A genome-wide quest for drug discovery targets against tropical diseases.

Marc A. Marti-Renom Genome Biology Group (CNAG)

Structural Genomics Group (CRG)

COMPARATIVE MODELING

EXAMPLES

THE TROPICAL DISEASE INITIATIVE

Nomenclature

Homology: Sharing a common ancestor, may have similar or dissimilar functions

Similarity: Score that quantifies the degree of relationship between two sequences.

Identity: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

Template: 3D structure/s to be used during protein structure prediction.

Model: Predicted 3D structure of the target sequence.

Nomenclature

Fold: Three dimensional conformation of a protein sequence (usually at domain level).

Domain: Structurally globular part of a protein, which may independently fold.

Secondary Structure: Regular sub-domain structures composed by alpha-helices, beta-sheets and coils (or loops).

Backbone: Protein structure skeleton composed by the carbon, nitrogen and oxygen atoms.

Side-Chain: Specific atoms identifying each of the 20 residues types.

protein prediction .vs. protein determination

Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- ♦ The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.

Principles of protein structure

GFCHIKAYTRLIMVG...

Folding (physics)

Ab initio prediction

Evolution (rules) Threading Comparative Modeling

Comparative modeling by satisfaction of spatial restraints

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Comparative modeling by satisfaction of spatial restraints Types of errors and their impact

Marti-Renom etal. Ann Rev Biophys Biomol Struct (2000) 29, 291

"Biological" significance of modeling errors

NMR – X-RAY Erabutoxin 3ebx Erabutoxin 1era

NMR Ileal lipid-binding protein 1eal

CRABPII1opbBFABP1ftpAALBP1lib40% seq. id.

X-RAY Interleukin 1 β 41bi (2.9Å) Interleukin 1 β 2mib (2.8Å)

Model Accuracy

HIGH ACCURACY

MEDIUM ACCURACY

NM23 Seq id 77% Cα equiv 147/148 RMSD 0.41Å

Sidechains Core backbone Loops CRABP Seq id 41% Cα equiv 122/137 RMSD 1.34Å

Sidechains Core backbone Loops Alignment

LOW ACCURACY

EDN Seq id 33%

Cα equiv 90/134 RMSD 1.17Å

Sidechains Core backbone Loops Alignment Fold assignment

X-RAY / MODEL

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

Utility of protein structure models, despite errors

Structural analysis of missense mutations in human BRCA1 BRCT domains

Mirkovic et al. Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition. Cancer Res (2004) vol. 64 (11) pp. 3790-7

ICANCER RESEARCH 64 3790-3797 June 1 20041

Structure-Based Assessment of Missense Mutations in Human BRCA1: Implications for Breast and Ovarian Cancer Predisposition

Nebojsa Mirkovic,¹ Marc A. Marti-Renom,² Barbara L. Weber,³ Andrej Sali,² and Alvaro N. A. Monteiro^{4,5}

¹Laboratory of Molecular Biophysics, Pels Family Center for Biochemistry and Structural Biology, Rockefeller University, New York, New York; ²Departments Biopharmaceutical Sciences and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical Research, University of California at San Francisco, Sai Francisco, California; ³Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania; ⁴Strang Cancer Prevention Center, New York, New York; and ⁵Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York

ABSTRACT

The BRCA1 gene from individuals at risk of breast and ovarian cancers can be screened for the presence of mutations. However, the cancer association of most alleles carrying missense mutations is unknown, thus creating significant problems for genetic counseling. To increase our ability to identify cancer-associated mutations in BRCA1, we set out to use the principles of protein three-dimensional structure as well as the correion between the cancer-associated mutations and those that abolish transcriptional activation. Thirty-one of 37 missense mutations of known tion function of BRCA1 leads to tumor development and provides a impact on the transcriptional activation function of BRCA1 are readily genetic framework for characterization of BRCA1 BRCT variants. rationalized in structural terms. Loss-of-function mutations involve nonconservative changes in the core of the BRCA1 C-terminus (BRCT) fold or are localized in a groove that presumably forms a binding site involved in the transcriptional activation by BRCA1; mutations that do not abolish transcriptional activation are either conservative changes in the core or are on the surface outside of the putative binding site. Next, structuresed rules for predicting functional consequences of a given missense mutation were applied to 57 germ-line BRCA1 variants of unknown cancer association. Such a structure-based approach may be helpful in an integrated effort to identify mutations that predispose individuals to

INTRODUCTION

Many germ-line mutations in the human BRCA1 gene are associated with inherited breast and ovarian cancers (1, 2). This information BRCT-like domains was obtained by the SALIGN command in MODELLER has allowed clinicians and genetic counselors to identify individuals at high risk for developing cancer. However, the disease association of of the two human BRCA1 BRCT domains (Protein Data Bank code 1JNX: over 350 missense mutations remains unclear, primarily because their Refs. 8, 24), rat BRCA1 BRCT domains (ILOB; Ref. 7), human p53-binding relatively low frequency and ethnic specificity limit the usefulness of protein (1KZY; Ref. 7), human DNA-ligase IIIa (11MO; Ref. 25), and human the population-based statistical approaches to identifying cancer-causing mutations. To address this problem, we use here the threedimensional structure of the human BRCA1 BRCT domains to assess the transcriptional activation functions of BRCA1 mutants. Our study is made possible by the recently determined sequences (3-6) and three-dimensional structures of the BRCA1 homologs (7, 8). In addition we benefited from prior studies that attempted to rationalize and predict functional effects of mutations in various proteins (9–12), three-dimensional model for each of the 94 mutants. The crystallographic including those of BRCA1 (13, 14).

tates DNA damage repair (15, 16). The tandem BRCT domains at the

Received 9/24/03; revised 1/3/004; accepted 3/15/04, Grant support: This work was supported by Lee Kaplan Foundation, the Fashion Footwar Association of New York/QVC; United States Army award DAMD17-99-1-9889 and NIH AO22090 (A. N. A. M.); the Mathers Foundation, Sandler Family Sup-porting Foundation, San, IBM and Intel (A. S.); and NIH GM 54762 (GM61390 (A. S.); and the Breast Cancer Research Foundation (B. L. W.). M. A. M.-R. is a Rockefeller University Presidential Postdoctoral Fellow; A. S.; is an Irma T. Hirschl Trust Career Scientist; and B. L. W. is an Abrumson Investigator. The costs of publication of this article were defrayed in part by the payment of page thorner. This origin and therefore has have have medical dustrifourned in accordings with

charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Note: The authors declare that they have no competing financial interests. Supple-

cancerres@aacrjournals.org). Requests for reprints: Alvaro N. A. Monteiro, H. Lee Moffitt Cancer Center and Research Institute, MRC 3 West, 12902 Magnolia Drive, Tampa, FL 33612. Phone: (813) 745-6321; Fax: (813) 903-6847; E-mail: monteian@moffitt.usf.edu.

COOH-terminus of BRCA1 are involved in several of its functions including modulation of the activity of several transcription factors (15), binding to the RNA polymerase II holoenzyme (17), and activating transcription of a reporter gene when fused to a heterologous DNA-binding domain (18, 19). Importantly, cancer-associated mutations in the BRCT domains, but not benign polymorphisms, inactivate transcriptional activation and binding to RNA polymerase II (18-21). These observations suggest that abolishing the transcriptional activa-

MATERIALS AND METHODS

The multiple sequence alignment (MSA) of orthologous BRCA1 BRCT domains from seven species, including Homo sapiens (GenBank accession number U14680), Pan troglodytes (AF207822), Mus musculus (U68174), Rattus norvegicus (AF036760), Gallus gallus (AF355273), Canis familiaris (U50709), and Xenopus laevis (AF416868), was obtained by using program ClustalW (22) and contains only one gapped position (Supplementary Fig. 1) According to PSI-BLAST (23), the latter six sequences are the only sequences in the nonredundant protein sequence database at National Center for Biotechnology Information that have between 30% and 90% sequence identity to the human BRCA1 BRCT domains (residues 1649–1859). The multiple structure-based alignment of the native structu

(Supplementary Fig. 2). It included the experimentally determined structu XRCC1 protein (1CDZ; Ref. 13). Structure variability was defined by the root-mean-square deviation among the superposed C α positions, as calculated by the COMPARE command of MODELLER. The purpose of these calculations was to gain insight into the variability of surface-exposed residues (left panel in Fig. 2). In conjunction with observed mutation clustering, these data may point to putative functional site(s) on the surface of BRCT repeats.

Comparative protein structure modeling by satisfaction of spatial restraints implemented in the program MODELLER-6 (26), was used to produce a including those of BRCA1 (13, 14). BRCA1 is a nuclear protein that activates transcription and facili-template for modeling (8). The four residues missing in the crystallographic structure (1694 and 1817-1819) were modeled de novo (27). All of the models are available in the BRCA1 model set deposited in our ModBase database of comparative protein structure models (28).6

For the native structure of the human BRCT tandem repeat and each of the 94 mutant models, a number of sequence and structure features were calcu lated. These features were used in the classification tree in Fig. 3 (values for all 94 mutations are given in Supplementary Tables 1 and 2).

Buriedness. Accessible surface area of an amino acid residue was calcu-lated by the program DSSP (29) and normalized by the maximum accessible surface area for the corresponding amino acid residue type. A residue was considered exposed if its accessible surface area was larger than 40\AA^2 and if its relative accessible surface area was larger than 9% and buried otherwise. A mental data for this article are available at Cancer Research Online (http: mutation of a more exposed residue is less likely to change the structure and therefore its function.

> 6 http://salilab.org/modbase 3790

Human BRCA1 and its two BRCT domains

CONFIDENTIAL

BRACAnalysis [™] Comprehensive BRCA1-BRCA2 Gene Sequence Analysis Result

Interpretation

GENETIC VARIANT OF UNCERTAIN SIGNIFICANCE

The BRCA2 variant H2116R results in the substitution of arginine for histidine at amino acid position 2116 of the BRCA2 protein. Variants of this type may or may not affect BRCA2 protein function. Therefore, the contribution of this variant to the relative risk of breast or ovarian cancer cannot be established solely from this analysis. The observation by Myriad Genetic Laboratories of this particular variant in an individual with a deleterious truncating mutation in BRCA2, however, reduces the likelihood that H2116R is itself deleterious.

Authorized Signature:

Brian E. Ward, Ph.D. Laboratory Director

Thomas S Frank M.D Medical Director

These testresults should only be used in conjunction with the patient's clinical history and any previous analysis of appropriate family members. It is strongly recommended that these results be communicated to the patient in a setting that includes appropriate family. The accompanying Technical Specifications summary describes the analysis, method, performance characteristics, nomenclature, and interpretive optima of this test. This test may be considered investigational by some states. This test was developed and its performance characteristics determined by Myriad Genetic Laboratories. It has not been reviewed by the U.S. Food and Drug Administration. The FDA has determined that such dearance or approval is not necessary.

Missense mutations in BRCT domains by function

	cancer associated	not cancer associated		?	
no transcription activation	C1697R R1699W A1708E S1715R P1749R M1775R		M1652K L1657P E1660G H1686Q R1699Q K1702E Y1703HF 1704S	L1705PS 1715NS1 722FF17 34LG173 8EG1743 RA1752P F1761I	F1761S M1775E M1775K L1780P I1807S V1833E A1843T
transcription activation		M1652I A1669S		V1665M D1692N G1706A D1733G M1775V P1806A	
?			M1652T W1718S V1653M T1720A L1664P W1730S T1685A F1734S T1685I E1735K M1689R V1736A D1692Y G1738R F1695L D1739E V1696L D1739G R1699L D1739Y G1706E V1741G W1718C H1746N	R1751P R1751Q R1758G L1764P I1766S P1771L T1773S P1776S D1778N D1778G D1778H M1783T	C1787S A1823T G1788D V1833M G1788V W1837R G1803A W1837G V1804D S1841N V1808A A1843P V1809A T1852S V1809F P1856T V1810G P1859R Q1811R P1812S N1819S

Putative binding site on BRCA1

Williams *et al.* 2004 Nature Structure Biology. June 2004 11:519 Mirkovic *et al.* 2004 Cancer Research. June 2004 64:3790

Common Evolutionary Origin of Coated Vesicles and Nuclear Pore Complexes

mGenThreader + *SALIGN* + *MOULDER*

D. Devos, S. Dokudovskaya, F. Alber, R. Williams, B.T. Chait, A. Sali, M.P. Rout. Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture. *PLOS Biology* **2(12)**:e380, 2004

yNup84 complex proteins

All Nucleoporins in the Nup84 Complex are Predicted to Contain β -Propeller and/or α -Solenoid Folds

NPC and Coated Vesicles Share the β -Propeller and α -Solenoid Folds and Associate with Membranes

NPC and Coated Vesicles Both Associate with Membranes

Alber et al. The molecular architecture of the nuclear pore complex. Nature (2007) vol. 450 (7170) pp. 695-701

A Common Evolutionary Origin for Nuclear Pore Complexes and Coated Vesicles? The proto-coatomer hypothesis

Tropical Disease Initiative (TDI)

Predicting binding sites in protein structure models.

http://www.tropicaldisease.org

Need is High in the Tail

DALY Burden Per Disease in Developed CountriesDALY Burden Per Disease in Developing Countries

Disease data taken from WHO, <u>World Health Report 2004</u> DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486	Trichuriasis	I,006
Tetanus	7,074	Japanese encephalitis	709
Lymphatic filariasis*	5,777	Chagas Disease*	667
Syphilis	4,200	Dengue*	616
Trachoma	2,329	Onchocerciasis*	484
Leishmaniasis*	2,090	Leprosy*	199
Ascariasis	1,817	Diphtheria	185
Schistosomiasis*	١,702	Poliomyelitise	151
Trypanosomiasis*	1,525	Hookworm disease	59

Disease data taken from WHO, <u>World Health Report 2004</u> DALY - Disability adjusted life year in 1000's. * Officially listed in the WHO Tropical Disease Research <u>disease portfolio</u>.

Comparative docking

Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)

A good model has MPQS of 1.0 or higher

Summary table

models with inherited ligands

29,271 targets with good models, 297 inherited a ligand/substance similar to a known drug in DrugBank

	Transcripts	Modeled targets	Selected models	Inherited ligands	Similar to a drug	Drugs
C. hominis	3,886	1,614	666	197	20	13
C. parvum	3,806	1,918	742	232	24	13
L. major	8,274	3,975	1,409	478	43	20
M. leprae	1,605	1,178	893	310	25	6
M. tuberculosis	3,991	2,808	1,608	365	30	10
P. falciparum	5,363	2,599	818	284	28	13
P. vivax	5,342	2,359	822	268	24	13
T. brucei	7,793	1,530	300	138	13	6
T. cruzi	19,607	7,390	3,070	769	51	28
T. gondii	9,210	3,900	1,386	458	39	21
TOTAL	68,877	29,271	11,714	3,499	297	143

L. major Histone deacetylase 2 + Vorinostat

Template 1t64A a human HDAC8 protein.

PDB	EO.	Template	666	Model	G	Ligand	Exact	SupStr	SubStr	Similar
1c3sA	83.33/80.00	1t64A	36.00/1.47	LmjF21.0680.1.pdb	90.91/100.00	SHH	DB02546	DB02546	DB02546	DB02546

DB02546 Vorinostat

Small Molecule; Approved; Investigational

Drug categories:

Anti-Inflammatory Agents, Non-Steroidal Anticarcinogenic Agents Antineoplastic Agents Enzyme Inhibitors

Drug indication:

For the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies.

L. major Histone deacetylase 2 + Vorinostat

Literature

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray^{*†}, Anne M. Gurnett^{*}, Robert W. Myers^{*}, Paula M. Dulski^{*}, Tami M. Crumley^{*}, John J. Allocco^{*}, Christine Cannova^{*}, Peter T. Meinke[‡], Steven L. Colletti[‡], Maria A. Bednarek[‡], Sheo B. Singh[§], Michael A. Goetz[§], Anne W. Dombrowski[§], Jon D. Polishook[§], and Dennis M. Schmatz^{*}

Departments of *Parasite Biochemistry and Cell Biology, [‡]Medicinal Chemistry, and [§]Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Vol. 48, No. 4

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

P. falciparum tymidylate kinase + zidovudine

Template 3tmkA a yeast tymidylate kinase.

PDB	0	Template	666	Model	G	Ligand	Exact	SupStr	SubStr	Similar
2tmkB	100.00/100.00	<u>3tmkA</u>	41.00/1.49	PFL2465c.2.pdb	82.61/100.00	ATM		DB00495		DB00495
	6	Z)		DB00495 Zidovud	line				0	
		0		Small Molecule; A	pproved				HN	CH1
1 I				Drug categories:						
B				Anti-HIV Agents					1	
~				Antimetabolites					$\left(\right)$	
1000		DA		Nucleoside and N	ucleotide Rev	erse Transo	riptase	N=N	=	-OH
2-		TR	AL	Inhibitors						
07		A		Drug indication:						
		11 Y	2 🎽	For the treatm	nent of huma	n immunov	irus (HIV) infection	s.	

P. falciparum tymydilate kinase + zidovudine

NMR Water-LOGSY and STD experiments

TDI's kernel

http://tropicaldisease.org/kernel

TANEDIOICACIDHYDROXYAMIDEPHENYLAMIDE sanded from TELEFE to template TELEFE used for

TDI's kernel

http://tropicaldisease.org/kernel

36

L. Orti et al., Nat Biotechnol 27, 320 (Apr, 2009).

CORRESPONDENCE

A kernel for the Tropical Disease Initiative

To the Editor: Identifying proteins that are good drug targets and finding drug leads that bind to them is generally a challenging problem. It is particularly difficult for neglected tropical diseases, such as malaria and tuberculosis, where research resources are relatively scarce1. Fortunately, several developments improve our ability to deal with drug discovery for neglected diseases: first, the sequencing of many complete genomes of organisms that cause tropical diseases; second, the determination of a large number of protein structures; third, the creation of compound libraries, including alreadyapproved drugs; and fourth, the availability of linked 297 proteins from improved bioinformatics analysis, including methods for comparative protein structure modeling, binding site identification, virtual ligand screening and drug design. Therefore, we are now in a position to increase the odds links, if proven experiment of identifying high-quality drug targets and may significantly increase the drug leads for neglected tropical diseases. Here we encourage a collaboration among scientists to engage in drug discovery for tropical diseases by providing a 'kernel' for the Tropical Disease Initiative (TDI, http:// www.tropicaldisease.org/)2. As the Linux kernel did for open source code development, spectroscopy, validating one we suggest that the TDI kernel may help overcome a major stumbling block, in this case, for open source drug discovery: the absence of a critical mass of preexisting work that volunteers can build on incrementally. This kernel complements several other initiatives on neglected tropical diseases^{3–5}, including collaborative web portals (e.g., http://www.thesynapticleap.org/), public-

Table 1 TDI kernel genomes

Organisma

320

320

Cryptosporidium h

₹

5

õ

private partnerships (e.g., http:// /ww.mmv.org/) and private the Tropical Disease Initiative foundations (e.g., http://www. gatesfoundation.org/); for an Proj. 44 belowing resold 1.2 (2008)071 of the T2 Keres pdated list of initiatives, see the TDI website above. The TDI kernel was derived UnPort of GRADY P. Accenteri with our software pipeline 6,7 for predicting structures of protein sequences by comparative Fill in Samples in State in Light last last last last last modeling, localizing small-molecule binding sites on the 0 surfaces of the models and predicting ligands that bind to them. Specifically, the pipeline other diseases (Table 1). Such 0.0000 efficiency of target identification, target validation, lead discovery, lead optimization and clinical

Figure 1 TDI kernel snapshot of the web page for the Plasmodium falciparum thymidylate kinase target (http:// tropicaldisease.org/kernel/8/8/43/1). Our computational pipeline predicted that thymidylate kinase from *P. falciparum* binds ATM (3-azido-3-deoxythymidine-5-monophosphate), a supra-structure of the aidowdine droug approved for the treatment of HIV infection. The binding of this ligand to a site on the kinase was experimentally validated by one-dimensional Water-LOGSY⁹ and saturation transfer difference¹⁰ NMR experiments.

open source context, where results are made

A freely downloadable version of the TDI kernel is available in accordance with the

Science Commons protocol for implementing

available with limited or no restrictions

accuracy of our computational predictions based on this limited experimental testing. Thus, we encourage other investigators to donate their expertise and facilities to test additional predictions. We hope the testing will occur within the

trials. Two of the kernel targets

were tested for their binding to a known drug by NMR

of our predictions (Fig. 1 and Supplementary Data online). It is difficult to assess the

open access data (http://sciencec org/projects/publishing/open-access-dataprotocol/), which prescribes standard academic attribution and facilitates tracking Transcripts^b Modeled targets^c Similar^d Exact^e of work but imposes no other restrictions. We 3,886 13 do not seek intellectual property rights in the Crvptosporidium parvum 3.806 742 13
 1,605
 893
 25
 6

 Plasmodium Incluenculosis
 3,991
 1,608
 30
 10

 Plasmodium Vax
 5,363
 818
 28
 13

 Plasmodium Vax
 5,342
 822
 24
 13

 Toxoptasma gondi
 7,793
 300
 13
 6

 Typanosoma trucei
 9,607
 3,070
 51
 28

 tal
 68,877
 11,714
 99.7
 1

 pannessen brucei
 9,8677
 11,714
 99.7
 1
 742 actual discoveries based on the TDI kernel in the hope of reinvigorating drug discovery for neglected tropical diseases⁸. By minimizing restrictions on the data, including viral term that would be inherited by all derivative works, we hope to attract as many eyeballs as we possibly can to use and improve the kernel Although many of the drugs in the kernel are proprietary under diverse types of rights, we believe that the existence of public domain Total 66,877 11,714 297 143 "Organisms in bold are included in the World Health Organization (Greeva) Topical Disease portfolio." ^ANumber of transcripts in each genome. "Number of targets with a least one domain accurately modeled (that is, MOPIPF quality score of a least 1.0). "Number of modeled targets suith a least one predicted binding site for a molecule with a Taiminot score" of at least 9.0 is up in DiugBank". "Mumber of modeled targets with at least one predicted binding site for a molecule in DiugBank". pairs of targets and compounds will reduce the royalties that patent owners can charge and sponsors must pay. This should decreas

VOLUME 27 NUMBER 4 APRIL 2009 NATURE BIOTECHNOLOGY

VOLUME 27 NUMBER 4 APRIL 2009 NATURE BIOTECHNOLOGY

the large sums of money governments and

L. Orti et al., PLoS Negl Trop Dis 3, e418 (2009).

OPEN access Freely available online

PLOS NEGLECTED

A Kernel for Open Source Drug Discovery in Tropical Diseases

Leticia Ortí^{1,2}, Rodrigo J. Carbajo², Ursula Pieper³, Narayanan Eswar^{3¤}, Stephen M. Maurer⁴, Arti K. Rai⁵, Ginger Taylor⁶, Matthew H. Todd⁷, Antonio Pineda-Lucena², Andrej Sali^{3*}, Marc A. Marti-Renom^{1*}

1 Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain, 2 Structural Biology Laboratory, Medicinal Chemistry Department, Centro de Investigación Principe Felipe, Valencia, Spain, 3Department of Bioengineeing and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biociences, University of California San Francisco, California, United States of America, A Gould School of Law, University of Sudhem California, Lon Angeles, California, United States of America, STochool of Law, Duke University, Durbarn, North Carolina, United States of America, 6 The Synaptic Leap, San Ramon, California, United States of America, 7 School of Chemistry, University of Sydney, Sydney, New South Wales, Australia

Abstract

Background: Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private-public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues—open source drug discovery—has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such "kernels".

Methodology/Principal Findings: Here, we use a computational pipeline for: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spee have experimentally tested our predictions for two of these targets, confirming one and invalidating the other nunity can nucleate. Using NMR spec

Conclusions/Significance: The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldiseasc.org. We hope that the kernel will Facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases.

Citation: Orti L, Carbajo RJ, Pieper U, Eswar N, Maurer SM, et al. (2009) A Kernel for Open Source Drug Discovery in Tropical Diseases. PLoS Negl Trop Dis 3(4): e418. doi:10.1371/journal.pntd.0000418

Editor: Timothy G. Geary, McGill University, Canada

Received December 29, 2008: Accepted March 23, 2009: Published April 21, 2009

Copyright: © 2009 Ort et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MAM-R acknowledges the support from a Spanish Ministerio de Educación y Gencia grant (BIO2007/66670). AS acknowledges the support from the Sander Family Supporting Foundation and the National Institutes of Health (BIO LCMS4782, US4 GM074945, POI NAU3570), and POI GM77900, AP-L acknowledges the support from a Spanish Ministerio de Clencia e Innovación grant (SA200841984), RU acknowledges the support from the Famon y Cajil Program of the Spanish Ministerio de Educación y Clencia. We are also grateful for computer hardware grits to AS from Ron Convexy, Mike Homer, Intel, BM, Hewlett Packadar, and Netzph. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ompeting Interests: The authors have declared that no competing interests exist.

1

* E-mail: sali@salilab.org (AS); mmarti@cipf.es (MAM-R)

Current address: DuPont Knowledge Center, Hyderabad, India

Introduction

information by identifying potential protein targets for drug discovery. Atomic-resolution structures can facilitate this task. In the absence of an experimentally determined structure, comparative modeling can provide useful models for sequences that are detectably related to known protein structures [3,4]. Approximately we applied the p half of known protein sequences contain domains that can be

will increase as the number of experimentally determined structure Introduction There is a lack of high-quality protein drug targets and drug leads for neglected diseases [1,2]. Fortunately, many genomes of and published. Therefore, we are now in a position to leverage this for neglection diseases have already been sequenced and published. Therefore, we are now in a position to leverage this for neglection diseases [1,2]. Fortunately, many genomes of and published. Therefore, we are now in a position to leverage this for neglection diseases [1,2]. Fortunately, many genomes of and published. Therefore, we are now in a position to leverage this for neglection diseases [1,1,2], and optimizing these leads [13–15].

Here, we address the first three tasks by assembling our computer programs into a software pipeline that automatically and on large-scale predicts protein structures, their lignal binding sites, and known drugs that interact with them. As a proof of principle, we applied the pipeline to the genomes of ten organisms that cause half of known protein sequences contain domains that can be currently predicted by comparative modeling [5,6]. This coverage two predicted drug-target interactions using Nuclear Magnetic

www.plosntds.org

April 2009 | Volume 3 | Issue 4 | e418

. www.plosntds.org

April 2009 | Volume 3 | Issue 4 | e418

ently predicted by comparative modeling [5,6]. This coverage two predicted drug-target interactions using Nuclear Ma

TCAMS-TB Target identification

Sali, Brown, Overington & Marti-Renom labs

the TCAMS-TB dataset

1. Ballell, L. et al. Fueling Open-Source Drug Discovery: 177 Small-Molecule Leads against Tuberculosis. ChemMedChem n/a-n/a (2013). doi:10.1002/cmdc.201200428

the TCAMS-TB dataset

the TCAMS-TB dataset

+ 486 singletons

CNAG's nAnnoLyze (STR)

Marti-Renom lab

ChEMBL (CHEM)

Overington Lab

GSK (HIST)

Brown lab

Human Target Class	No Comr	o. of bounds	Putative	<i>Mycobacterium</i> Target	Access	sion No.	Essentialitv
	BCG	H37Rv	Gene	Product	M. bovis BCG	MTB H37Rv	
Kinase	35	8	pknA	transmembrane serine/threonine- protein kinase A	YP_976148.1	NP_214529.1	Essential
			pknB	transmembrane serine/threonine- protein kinase B	YP_976147.1	NP_214528.1	Essential
			pknD	Ser/Thr protein kinase	YP_977078.1	NP_215446.1	NE
			pknH	putative transmembrane serine/threonine- protein kinase H	YP_977417.1	NP_215782.1	NE
			pknJ	putative transmembrane serine/threonine- protein kinase J	YP_978197.1	NP_216604.1	NE
			pknL	putative transmembrane serine/threonine- protein kinase L	YP_978280.1	NP_216692.1	NE
		None	pknF	anchored- membrane serine/threonine- protein kinase F	YP_977877.1	NP_216262.1	NE
		None	pknK	putative serine/threonine- protein kinase transcriptional regulatory protein K	YP_979189.1	NP_217596.1	NE
Other Enzyme	1	0	aao	Putative D-amino acid oxidase	YP_978034.1		NE
	5	2	amiB2	amidase	YP_977414.1	NP_215779.1	NE
	2	1	aofH	putative flavin-	YP 979728.1	NP 217686.1	NE

containing

Compounds

776 compounds

Pathways

1,044 unique targets in 112 (KEGG) pathways

Compounds-pathways

8 compound family "statistically" associated to 13 pathways

GSK	Compound	Target	Pathways
Family			
1	GSK975784A	Rv2182c	Glycerolipid metabolism (mtu00561)
	4000	Rv2483c	Glycerophospholipid metabolism (mtu00564) No Pathway
	GSK975810A	Rv2182c	Glycerolipid metabolism (mtu00561)
	YY M		Glycerophospholipid metabolism (mtu00564)
		Rv2483c	No Pathway
	GSK975839A	Rv2182c	Glycerolipid metabolism (mtu00561)
	1		Glycerophospholipid metabolism (mtu00564)
	0.00	Rv2483c	No Pathway
		Rv2299c	No Pathway
	GSK975840A	Rv2182c	Glycerolipid metabolism (mtu00561)
	1		Glycerophospholipid metabolism (mtu00564)
	8000	Rv2483c	No Pathway
	GSK975842A	Rv2182c	Glycerolipid metabolism (mtu00561)
	0 2		Glycerophospholipid metabolism (mtu00564)
	0.00	Rv2483c	No Pathway
	1000	Rv2045c	No Pathway
		Rv2139	Pyrimidine metabolism (mtu00240)
		Rv2299c	No Pathway
		Rv2483c	No Pathway

8 compound families with significant links to pathways GSK547491A Rv0194 ABC transporters (mtu02010) ABC transporters (mtu02010)

All available @http://www.thepioendisease.ong/TCAMSTB

GSK547500A	Rv0194	ABC transporters (mtu02010)
GSK547511A	Rv0194	ABÉ transporters (mtu02010)

pknB target

PKNB	MTTPSHLSDRYELGEILGFGGMSEVHLARDLRDHRDVAVKVLRADLARDPS-FYLRFRREAQNAAA NHPALVAVYDTGEAETPAGPLPVIVMBYVDGVTL	100
CAMK2D		90
MARK3	GAMGSDEQPHIGNYRLLKT <mark>IC</mark> CN AKYKLARHILTGREVAI <mark>KTI</mark> DKTQ NPTSLQK FREVR MKI NHENT (K <mark>I</mark> FEVIETEKTL'LIMBYA <mark>SG</mark> GEV	798
MARK2	MADLHIGNYRLLKT <mark>IC</mark> CN AKYKLARHILTGKEVAV <mark>KII</mark> DKTQUNSSSLQKUFREVR MKVUNHENTVKLFEVIETEKTLULVMBYASGEBV	793
AKT2	KVTMNDFDYLKL <mark>LCKCTEGKVILVREKATGRYYAM<mark>KTL</mark>RKEVEIAKDEVAHTVTES-RULQNTRHPFUTALKYAFQTHDRLCFVMBYANGGEL</mark>	92
SGK1	GISQPQEPELMNANPAPPPAPSQQINLGPSSNPHAKPSDEHFLKVIC.CS GKVLLARHKAEEVFYAVKVLQKKA LKKKEEKHI SERNV LKN KHEFU GUHFSFQTAD IY V D I GGEL	126
PKNB	RDIVHTEGPMTPKRAIEVIADACQALNFSHQNGTIHRDVKPANIMISATNAVKVMDFGIARAIADSGNSVTQTAAVIGTAQVISPEQARGDSVDAR-SDVVSLCCVLVEVITGEPPFTGDSPDSVAY	226
CAMK2D	EDIVAREYYS ADPSHCIQOLESVNHCHLNGIVHRDLKPENILLASKSKGAAV (LADFGLAI VQGDQQAWFG AGT GYLSPEVLRKDPEKP-VDMMACGVILYILLVGYPPPWDBOQHRUYQ	2 216
MARK3	DYLVAHGRMKERERSKFROLVSAVQYCHOKRIVHRDLKAENILLDADMNUKIADFGFSNEFTVG-GKLDTCGSEPMAAPE FOGKKEDGPE DVMSLCVILLYTLVSCSLPFDGOLLKER	221
MARK2	DYLVAHGWMKERERRAKFROLVSAVQYCHOKFIVHRDIKAENILLDADMNUKIADFGFSNEFTFG-NKLDTCGSEPMAAPEFOGKKEDGPEEDVMSLCVILLYTLVSCSLPFDGOELKELRE	216
AKT2	FHUSRERVFTBERARFYGAS VSAUEYLHSRDVVYRDIKLSNLMUDKDGHUVITDFGLCKSGISDGATMKTCGTSEVLAPEVLEDNDSGRA-VDWNGLGVVMVEMMCGRLPFYNODHERUFE	E 215
SGK1	■YHLQRERCFL■PRERFYAA■TASALGYLHSLNIVYRDLKP=NILLDSQGHUVHTDFGLCK=NIEHNSTTSTECGT=EVLAPEVLHKQP=DRT-VDWMCLGAVLYEMIYGLPPRYSR=TAEMYD	249
PKNB	QHVREDPIP SARHEG <mark>IS</mark> ADLDA VV LKA <mark>H</mark> AKN ENRYQTAAE RADLVRVHNGEPPEAPKVLTDAERTSLLSSAAGNLSGPR	308
CAMK2D	Q KAGAYDF SPEWDTVTPEAKDIINKMITIN AKRITAS A KHP ICQRSTVAS MHRQETVDCLKKFNARRKLKGAILTTMLATRNFSAAKSLLKKPDGVKESTESSN	327
MARK3	RULRGKYRIFYNSTDCENDEKRFTVLN IKRGTLEOIUKDROINAGHEEDE KPFVEPELDISDQKRIDIMVGMGYSQEEIQESLSKMKYDEITATYLLLGRKSSE	328
MARK2	RULRGKYRIFYNSTDCENNEKKFUILN SKRGTLEUIKDROMNVGHEDDE KPYVEPLPDYKDPRTELMVSMGYTREEIQDSLVGQRYNEVMATYLLLGY	319
AKT2	L LMEEIRF RTISPEAKSIN AGLIKKD KORLGGGPSDAK V EHR FLSINWODV OKKLLPPFKPOVTSEVDTRYFDDEFTAOSITITPPDRYDSLG	315
SGK1	N LNKPLQLKPNINSARHIIEGLIQKDRTKRLG-AKDDFM IKSHV FSLINWDDL NKKITPPFNPNVSGPNDLRHFDPEFTEEPVPNAIGKAPDSVLVTASVKEAAEAFLGFSYAPPTDSFL	373

GSK number	pIC50	Gene	Score _{2PZI} *	Score _{3F69} *
GW623128X	7.3	CNR2	-8.83	-8.63
GSK1519001A	5.7	NPSR1	-9.09	-8.65
GSK547481A	6.1	HTR4	-8.93	-9.27
GSK2043267A	7.5	CYP2C19	-8.8	-8.56
GSK381407A	5.6	P2RY14	-9.02	-8.71
GSK547543A	6.2	GPR55	-9.03	-10.37
GSK547511A	6.2	GPR55	-9.01	-8.58
GSK1598164A	8	IKBKB	-9.19	-8.96
GSK1635139A	5.6	CHRNA7	-8.6	-9.59

PknB kinase docking to GSK1598164A. A) Multiple sequence alignment of *Mycobacterium* PknB kinase with selected human kinases. Human kinases were selected on the criteria of having available PDB structures and top Psi-BLAST scores to *M. bovis* transmembrane serine/threonine-protein kinase B (pknB). First sequence in the alignment (gene name; PDB identifier) is *M. tuberculosis* transmembrane serine/threonine-protein kinase B (PknB; 3F69), which is 99% identical to *M. bovis* PknB and was used in compound docking models. Other sequences are CAMK2D (2EWL), MARK3 (2QNJ), MARK2 (3IEC), AKT2 (1GZK) and SGK1 (2R5T). Residues known to interact with ADP in pknB are highlighted in red. The amino acids aligned with Glu93, which may be essential for the binding of the GSK1132084A, are highlighted in green. **B)** Binding models of the GSK1598164A and ADP within pknB binding site (left and right panels, respectively).

serS target

GSK1402290A

Targeting the aminoacyl-tRNA biosynthesis pathway. CHEM results show that GSK1402290A shared several substructural features with compounds reported as potent lysyl-tRNA synthetase inhibitors in the ChEMBL database (e.g., CHEMBL474582 and CHEMBL508242). STR results predicted the serS as a target of GSK1402290A with its binding site including residues F205, H209, G225, T226, E228, R257, F276, K278, and E280, which are conserved in the PFAM family PF00587 (tRNA synthetase class II core domain). The image shows the pose for GSK1402290A predicted by AutoDock and the binding site residues (i.e., within 6Å from the compound) colored from low sequence conservation (blue) to high sequence conservation (red).

Web Server

http://www.tropicaldisease.org/TCAMSTB

Search the	predictions for TCAMSTB datase
Type your query	CW335118X
	fill the form with an example
Search by*	Compound (eg: GW335118X) \$
Essentiality *	Only Essential
	 All

Co back	danker of									
method	0004	-	Terpt	10	2.4100008	In An exertail	Gene Asmet	Gene itterighten	Pathway	Pathway Insergilier
OWN	CONTRACTOR	PRIME	Adda	No.	4.8	No famile	publication and an articles of the second se	Peopleringhree-gere lass (IC \$1.11) (SVI) (Synamic danaktis gehalasi (Peopleringly/serie gehalasi	19,0223	Polite relative
NBIC	20222135	PLOID I	B-CITZ	50	10	Non Essential	IND ANTER WITH WITH ALL IN	Prophotosjanne ginne base (3C 133/3) (3MI): Opinaniai dorudeolar synhetisci (Prophotos)/phonete synhetise)	1941100	Mobilit pathetys
CHM	CHERRINA.	PROMINE.	BALLER.	14	4.56	Notinetal	purch duality withow with view of	Peoplerkophres-phraikas (IC 63.67) (SAV) (Spramis describilits splitates) (Peoplerkophytramis splitates)	realities	Respirate of secondary radiatedies
CHEM .	Deliterat	001012	8.00	340	Nor-Eperial	Non Essential	PLAN WTODOL ALGOR	Prosteriosfernylychantile och igen (IS 0.3.3.1)	19/121	Pyrite metabolike
OW	CHARLEN AND	DAMES	1446	100	No Frank	No factal	purfer MTDRID Rubbins	PeopleringRengt/country on Jan (12433.1)	1002150	Manhok patiengs
OHEM	200301186	003823	1,000	500	Nor-Epertal	Non Exercise	8wAI MT080C/R-0808	ProghorboyArmyQv/sambire solo ligent (85 6.3.3.1)	100110	Biographical of secondary metabolities
OWN	SWIMME	Diaman.	1016	100	No fundad	No Isected	ATADAN:	Protate set-ophieses1pT (EC311-)	NA.	No.Taltany
CHEM	010301188	TRADE	8473	22	No lawfai	Non Exercise	NA #4 A 210 HT200 MTV00 28	CRydrofeee resultans (82 1213)	HARD	One cartion positily folder
CHEN	CONTRACTAL.	10444	1470	100	No I sector	No famile	NA ANA NORMAL WESTING MENDER IN	CityIndiale relation (IC 1613)	-	Folia Magellania
NBHC	geologicality of the second second	10006	54733	-	No Lorda	Non Essential	544 (HA 40/10) W1200 M1/002 (H	Citydrofean resultant (82.1.5.1.3)	194110	Mobile petrope
DHM.	CHEMINA	ONIO	8.0046	141	the Exercise	838	apel Addate at table	Cartoris artigitase (RE 4.2.1.1) (Cartorials del phatea)	10,000	Ninger tablelar
\$78	Deliterat	10.025	8-128	24	Nor-Eserial	Not Essential	enA-loveste Minister Minister 44.27	Probable 5 expansioner (5 ADName) (EC 35111) (5 expansioner amilitryshilder)	-	Nerive, asserbite and platenase metabolier
478	SWIMPINK	TUNIT	14150	14	No Feedal	No familal	and-foresh 871082347294837	Probable Laspenginess (L-ADNess) (FC 3311) (Laspengine anticitythtises)	-	Convertes and ratio law
ane.	200301186	15362	8/026	235	Non-Essential	Non Exercise	#INVESTIGATION APPENDENT/CHART	Probable Lassangheer (J. ADNaw) (ICC 3317) (), assanghe amilifultrated	14021	Nitrogen melalisilen
124	SWIMMAK	PERMIT	A-104	100	No fundad	No Taurial	ANA RUNDE BY HELACONE.IT	Profestie Langue agrees (LAMana) (EC3311) (Langue agree anticipations)	Hadrid .	Malabele patientys
178	010301184	1000	5/126	22	No Lorda	Non Exercise	#INANCE REPORT ATOM A	Protective L upparighteer (L-KRNeet) (EC-35117) (), apparighte amilia/sylfolized)	10010	Benyrtheid of providing metabolikes
174	CHIMAN	PERMIT	8/152	H.	4.0	No familie	wight Running Million and Constraints of	Nandji perna pland drugtaka labataa (ADM) (IC 13.1.9) (Nandji planak amataliyis kirjetoposa) (NADA kirjetoposa)	-	Arghine and proble maintening
378	2010101085	12.202	8,4572	L.	10	Non Essential	INCOMENTAL METHOD INTERNAL ST	In anny parma planny shophate relation (ADPR) (3C 12138) IN sonly planete considerate introductions (NASA introductional)	19/110	Mobilik pathetys
828	CHEMINA	10040	8/1952	H.	6.06	No Taxatia	angC-Rummit MTHEE INTERNATION	Numbiganna pitenyi, hophan rakutaa (ADM) (7C 131 19) (Numbigationals annatiatyte detytingenaa) (NADM detytingenaa)	raitti	Respirate of according relatedas
\$78	Destauras.	10000	8,4972	22	0.05	Non Epsential	angC-Rundlig Mithode with cycles 41.57	N antij ganne glateni skoghati mlutere (KOM) (8012138) (N sotij glatenati smalletviti širutropresi) (KASA arkvingenezi	m/125	2 Overartook anti hetatolari
276	CHINESE STREET	OK101	ACC	100	No frank	No. Inertal	hps fluid The	POSSILE MONHEME HALOPPROVIDATE HER (EC.1.11.1.)	MR	No Falloway

Article

http://www.tropicaldisease.org/TCAMSTB

Martínez-Jiménez, et al. (2013). PLoS CB, 9(10), e1003253

OPEN ORCESS Freely available online	
Target Prediction for an Ope	en Access Set of Compounds
Active against Mycobacteriu	ım tuberculosis
Francisco Martínez-Jiménez ^{1,2} , George Papadatos ³ , Ursula Pieper ⁵ , Andrej Sali ⁵ , James R. Brown ⁴ *, Joh 1 Genome Biology Group, Centre Nacional d'Anâlisi Genômica (CNAG), Barcelona Regulation (CRG), Barcelona, Spain, 3 European Molecular Biology Laboratory – Euro Cambridge, United Kingdom, 4 Computational Biology, Quantitative Sciences, Glax Bioengineering and Therapeutic Sciences, Junix	Lun Yang ⁴ , Iain M. Wallace ³ , Vinod Kumar ⁴ , n P. Overington ³ *, Marc A. Marti-Renom ^{1,2} * , Spain, 2Gene Regulation Stem Cells and Cancer Program, Centre for Genomi pean Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxtor osmithkline, Collegeville, Pennsylvania, United States of America, 5 Department on Francisco, California, United States of America
Abstract	
is the leading cause of mortality due to infectious disease, because of the emergence of multi-drug resistance strains a Recently, the pharmaceutical company GlaxoSmithKline pub two million compound library for anti-mycobacterial pheno activity against the <i>M. tuberculosis</i> H37Rv strain, including a su <i>in vitro</i> cytotoxicity. The next major challenge is the identifi approach that integrates historical bioassay data, chemical pro propose their potential targets <i>in M. tuberculosis</i> . We predictee further studies to characterize the mode of action of thes predicted structural models, are available to the wider scientifi development of novel TB therapeutics.	The development of new anti-TB therapeutics is required, as well as co-infection with other pathogens, especially HIV. lished the results of a high-throughput screen (HTS) of their types. The screen revealed 776 compounds with significant bset of 177 prioritized compounds with high potency and low cation of the target proteins. Here, we use a computational operties and structural comparisons of selected compounds to d 139 target - compound links, providing a necessary basis for e compounds. The results from our analysis, including the ic community in the open source mode, to encourage further
Citation: Martinez-Jiménez F, Papadatos G, Yang L, Wallace IM, Kumar V, et al. Mycobacterium tuberculosis. PLoS Comput Biol 9(10): e1003253. doi:10.1371/journ	2013) Target Prediction for an Open Access Set of Compounds Active against al.pcbi.1003253
Editor: Alexander Donald MacKerell, University of Maryland, Baltimore, United S	tates of America
Received May 2, 2013; Accepted August 11, 2013; Published October 3, 2013	3
Copyright: © 2013 Martinez-Jimenez et al. This is an open-access article distr permits unrestricted use, distribution, and reproduction in any medium, provide	buted under the terms of the Creative Commons Attribution License, which d the original author and source are credited.
Funding: MAMR acknowledges the support from the Spanish Government (BFU were supported by funding from the EMBL Member States. JRB acknowledges the GM094662 and P01 GM71790). GlaxoSmithKline participated in this research th design, data collection and analysis, decision to publish, or preparation of the m	2010-19310) and the Era-Net Pathogenomics (PIM2010EPA-00719). JPO and GP support of Glaxo5mithKline R&D and AS acknowledges support from NIH (US4 ough the co-authorship of VK, LY, and JRB. The funders had no role in study anuscript.
Competing Interests: VK, LY, and JRB are paid employees of GlaxoSmithKline (G materials. All other authors have declared that no competing interests exist.	SK). This does not alter our adherence to the PLOS policies on sharing data and
* E-mail: James.R.Brown@gsk.com (JRB); jpo@ebi.ac.uk (JPO); mmarti@pcb.ub.cat	(MAMR)
Introduction	to 1960s through large scale screening of compound collections fo anti-bacterial activity – the so-called whole cell or phenotypic correspondent of the control of the scale s
terium tuberculosis (MTB), the causative agent of tuberculosis [1]. Approximately 95% of infected individuals are thought to have persistent, latent MTB infections that remain dormant until	technologies and the availability of whole genome sequences in the 1990s led to dramatic changes in anti-bacterial drug discovery where the emphasis was placed on screening essential targets fo
activated by specific environmental and host response events.	inhibitory compounds. However, despite intensive efforts, target
Approximately 10% of latent infections eventually progress to active disease, which, if left untreated, kills more than half of the infected patients [2]. Moreover, there is an increasing clinical	based screening has been largely unsuccessful in producing clinica candidate molecules [5]. As a result, a return to whole cel screening has been widely advocated, in combination with nove
occurrence of MTB strains with extensive multi-drug-resistance eg, MTB MDR and MTB XDR), where mortality rates can approach 100% [3]. In some countries, the MTB MDR and XDR	technologies and bioinformatics to rapid identify targets associated with a compound's mechanism of action (MOA) [4,6]. Recently, the pharmaceutical company GlaxoSmithKlin
strains may account for up to 22% of infections [1]. In addition, current TB therapeutic regimes involve a combination of puthostic administrated at regular interacts are a former the	(GSK) completed an anti-mycobacterial phenotypic screening campaign against <i>M. bovis</i> BCG, a non-virulent, vaccine <i>Mycobac</i> trainer straine with a subsection of the strainer strainer.
period, which makes patient compliance an issue, especially in	tuberculosis H37Rv (MTB H37Rv) for hit confirmation [7]. A tot

antibiotics were discovered during the golden era from the 1940s release was to stimulate mechanism of action analyses using

developing countries [1,2]. The discovery and development of new antibiotics is widely recognized as one of the major global health emergencies, yet it is also a major pharmaceutical challenge. Most currently used the wider scientific community through the ChEMBL database (http://dx.doi.org/10.6019/CHEMBL2095176). The aim of this

PLOS Computational Biology | www.ploscompbiol.org

October 2013 | Volume 9 | Issue 10 | e1003253

PLOS Computational Biology | www.ploscompbiol.org

also a major pharmaceutical challenge. Most currently used **20**(http://dx.doi.org/10.6019/CHEMBL2095176). The aim of this antibiotics were discovered during the golden era from the 1940s **20** release was to stimulate mechanism of action analyses using

1

Fast Sequencing for TB treatment Köser & Peacock

Whole-Genome Sequencing for Rapid Susceptibility Testing of M. tuberculosis

tuberculosis depend on the rapid detection and effective treatment of cases, together with public ongoing transmission. The necessary laboratory support for these activities includes the identification of the Mycobacterium tuberculosis complex, antimicrobial susceptibility testing, and bacterial genotyping. However, even in well-resourced countries, it typically takes 1 to 2 months to achieve all these goals because of the slow growth rate of the M. tuberculosis complex.^{1,2} Moreover, phenotypic susceptibility testing can be unreliable and is not performed for some agents. Molecular techniques have accelerated some of these diagnostic functions, but they only interrogate a small part of the microbial genome and do not provide all the clinically relevant information.¹⁻³ Whole-genome sequencing has not been used as a diagnostic tool for tuberculosis, in part because of the need to culture M. tubercu-

TO THE EDITOR: Efforts to contain drug-resistant losis complex for several weeks, until sufficient DNA can be extracted.^{2,4}

Here we report the use of rapid whole-genome health interventions to prevent and investigate sequencing to investigate the case of a patient with extensively drug-resistant (XDR) tuberculosis (the case history is provided in the Supplementary Appendix, available with the full text of this letter at NEJM.org). His first sputum sample became culture-positive after 3 days in the mycobacterial growth indicator tube (MGIT) culture system. DNA was extracted directly from the MGIT tube and sequenced with the use of the Illumina MiSeq platform. Two distantly related Beijing strains of M. tuberculosis were identified (in a ratio of 7:3) (Fig. 1B). Mixed infection was not apparent when standard genotyping was performed on three additional samples from this patient by means of mycobacterial interspersed repetitive-unit-variable-number tandem-repeat assay, which probably identified the majority strain. These findings have important implications for

Claudio U. Köser, Ph.D.

Public Health England Cambridge, United Kingdom

Josephine M. Bryant, B.Sc.

Wellcome Trust Sanger Institute Hinxton, United Kingdom

Jennifer Becg, Ph.D.

Illumina (Cambridge) Little Chesterford, United Kingdom

M. Estée Török, Ph.D.

University of Cambridge Cambridge, United Kingdom

Matthew J. Ellington, D.Phil. Public Health England

Cambridge, United Kingdom

Marc A. Marti-Renom, Ph.D. Centre Nacional d'Anàlisi Genòmica Barcelona, Spain

Andrew J. Carmichael, Ph.D.

Cambridge University Hospitals National Health Service Foundation Trust Cambridge, United Kingdom

Julian Parkhill, Ph.D. Wellcome Trust Sanger Institute

Hinxton, United Kingdom

Geoffrey P. Smith, Ph.D. Illumina (Cambridge)

Little Chesterford, United Kingdom

Sharon J. Peacock, Ph.D.

University of Cambridge Cambridge, United Kingdom sjp97@medschl.cam.ac.uk

Microbiology Results, Phenotypic Drug Susceptibility Results and Anti-tuberculosis Therapy During Hospitalisation

Phylogenetic Analysis and the Distribution of Drug-Resistance Mutations.

a Distribution of SNPs and Resistance Mutations

Alanine Racemase Conservation

Alanine Racemase M343T Modeling

Cycloserine

Acknowledgments

http://marciuslab.org http://integrativemodeling.org http://cnag.cat · http://crg.cat