000	1	1.7
			3	-	1	-				4	99	2	1.7
Nup82	1	1	1,2,5		2	2.3	Nup145N	0	2	1,5	333333	6	1.5
			3	-	1	-				2,3	000000	1	1.5

Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., et al. (2007). Nature, 450(7170), 695–701

K

Data generation		Data interpretation							
Method	Experiments	Restraint	R _c	Ro	R _A	Functional form of activated feature restraint			
fractionation	30 nup sequences	Protein excluded volume restraint	-	-	1,864 1,863/2	Protein-protein: Violated for $f < f_o$. f is the distance between two beads, f_o is the sum of the bead radii, and σ is 0.01 nm. Applied to all pairs of particles in representation κ =1: $B^{m} = \left\{ B_j^{m-1}(\theta, s, \tau, i) \right\}$			
Bioinformatics and Membrane	30 nup sequences	Surface localization restraint	-	-	48	$\begin{array}{l} \textbf{Membrane-surface location:}\\ \textbf{Violated if } f \neq f_{o}, f \text{ is the distance between a protein particle and the closest point on the NE surface (half-torus), f_{o} = 0 nm, and \sigma \text{ is } 0.2 nm. Applied to particles:}\\ B^{m} = \left\{B_{j}^{r-6}(\theta, s, \tau, i) \mid \tau \in (\text{Ndcl}, \text{Poml52}, \text{Pom34})\right\} \end{array}$			
	30 Nup sequences and immuno-EM (see below)		-	-	64	$\label{eq:pore-side volume location:} \begin{aligned} & \text{Pore-side volume location:} \\ & \text{Violated if } f < f_o, f \text{ is the distance between a protein particle and the closest point on the} \\ & \text{NE surface (half-torus), } f_o = 0 \text{ nm, and } \sigma \text{ is } 0.2 \text{ nm. Applied to particles:} \\ & B^{m} = \left\{ B_j^{r-s}(\theta,s,\tau,i) \mid r \in (\text{Ndc1,Pom152,Pom34}) \right\} \end{aligned}$			
			-	-	80	$\label{eq:period} \begin{array}{l} \textbf{Periouclear volume location:}\\ \textbf{Violated if } f > f_{o}, f \text{ is the distance between a protein particle and the closest point on the NE surface (half-forus), f_{o} = 0 nm, and \sigma \text{ is } 0.2 nm. Applied to particles:}\\ B^{see} = \left\{B_{j}^{s-7}(\theta,s,\tau,i)\tau\in(\text{Pom152})\right\} \end{array}$			
Hydrodynamics experiments	1 S-value	Complex shape restraint	1	164	1	$\label{eq:complex_diameter} \begin{array}{l} \textbf{Complex_diameter} \\ \mbox{Violated if } f < f_o. f is the distance between two protein particles representing the largest diameter of the largest complex, f_o is the complex maximal diameter D=19.2-R, where R is the sum of both particle radii, and \sigma is 0.01 nm. Applied to particles of proteins in composite C45: B^{me} = \left\{ B_j^{n-1}(\theta,s,\tau,i) \mid \tau \in C_{s1} \right\}$			
	30 S-values	Protein chain restraint	-	-	1,680	Protein chain Violated if $f \neq f_o$. f is the distance between two consecutive particles in a protein, f_o is the sum of the particle radii, and σ is 0.01 nm. Applied to particles: $B = \left\{ B_j^{\kappa}(\theta, s, \tau, i) \kappa = 1 \right\}$			
Immuno-Electron microscopy		Protein localization restraint	-		456	Z-axial position Violated for $f < f_o$, f is the absolute Cartesian Z-coordinate of a protein particle, f_o is the lower bound defined for protein type r , and σ is 0.1 nm. Applied to particles: $B = \left\{ B_j^c (\theta, s, r, i) \kappa = l, j = l \right\}$			
	particles				456	Violated for $f > f_o$, f is the absolute Cartesian Z-coordinate of a protein particle, f_o is the upper bound defined for protein type r , and σ is 0.1 nm. Applied to particles: $B = \left\{ B_i^r (\theta, s, \tau, i) \kappa = 1, j = 1 \right\}$			
	10,940 gold			-	456	Radial position Violated for $f < f_o$. <i>f</i> is the radial distance between a protein particle and the Z-axis in a plane parallel to the X and Y axes, f_o is its lower bound defined for protein type τ , and σ is 0.1 nm. Applied to particles: $B = \{B_r^c(\theta, s, \tau, i) \kappa = 1, j = 1\}$			
	· ·				456	Violated for $f > f_o$. <i>f</i> is the radial distance between a protein particle and the Z-axis in a plane parallel to the X and Y axes, f_o is its upper bound defined for protein type r , and σ is 0.1 nm. Applied to particles: $B = \left\{ B_i^r \left(\theta, s, \tau, i \right) \kappa = 1, j = 1 \right\}$			
Overlay assays	13 contacts	Protein interaction restraint	20	112	20	Protein contact Violated for $f > f_o$. f is the distance between two protein particles, f_o is the sum of the particle radii multiplied by a tolerance factor of 1.3, and σ is 0.01 nm. Applied to particle: $B = \{B_j^{\kappa}(\theta, s, \tau, i) \kappa \in (2, 4, 9), \theta \in (1, 2, 3)\}$			
Affinity purification	4 complexes	Competitive binding restraint	1	132	4	Protein contact Violated for $f > f_o$. f is the distance between two protein particles, f_o is the sum of the particle radii multiplied by a tolerance factor of 1.3, and σ is 0.01 nm. Applied to : $B = \left\{ B_j^r(\theta, s, \tau, i) \theta \in (1, 2, 3), \kappa \in (2, 4, 6), \tau = (Nup 82, Nic 96, Nup 49, Nup 57) \right\}$			
	64 complexes	Protein proximity restraint	692	25,348	692	Protein proximity Violated for $f > f_o$. f is the distance between two protein particles, f_o is the maximal diameter of a composite complex, and σ is 0.01 nm. Applied to particles: $B = \left\{ B_j^{\kappa}(\theta, s, \tau, i) \theta \in (1, 2, 3), \kappa \in (2, 4, 9) \right\}$			

Optimization

The structure of the nuclear pore complex

www.nature.com/nature

Genomes

Limited data types

Main approaches

Light microscopy (FISH)

Cell/molecular biology (3C-based methods)

The resolution gap

Simple genomes

Complex genomes

Job Dekker

Dostie et al. Genome Res (2006) vol. 16 (10) pp. 1299-309

3C-like technologies

Hakim and Misteli Cell (2012) vol. 148, March 2

3C-like technologies

	3C 5C		4C Hi-C		ChIP-loop	ChIA-PET	
Principle	Contacts between two defined regions3,17All against all4,18		All contacts with a point of interest ¹⁴	All against all ¹⁰	Contacts between two defined regions associated with a given protein ⁸	All contacts associated with a given protein ⁶	
Coverage	Commonly < 1Mb	Commonly < 1Mb Commonly < 1Mb Genome-		Genome-wide	Commonly < 1Mb	Genome-wide	
Detection	Locus-specific PCR	Locus-specific PCR HT-sequencing		HT-sequencing	Locus-specific qPCR	HT-sequencing	
Limitations	Low throughput and coverage	Limited coverage	Limited to one viewpoint		Rely on one chromatin-a disregarding other conta	ssociated factor, cts	
Examples	Determine interaction between a known promoter and enhancer Determine comprehensively higher-order chromosome structure in a defined region		All genes and genomic elements associated with a known LCR	All intra- and interchromosomal associations	Determine the role of specific transcription factors in the interaction between a known promoter and enhancer	Map chromatin interaction network of a known transcription factor	
Derivatives	PCR with TaqMan probes ⁷ or melting curve analysis ¹		Circular chromosome conformation capture ²⁰ , open- ended chromosome conformation capture ¹⁹ , inverse 3C ¹² , associated chromosome trap (ACT) ¹¹ , affinity enrichment of bait- ligated junctions ²	Yeast ^{5,15} , tethered conformation capture ⁹		ChIA-PET combined 3C-ChIP-cloning (6C), ¹⁶ enhanced 4C (e4C) ¹³	

Hakim and Misteli Cell (2012) vol. 148, March 2

Take home message

