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From: Russel, D. et al. PLOS Biology 10, 1001244 (2012).
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Stage 1: Gathering Information. Information is collected in the form of data
from wet lab experiments, as well as statistical tendencies such as atomic
statistical potentials, physical laws such as molecular mechanics force fields, and
any other feature that can be converted into a score for use to assess features of a
structural model.

Stage 2: Choosing How To Represent And Evaluate Models. The
resolution of the representation depends on the quantity and resolution of the
available information and should be commensurate with the resolution of the
final models: different parts of a model may be represented at different
resolutions, and one part of the model may be represented at several different
resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the
uncertainty in the information.

Stage 3: Finding Models That Score Well. The search for models that score
well is performed using any of a variety of sampling and optimization schemes
(such as the Monte Carlo method). There may be many models that score well if
the data are incomplete or none if the data are inconsistent due to errors or
unconsidered states of the assembly.

Stage 4: Analyzing Resulting Models and Information. The ensemble of
good-scoring models needs to be clustered and analyzed to ascertain their
precision and accuracy, and to check for inconsistent information. Analysis can
also suggest what are likely to be the most informative experiments to perform in
the next iteration.

Integrative modeling iterates through these stages until a satisfactory model is
built. Many iterations of the cycle may be required, given the need to gather more
data as well as to resolve errors and inconsistent data.
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Resolution Gap
Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, €1002125 (2011)
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Chromosome size

Complex genome organization

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9-13 (2008).
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Complex genome organization

Cavalli, 6. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290-299 (2013).
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Complex genome organization
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Complex genome organization

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science (New York, NY) 326, 289-293 (2009).
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Complex genome organization
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Experiments
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Biomolecular structure determination

2D-NOESY data

Chromosome structure determination

5C data
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Chromosome Conformation Capture
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Chromosome Conformation Capture

3C 5C 4C Hi-C ChiP-loop ChlA-PET
Principle Contacts between All against all*'® All contacts with a All against all® Contacts between All contacts associated
two defined regions®'” point of interest two defined regions with a given protein®
associated with a given
protein®
Coverage Commonly < 1Mb Commonly < 1Mb Genome-wide Genome-wide Commonly < 1Mb Genome-wide
Detection Locus-specific PCR HT-sequencing HT-sequencing HT-sequencing Locus-specific gPCR HT-sequencing
Limitations | Low throughput and Limited coverage Limited to one Rely on one chromatin-associated factor,
coverage viewpoint disregarding other contacts
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between a known comprehensively elements associated interchromosomal specific transcription interaction network of
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Modeling 3D Genomes

Bav, D. & Marti-Renom, M. A. Methods 58, 300-306 (2012).
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Examples...
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Human o-globin domain
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Human oi-globin domain

ENm008 genomic structure and environment
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ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816
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Representation
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Clustering
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Not just one solution
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The “Chromatin Globule” model
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D. Bau et al. Nat Struct Mol Biol (2011) 18:107-14
A. Sanyal et al. Current Opinion in Cell Biology (2011) 23:325-33.
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Caulobacter crescentus genome




The 3D architecture of Caulobacter Crescentus
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus
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Moving the
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Genome architecture in Caulobacter
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M.A. Umbarger, et al. Molecular Cell (2011) 44:252-264
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From Sequence to Function
5C+ IMP
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genome position (kb)
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On TADs and hormones
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Progesterone-requlated transcription in breast cancer

hormone
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Vicent et al 2011, Wright et al 2012, Ballare et al 2012
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Experimental design
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Are there TADs? how robust?
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Fold change per TAD (Logz)

Do TADs respond differently to Pg treatment?
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Modeling 3D TAD:s
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Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an ‘“Editors’ Outlook” article for PLoS
Computational Biology

Recent  experimental and computational advances —are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.

We present two complementary approaches to address this
challenge: (i) the first approach aims at developing simple polymer
models of chromatin and determining relevant interactions (both

- PLoS Computational Biology | www.ploscompbiol.org

physical and biological) that explain experimental observations; (ii)
the sccond approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein “foldability” and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence in
situ hybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.

Using cellular and molecular biology, novel chromosome
conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large
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