Hybrid [integrative] methods for structure determination

Marc A. Marti-Renom Genome Biology Group (CNAG) Structural Genomics Group (CRG)

Integrative Modeling

since 1956

Build geometric models

Components

Model

Russel et al, PLoS Biology, 2012

http://www.integrativemodeling.org

- **Stage 1**: Gathering information.
- **Stage 2**: Choosing how to represent and evaluate models.
- **Stage 3**: Finding models that score well.
- **Stage 4**: Analyzing resulting models and information.

Representation

- Atomic
- Rigid bodies
- Coarse grained
- Multi-scale
- Symmetry/periodicity
- Multi-state systems

- Proteomics
- Density maps
- EM images
- FRET
- Chemical cross linking
- Homology-derived restraints
- SAXS
- Native mass spec
- Statistical potentials
- Molecular mechanics forcefields
- Bayesian scoring functions
- Library of functional forms (ambiguity, ...)

• Monte-Carlo

- Conjugate Gradients
- Quasi-Newton
- Simplex
- Divide and conquer sampler

- Clustering
- Output
 - · Chimera
 - Pymol
 - · PDBs
 - · Density maps

The NPC

Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., et al. (2007). Nature, 450(7170), 695–701

Representation

436 proteins!

τ	$N^1_{ au}$	N_{τ}^2	K	$\{B_j^\kappa\}$	n_{κ}	r	τ	$N^1_{ au}$	N_{τ}^2	к	$\{B_j^\kappa\}$	n _k	r
Nup192	1	1	1,2,5	33	2	3.0	Nup1	0	1	1,5	00000000	9	1.5
			3	-	1	-				2	•••••••	2	1.5
Nup188	1	1	1,2,5	8 8	2	3.0				3	-	1	-
			3	-	1	-				4	ಂತಾರಾರ್	7	1.5
Nup170	1	1	1,2,5	3 3	2	2.9	Nsp1	2	2	1,5		12	1.3
			3	-	1	-				2	33333333333	3	1.3
Nup157	1	1	1,2,5	000	3	2.5				3	-	1	-
			3	-	1	-				4	000000000000000000000000000000000000000	9	1.3
Nup133	1	1	1,2,5		2	2.7	Gle1	1	0	1,2,5	3 3	2	2.1
			3	-	1	-				3	-	1	-
Nup120	1	1	1,2,5		2	2.6	Nup60	0	1	1,5	8888	4	1.6
			3	-	1	-				2,3	@ 300	1	1.6
Nup85	1	1	1,2,5		3	2.0	Nup59	1	1	4		3	1.6
			3	-	1	-				1,5	8393	4	1.6
Nup84	1	1	1,2,5	**	3	2.0				2	°°99	2	1.6
			3	-	1	-				3	-	1	-
Nup145C	1	1	1,2,5		2	2.3				4	00 00	2	1.6
			3	-	1	-				1,5	833	3	1.8
Seh1	1	1	1,2,3,5	9	1	2.2	Nup57	1	1	2,3		1	1.8
Sec13	1	1	1,2,3,5	9	1	2.1				4	99 0	2	1.8
Gle2	1	1	1,2,3,5	٩	1	2.3				1,5	839	3	1.7
Nic96	2	2	1,2,5		2	2.4	Nup53	1	1	2,3	000	1	1.7
			3	-	1	-				4	99	2	1.7
Nup82	1	1	1,2,5	9 9	2	2.3	Nup145N	0	2	1,5	333333	6	1.5
			3	-	1	-				2,3	000000	1	1.5

Data ge	neration	Data interpretation							
Method	Experiments	Restraint	Rc	Ro	R _A	Functional form of activated feature restraint			
Bioinformatics and Membrane fractionation	30 nup sequences	Protein excluded volume restraint	-	-	1,864 1,863/2	Protein-protein: Violated for $f < f_o$, f is the distance between two beads, f_o is the sum of the bead radii, and σ is 0.01 nm. Applied to all pairs of particles in representation κ =1: $B^{mi} = \left\{ B_j^{\kappa-i}(\theta, s, \tau, i) \right\}$			
	30 nup	Surface localization restraint	-	-	48	Membrane-surface location: Violated if $f \neq f_o$. f is the distance between a protein particle and the closest point on the NE surface (half-torus), $f_o = 0$ nm, and σ is 0.2 nm. Applied to particles: $B^{ee} = \left\{ B_j^{r,6}(\theta, s, \tau, i) \tau \in (Ndc1, Pom152, Pom34) \right\}$			
	30 Nup sequences and immuno-EM (see below)		-	-	64	Pore-side volume location: Violated if $f < f_0$. f is the distance between a protein particle and the closest point on the NE surface (half-torus), $f_0 = 0$ me. $a \sigma$ is 0.2 nm. Applied to particles: $B^{min} = \left\{ B_j^{min}(\theta, s, \tau, i) \mid \tau \in (Ndc1, Pom152, Pom34) \right\}$			
			-	-	80	Perinuclear volume location: Violated if $f > f_{0r}$, f is the distance between a protein particle and the closest point on the NE surface (half-torus), $f_0 = 0$ nm, and σ is 0.2 nm. Applied to particles: $B^{mr} = \{B_j^{r=7}(\theta, s, \tau, i) \tau \in (Pom152)\}$			
Hydrodynamics experiments	1 S-value	Complex shape restraint	1	164	1	Complex diameter Violated if $f < f_o$. f is the distance between two protein particles representing the largest diameter of the largest complex, f_o is the complex maximal diameter $D=19.2$ - R , where R is the sum of both particle radii, and σ is 0.01 nm. Applied to particles of proteins in composite C_{45} : $B^{me} = \left\{ B_j^{me-1}(\theta, s, \tau, i) \tau \in C_{51} \right\}$			
	30 S-values	Protein chain restraint	-	-	1,680	Protein chain Violated if $f \neq f_o$. <i>f</i> is the distance between two consecutive particles in a protein, f_o is the sum of the particle radii, and σ is 0.01 nm. Applied to particles: $B = \left\{ B_j^{\kappa}(\theta, s, \tau, i) \kappa = 1 \right\}$			
Immuno-Electron microscopy	10,940 gold particles	Protein localization restraint	-	-	456	Z-axial position Violated for $f < f_0$. <i>f</i> is the absolute Cartesian Z-coordinate of a protein particle, f_0 is the lower bound defined for protein type τ , and σ is 0.1 nm. Applied to particles: $B = \{B_j^{\kappa}(\theta, s, \tau, i) \kappa = 1, j = 1\}$			
					456	Violated for $f > f_o$. <i>f</i> is the absolute Cartesian Z-coordinate of a protein particle, f_o is the upper bound defined for protein type <i>t</i> , and σ is 0.1 nm. Applied to particles: $B = \left\{ B_j^{\kappa}(\theta, s, \tau, i) \kappa = 1, j = 1 \right\}$			
				-	456	Radial position Violated for $f < f_o$. <i>f</i> is the radial distance between a protein particle and the Z-axis in a plane parallel to the X and Y axes, f_o is its lower bound defined for protein type τ , and σ is 0.1 nm. Applied to particles: $B = \left\{ B_j^{\kappa} (\theta, s, \tau, i) \kappa = 1, j = 1 \right\}$			
					456	Violated for $f > f_o$. <i>f</i> is the radial distance between a protein particle and the Z-axis in a plane parallel to the X and Y axes, f_o is its upper bound defined for protein type τ , and σ is 0.1 nm. Applied to particles: $B = \left\{ B_j^{\kappa}(\theta, s, \tau, i) \kappa = 1, j = 1 \right\}$			
Overlay assays	13 contacts	Protein interaction restraint	20	112	20	Protein contact Violated for $f > f_o$. <i>f</i> is the distance between two protein particles, f_o is the sum of the particle radii multiplied by a tolerance factor of 1.3, and σ is 0.01 nm. Applied to particle: $B = \left\{ B_j^{\kappa} (\theta, s, \tau, i) \kappa \in (2, 4, 9), \theta \in (1, 2, 3) \right\}$			
Affinity purification	4 complexes	Competitive binding restraint		132	4	Protein contact Violated for $f > f_o$. <i>f</i> is the distance between two protein particles, f_o is the sum of the particle radii multiplied by a tolerance factor of 1.3, and σ is 0.01 nm. Applied to : $B = \left\{ B_j^{\kappa}(\theta, s, \tau, i) \theta \in (1, 2, 3), \kappa \in (2, 4, 6), \tau = (Nup82, Nic96, Nup49, Nup57) \right\}$			
	64 complexes	Protein proximity restraint	692	25,348	692	Protein proximity Violated for $f > f_o$. <i>f</i> is the distance between two protein particles, f_o is the maximal diameter of a composite complex, and σ is 0.01 nm. Applied to particles: $B = \left\{ B_j^{\kappa}(\theta, s, \tau, i) \theta \in (1, 2, 3), \kappa \in (2, 4, 9) \right\}$			

Optimization

Integrating data

The STRUCTURE of NPC

IMP-based efforts

Ribosomes, Sali, Frank; Sali, Akey

Hsp90 landscape Sali, Agard

TRiC/CCC Sali, Frydman, Chiu

Actin Sali, Chiu

Nuclear Pore Complex transport, Sali, Rout, Chait, Chook, Liphardt

Chromatin globin domain Marti-Renom

RyR channel Sali, Šerysheva, Chiu

Microtubule nucleation Sali, Agard

Lymphoblastoid cell genome Alber, Chen

Nuclear Pore Complex, Sali, Rout, Chait

26 Proteasome

Sali, Baumeister

Nup84 complex, Sali, Rout, Chait

Spindle Pole Body Sali, Davis, Muller

PCS9K-Fab complex Sali, Cheng, Agard, Pons

Who Is developing with IMP?

From proteins to genomes

Resolution Gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Know	edge								
1 ANT SEA					IDM			$\begin{array}{c} & 11 & \chi & 12 & 15 & 6 & 10 \\ & 5 & 12 & 13 & 12 \\ & 5 & 12 & 13 & 12 \\ & 5 & 12 & 13 & 12 \\ & 5 & 12 & 13 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 13 & 12 & 12 \\ & 12 & 12 & 12 & 12 \\ & 12 & 12$	
10 ⁰		10 ³			10 ⁶			DNA length	nt
					10				
10-9		10-6	10	-3		100		Volume	
10		10	10			10		10	μm
								Time	
10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10 ⁻⁴	10 ⁻²		10 ⁰	10 ²	10 ³	S
10 ⁻³			10 ⁻²				10 ⁻¹	Kesolution	
							10		μ

"Bridging" the Resolution Gap

Dekker, J., Marti-Renom, M. A., & Mirny, L. A. (2013). Nature Reviews Genetics, 14(6), 390–403.

Hybrid Method

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Hi-C technology

Lieberman-Aiden, E. et al. Science 326, 289-293 (2009). http://3dg.umassmed.edu

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 3C-based data

3C-like data

Nora, E. P., et al. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature

http://www.3Dgenomes.org

On TADs and hormones

François le Dily

Davide Baù

François Serra

Progesterone-regulated transcription in breast cancer

Vicent et al 2011, Wright et al 2012, Ballare et al 2012

> 2,000 genes Up-regulated> 2,000 genes Down-regulated

Regulation in 3D?

Experimental design

Are there TADs? how robust?

Are TADs homogeneous?

Do TADs respond differently to Pg treatment?

Do TADs respond differently to Pg treatment?

Pg induced fold change per TAD (6h)

Modeling 3D TADs

61 genomic regions containing 209 TADs covering 267Mb

How TADs respond structurally to Pg?

Model for TAD regulation

Acknowledgments

François Serra Davide Baù François le Dily

David Dufour **Mike Goodstadt** Gireesh Bogu Francisco Martínez-Jiménez

ETC Miguel Beato, Thomas Graf and Guillaume Filion

http://marciuslab.org http://3DGenomes.org http://cnag.cat · http://crg.cat

