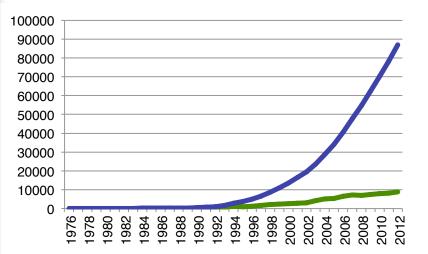
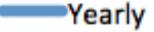
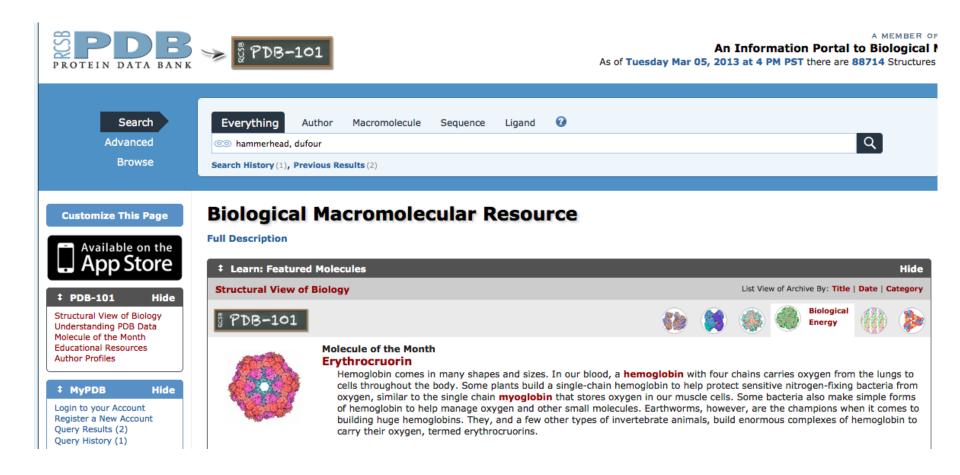

Databases Alignment & structure classification

GOALS


- 1. Known structures
- 2. Structure comparison
- 3. Structure classification
- 4. Number of folds in nature
- 5. Sequences VS fold structures


1. Known structures

PDB


Yearly and total PDB structures per year

PDB search

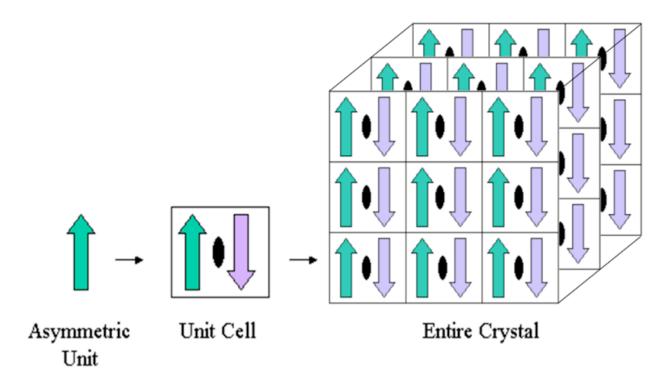
PDB search

Showing 1 - 2	of 2 Results			Results : 25 ÷ Page: 1 of 1				
Filter: Check	k All 🗘 View:	Detailed +		Reports: Select one + Sort: Relevance +				
✓ 2RO2 ≝ 🖹 ᠳ	ribozyme							
	Release:	2008-12-30	Classification:	RNA P				
	Experiment:	SOLUTION NMR	Residue Count:	23				
No.	Compound:	1 Polymer [Display Full Polymer Details Display for All Results]						
Q.	Citation:	natural hammerheads	Dozymes of chrysanthemum chlorotic n Display Full Abstract Display for All Results]	nottle viroid: a loop-loop interaction motif conserved in most				
	Search Hit:	Title: Solution structure of domain I of the	ne negative polarity CChMVd hammerhead	l ribozyme				
⊘ 2RPK ≛ ≣ ≜	Solution Stru Authors:	ucture of Domain II of the Positiv Gallego, J. タ, Dufour, D. タ, de la Pena, M. タ,		id Ribozyme				
	Release:	2008-12-30	Classification:	RNA P				
Ś	Experiment:	SOLUTION NMR	Residue Count:	20				
2	Compound:	1 Polymer [Display Full Polymer Details Di	splay for All Results]					
79	Citation:	natural hammerheads	Dozymes of chrysanthemum chlorotic n Display Full Abstract Display for All Results]	nottle viroid: a loop-loop interaction motif conserved in most				
	Search Hit:	Title: Solution Structure of Domain II of	the Positive Polarity CCHMVD Hammerhea	ad Ribozyme				

Advanced search

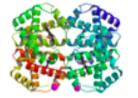
Search Advanced Browse	Everything Author Macromolecule Sequence Ligand Image: Comparison of the second secon	
PDB-101 Hide Structural View of Biology Understanding PDB Data Molecule of the Month Educational Resources Author Profiles Hide Cogin to your Account Hide Login to your Account Hide Vegister a New Account Hide News & Publications Usage/Reference Policies Deposition FAQ Contact Us About Us Careers External Links Sitemap New Website Features Hide	Advanced Search Interface Macromolecule Type Search based on whether the structure contains chains of certain molecule types (e.g. protein vs. DNA) Contains Protein Yes Contains DNA No Contains No DNA/RNA Hybrid And X-ray resolution (mmCIF item _refine.ls_d_res_high) E Between	
All Deposit Services		Add Search Criteria 🔂

PDB comparison tool

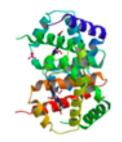

RCSB PDB Protein Comparison Tool Calculate pairwise sequence or structure alignments. Compare the following two proteins 🕕 Cytoplasmic dynein 1 heavy chain 1, seryl t-RNA synthetase chimera ID 1: 3J1T.A KQQEVIADKQMSVKEDLDK Cytoplasmic dynein 1 heavy chain 1, seryl t-RNA synthetase chimera ID 2: 3J1U.A KQQEVIADKQMSVKEDLDK... --- Select Comparison Method ---\$ --- Select Comparison Method ---Compare Pairwise Sequence Alignment blast2seg you can use the auto-suggest feature. It supports searching by Т Smith-Waterman Needleman-Wunsch Pairwise Structure Alignment jFATCAT - rigid iFATCAT – flexible jCE algorithm ptions) iCE Circular Permutation external server: FATCAT external server: TM-Align va Web Start applications, view our troubleshooting Java Web Start page for more help. If y external server: TopMatch external server: Dali

PDB format

http://www.wwpdb.org/documentation/format33/v3.3.html


HEADER	
TITLE	LOW AFFINITY DYNEIN MICROTUBULE BINDING DOMAIN - TUBULIN COMPLEX
	MOL_ID: 1;
COMPND	
COMPND	
	4 CHAIN: A;
	5 FRAGMENT: SEE REMARK 999;
	6 SYNONYM: CYTOPLASMIC DYNEIN HEAVY CHAIN 1, DYNEIN HEAVY CHAIN,
	7 CYTOSOLIC;
	8 ENGINEERED: YES;
	9 MOL_ID: 2;
COMPND	10 MOLECULE: TUBULIN ALPHA-1B CHAIN;
	11 CHAIN: B;
	12 SYNONYM: ALPHA-TUBULIN UBIQUITOUS, TUBULIN K-ALPHA-1, TUBULIN ALPHA-
	13 UBIQUITOUS CHAIN;
	14 MOL_ID: 3;
COMPND	15 MOLECULE: TUBULIN BETA-2B CHAIN;
COMPND	16 CHAIN: C;
COMPND	17 SYNONYM: BETA TUBULIN
SOURCE	MOL_ID: 1;
SOURCE	2 ORGANISM_SCIENTIFIC: MUS MUSCULUS;
SOURCE	3 ORGANISM_COMMON: MOUSE;
SOURCE	4 ORGANISM_TAXID: 10090;
SOURCE	5 GENE: DYNC1H1, DHC1, DNCH1, DNCHC1, DYHC;
SOURCE	6 EXPRESSION SYSTEM: ESCHERICHIA COLI;
SOURCE	7 EXPRESSION SYSTEM TAXID: 562;
SOURCE	8 MOL ID: 2;
SOURCE	9 ORGANISM SCIENTIFIC: BOS TAURUS;
SOURCE	10 ORGANISM COMMON: BOVINE;
SOURCE	11 ORGANISM TAXID: 9913;
SOURCE	12 MOL ID: 3;
SOURCE	13 ORGANISM SCIENTIFIC: BOS TAURUS;
SOURCE	14 ORGANISM COMMON: BOVINE;
SOURCE	15 ORGANISM TAXID: 9913
KEYWDS	MOTOR PROTEIN-STRUCTURAL PROTEIN COMPLEX
	ELECTRON MICROSCOPY
AUTHOR	W.B.REDWINE, R.HERNANDEZ-LOPEZ, S.ZOU, J.HUANG, S.L.RECK-PETERSON,
AUTHOR	2 A.E.LESCHZINER

Assymetric Unit VS Biological Assembly



Assymetric Unit VS Biological Assembly

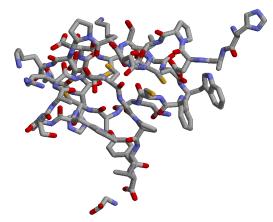
Asymmetric unit with one biological assembly

Asymmetric unit with a portion of a biological assembly

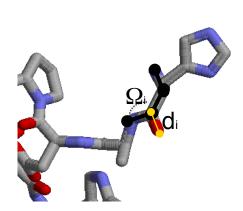
Entry 2hhb contains one hemoglobin molecule (4 chains) in the asymmetric

unit.

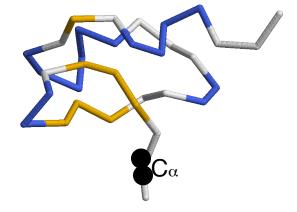
Entry **1hho** contains **half** a hemoglobin molecule (**2 chains**) in the asymmetric unit. A crystallographic two-fold axis generates the other 2 chains of the hemoglobin molecule.

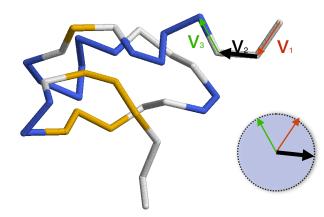

2. Structure comparison

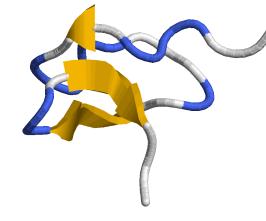
Structure-Structure alignments

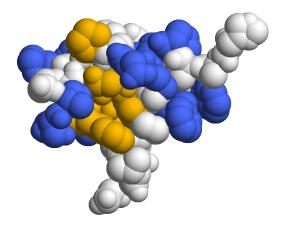

General steps in a bioinformatics procedure:

Representation Scoring Optimizer Representation


Structures


All atoms and coordinates




Dihedral space or distance space

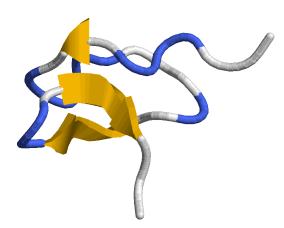
Reduced atom representation

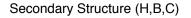
Vector representation

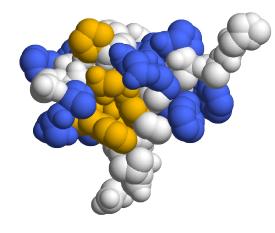
Secondary Structure

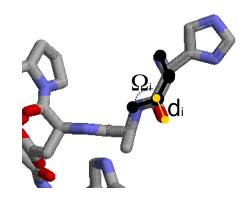
Accessible surface (and others)

Scoring

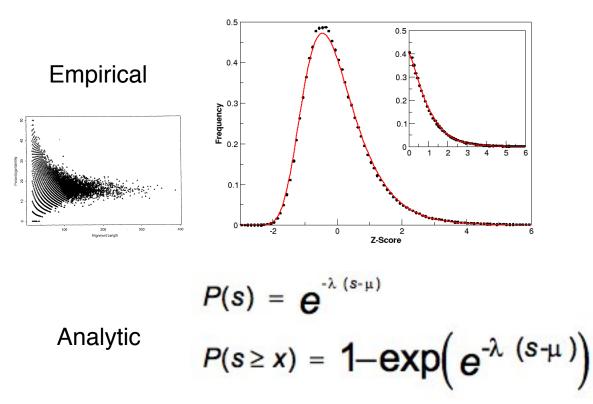

Raw scores


	с	S	т	P	A	G	N	D	E	Q	н	R	к	М	I	L	v	F	Y	w
С	9	-1	-1	-3	0	-3	-3	-3	-4	-3	-3	-3	-3	-1	-1	-1	-1	-2	-2	-2
S	-1	4	1	-1	1	0	1	0	0	0	-1	-1	0	-1	-2	-2	-2	-2	-2	-3
Т	-1	1	4	1	-1	1	0	1	0	0	0	-1	0	-1	-2	-2	-2	-2	-2	-3
P	-3	-1	1	7	-1	-2	-1	-1	-1	-1	-2	-2	-1	-2	-3	-3	-2	-4	-3	-4
A	0	1	-1	-1	- 4	0	-1	-2	-1	-1	-2	-1	-1	-1	-1	-1	-2	-2	-2	-3
G	-3	0	1	-2	0	6	-2	-1	-2	-2	-2	-2	-2	-3	-4	-4	0	-3	-3	-2
N	-3	1	0	-2	-2	0	6	1	0	0	-1	0	0	-2	-3	-3	-3	-3	-2	-4
D	-3	0	1	-1	-2	-1	1	6	2	0	-1	-2	-1	-3	-3	-4	-3	-3	-3	-4
Е	-4	0	0	-1	-1	-2	0	2	5	2	0	0	1	-2	-3	-3	-3	-3	-2	-3
Q	-3	0	0	-1	-1	-2	0	0	2	5	0	1	1	0	-3	-2	-2	-3	-1	-2
Н	-3	-1	0	-2	-2	-2	1	1	0	0	8	0	-1	-2	-3	-3	-2	-1	2	-2
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5	2	-1	-3	-2	-3	-3	-2	-3
K	-3	0	0	-1	-1	-2	0	-1	1	1	-1	2	5	-1	-3	-2	-3	-3	-2	-3
М	-4	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5	1	2	-2	0	-1	-1
1	-1	-2	-2	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4	2	1	0	-1	-3
L	-1	-2	-2	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4	3	0	-1	-2
V –	-4	-2	-2	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	- 4	-1	-1	-3
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-4	6	3	1
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	2
W	-2	-3	-3	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11


Aminoacid substitutions


 $RMSD(x,y) = \sqrt{\left(\frac{1}{N}\right) \sum_{i=1}^{N} \left(\left\| \mathbf{x}(i) - \mathbf{y}(i) \right\|^2 \right)}$

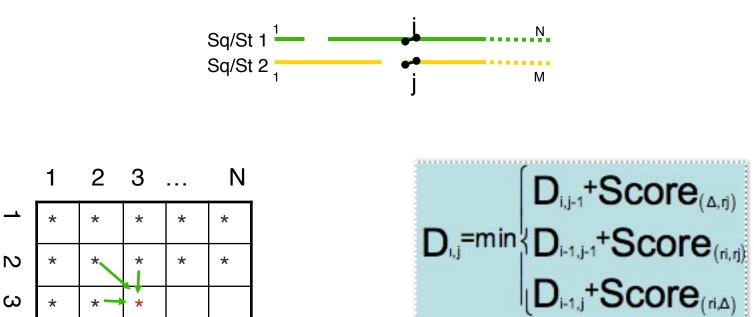
Root Mean Square Deviation



Accessible surface (B,A [%])

Angles or distances

Scoring Significance of an alignment (score)

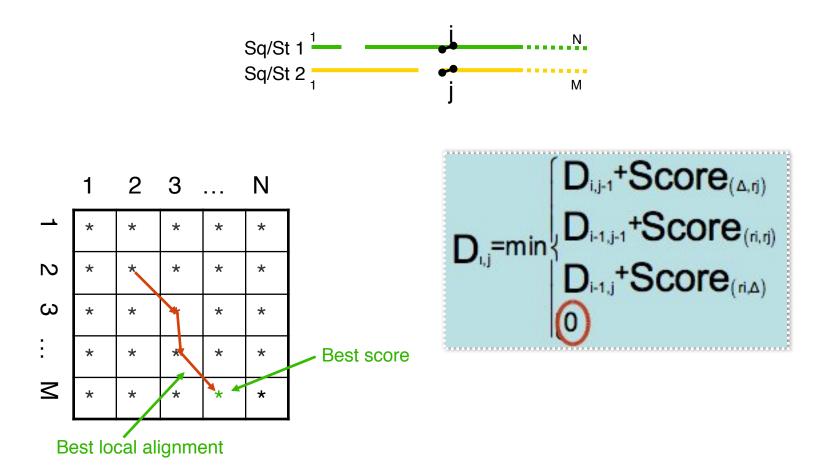

Probability that the optimal alignment of two random sequences/structures of the same length and composition as the aligned sequences/structures have at least as good a score as the evaluated alignment.

Sometimes approximated by Z-score (normal distribution).

Karlin and Altschul, 1990 PNAS 87, pp2264

Optimizer Global dynamic programming alignment

.

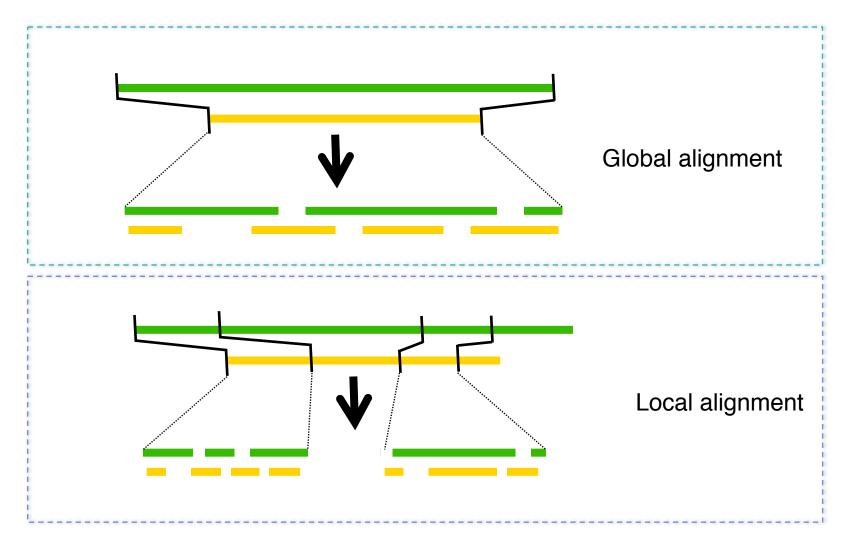

 \leq

Backtracking to get the best alignment

Best alignment score

* <

Optimizer Local dynamic programming alignment

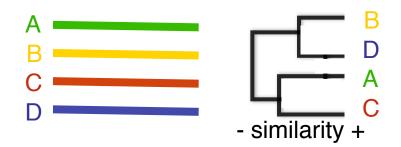


Backtracking to get the best alignment

Smith and Waterman (1981) J. Mol Biol, 147 pp195

Optimizer

Global .vs. local alignment

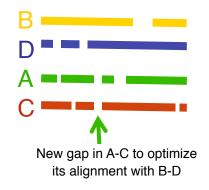


Optimizer

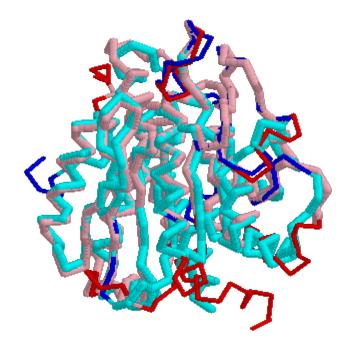
Multiple alignment

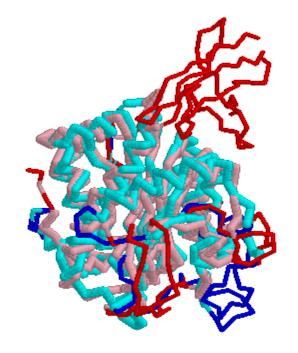
Pairwise alignments

Example – 4 sequences A, B, C, D.


6 pairwise comparisons then cluster analysis

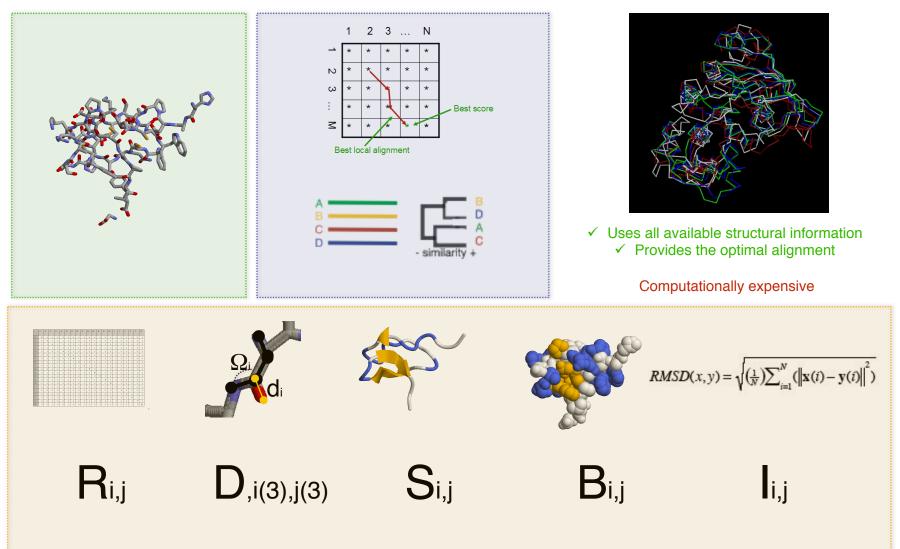
Multiple alignments


Following the tree from step 1



Align B-D with A-C

Coverage .vs. Accuracy



Same RMSD ~ 2.5Å

Coverage ~90% Ca

Coverage ~75% Ca

Structural alignment by properties conservation (SALIGN-MODELLER)

M. S. Madhusudhan, B. M. Webb, M. A. Marti-Renom, N. Eswar, A. Sali, Protein Eng Des Sel, (Jul 8, 2009).

Structural alignment by properties conservation (SALIGN-MODELLER)

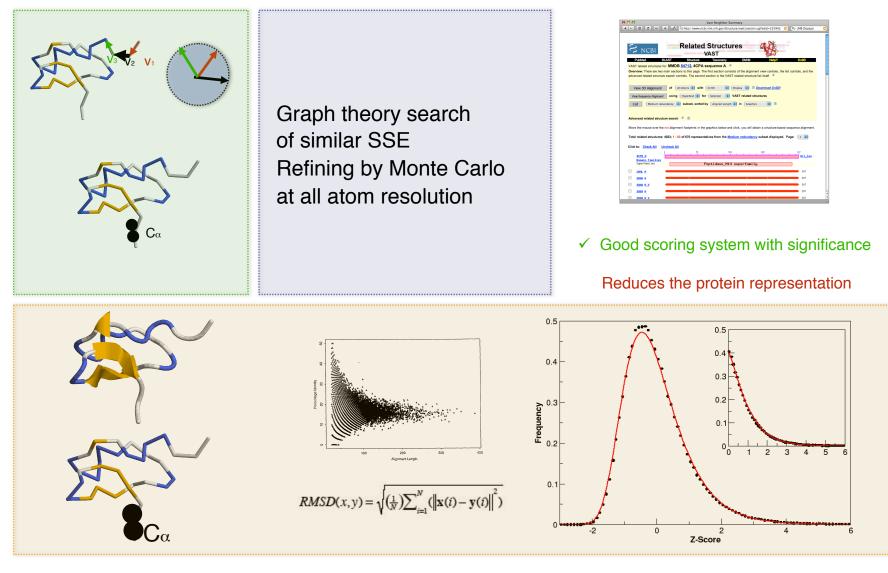
http://salilab.org/salign

<u>Sali Lab Home</u> · <u>ModWeb</u> · <u>ModBase</u> · <u>ModEval</u> · <u>PCSS</u> · <u>FoXS</u> · <u>IMP</u> · <u>MultiFit</u> · <u>ModPipe</u> ·

SALIGN Home SALIGN Help SALIGN Examples SALIGN Contact

SALIGN: A multiple protein sequence/structure alignment server.

Developers:

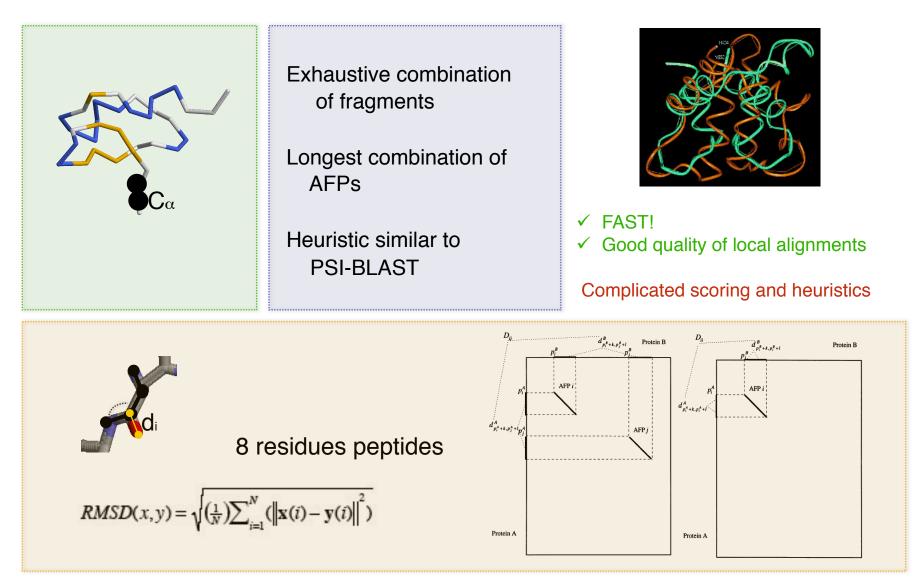

Hannes Braberg M.S. Madhusudhan Ursula Pieper Ben Webb Elina Tjioe Andrej Sali

SALIGN is a general alignment module of the modeling program MODELLER. The alignments are computed using dynamic programming, making use of several features of the protein sequences and structures. SALIGN benchmarks from published papers are also available.

or several reactives of the protein sequences and structures. SALIGN benchmarks	s nom published papers are <u>also available</u> .
General information Email address 🖬	
Input alignment information Users can either upload their own sequences/structures to align or	choose structures from the PDB.
Paste one sequence at a time, without header 🖬	Upload 🖬
Upload sequence/PDB file(s) 🖬	Choose File No file chosen

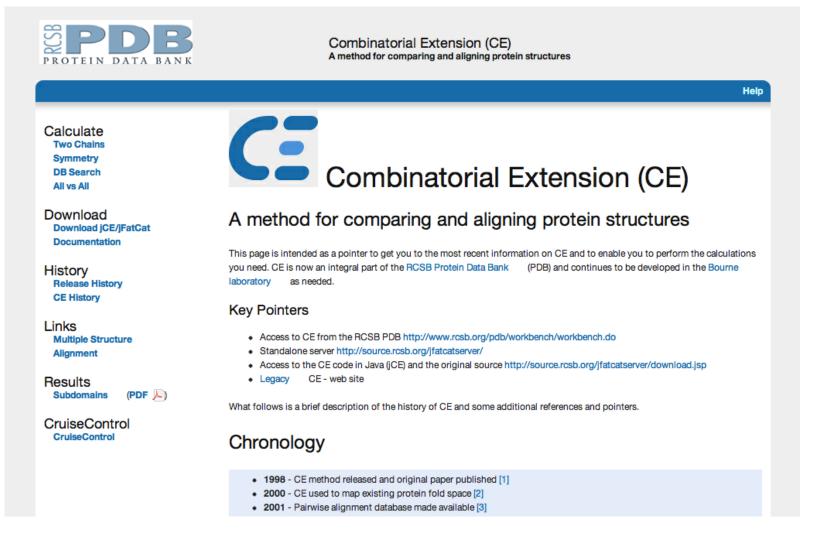
121

Vector Alignment Search Tool (VAST)


Gibrat JF et al. (1996) Curr Opin Struct Biol 3 pp377

Vector Alignment Search Tool (VAST)

http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml


NCBI	> Structure Home	> 3D Macromolecula	r Structures > VAST				
Ś	NCBI	Structu	ure	5			
HOME	SEARCH GUIDE	Structure Hom	e 3D Macromolecular S	tructures	Conserved Domains	PubChem	BioSystems
V	AST: Vector A	lignment Search	1 Tool		ABOUT SEARCH HELP	nr-PDB PUBLICATIONS	RESOURCES NEWS
4	bout VAST						
			arch Tool, is a computer algorithm dev tify distant homologs that cannot be re			3-dimensional struc	tures by
			e Molecular Modeling Database (MMD a structure's summary page; to retrie			similar 3D structure	es. The pre-
	molecule or fo	or any 3D domain it	c for any protein molecule of interest contains in order to view a list of struc ditional details and illustrated example	tures that are similar			
			res: VAST" in the upper right corner of lect the protein or 3D domain of intere				
	Show "Similar	Structures" for PDB	ID or MMDB ID: Go				
			in structure that is not yet in MMDB, t ose in MMDB. The VAST Search Help o				
	structure viewing	program to view a s	es from the summary page of a public superposition of the query structure as cture alignments in Cn3D.				
			Example 3D alignment of VAS evolutionary relationship among li				
			2ACO neighbors - Cn3D 4.3 File View Select Style Window CDD	Help			
			= 2ACO_B E. coli lipocalin Blc dim = 1224_A Tobacco hornworm ins = 2HZQ_A Human apolipoprotein l = amino acids that are identical in a	er in complex with vacce ecticyanin in complex with D (Apod) in complex with	th biliverdin IX gamma		

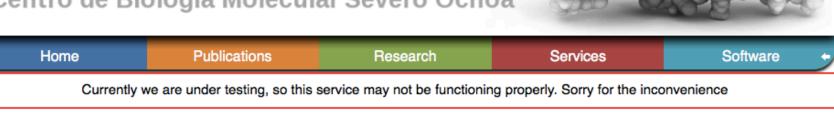
Incremental combinatorial extension (CE)

Incremental combinatorial extension (CE)

http://source.rcsb.org/jfatcatserver/ceHome.jsp

Matching molecular models obtained from theory (MAMMOTH)

Ortiz AR, (2002) Protein Sci. 11 pp2606


28

Matching molecular models obtained from theory (MAMMOTH)

http://ub.cbm.uam.es/software/online/mammoth.php

Bioinformatics Unit

Centro de Biología Molecular Severo Ochoa

- MAMMOTH (Matching Molecular Models Obtained from Theory) es un método de alineamiento estructural de proteínas independiente de su secuencia. Esto permite la comparación de la estructura experimental de una proteína con un modelo arbitrario de baja resolución. También permite la comparación de dos estructuras experimentales, así como la búsqueda de estructuras similares en una base de datos.
- Versión: 1.0
- Uso gratuito para fines educacionales y de investigación.
- Referencia: Ortiz AR, Strauss CE, Olmea O (2002) Protein Sci. 11:2606-21.

Alinea tus propias proteínas.

• Sube el archivo de coordenadas (PDB) de tu primera proteína:	Browse
Sube el archivo de coordenadas (PDB) de tu segunda proteína:	Browse
 Tu correo electrónico para el envío de los resultados: 	
Alinear Borrar	

3. Structure classification

Classification of the structural space

SCOP_{1.75} database

http://scop.berkeley.edu/

Murzin A. G., el at. (1995). J. Mol. Biol. 247, 536-540.

- ✓ Largely recognized as "standard of gold"
- ✓ Manually classification
- ✓ Clear classification of structures in:

CLASS

FOLD

SUPER-FAMILY

- FAMILY
- ✓ Some large number of tools already available

Manually classification Not 100% up-to-date Domain boundaries definition

Class	Number of folds	Number of superfamilies	Number of families
All alpha proteins	284	507	928
All beta proteins	174	354	815
Alpha and beta proteins (a/b)	147	244	902
Alpha and beta proteins (a+b)	376	552	1170
Multi-domain proteins	66	66	100
Membrane and cell surface proteins	57	109	127
Small proteins	90	129	230
Total	1194	1961	4272

Structural Classification of Proteins and ASTRAL release 1.75B (January 2013)

Browse Stats & History ASTRAL Subsets Downloads Related Resources References Help About

Welcome to the new SCOP+ASTRAL website!

This release is part of a series of planned releases based on SCOP 1.75 before the advent of a major reclassification, SCOP 2.0.

This website now provides integrated access to data previously found in the <u>SCOP</u> and <u>ASTRAL</u> databases. For prior releases of **SCOP** and **ASTRAL**, click on the <u>Stats & History</u> tab above. For more info, click on the <u>About</u> tab above.

Search

Search SCOP (example):

Classes in SCOP 1.75B:

- 1. a: All alpha proteins [46456] (284 folds)
- 2. 🥁 <u>b: All beta proteins</u> [48724] (174 folds)
- 3. 🐲 <u>c: Alpha and beta proteins (a/b)</u> [51349] (147 folds)
- 4. d: Alpha and beta proteins (a+b) [53931] (376 folds)
- 5. <u>Milti-domain proteins (alpha and beta)</u> [56572] (66 folds)
- 6. 🌋 <u>f: Membrane and cell surface proteins and peptides</u> [56835] (57 folds)
- 7. (3) g: Small proteins [56992] (90 folds)
- 8. <u>h: Coiled coil proteins</u> [57942] (7 folds)
- 9. Contraction protein structures [58117] (25 folds)
- 10. j: Peptides [58231] (120 folds)
- 11. At Designed proteins [58788] (44 folds)

Copyright © 1994-2013 The SCOP and ASTRAL authors scop@mrc-lmb.cam.ac.uk and astral@compbio.berkeley.edu

<u>a: All alpha proteins</u> -> <u>a.3: Cytochrome c</u> -> <u>a.3.1: Cytochrome c</u> -> (class) (fold) (superfamily)

a.3.1.4: Two-domain cytochrome c

(family)

Structural Classification of Proteins and ASTRAL release 1.75B (January 2013)

Browse Stats & History ASTRAL Subsets Downloads Related Resources References Help About

Search SCOP (example):

Search

Lineage for Family a.3.1.4: Two-domain cytochrome c

- 1. Root: SCOP 1.75B
- 2. Class a: All alpha proteins [46456] (284 folds)
- 3. Fold <u>a.3: Cytochrome c</u> [46625] (1 superfamily) core: 3 helices; folded leaf, opened
- 4. Superfamily <u>a.3.1: Cytochrome c</u> [46626] (9 families) S covalently-bound heme completes the core

5. Family a.3.1.4: Two-domain cytochrome c [46680] (2 protein domains) duplication: consists of two cytochrome c type domains

Protein Domains:

- 1. Cytochrome c4 [46681] (2 species)
 - 1. Let Species Pseudomonas stutzeri [TaxId:316] [46682] (3 PDB entries)
 - 2. Species Thiobacillus ferrooxidans [TaxId:920] [88972] (1 PDB entry)
- 2. Elavocytochrome c sulfide dehydrogenase, FCSD, cytochrome subunit [46683] (1 species)
 - Species Chromatium vinosum [TaxId:1049] [46684] (1 PDB entry)

More info for Family a.3.1.4: Two-domain cytochrome c

Timeline for Family a.3.1.4: Two-domain cytochrome c:

Family a.3.1.4: Two-domain cytochrome c appears in SCOP 1.75A

Lineage for d1etpa1 (1etp A:1-92)

- 1. Root: SCOP 1.75B
- 2. Class a: All alpha proteins [46456] (284 folds)
- 3. Fold <u>a.3: Cytochrome c</u> [46625] (1 superfamily) core: 3 helices; folded leaf, opened
- 4. Superfamily <u>a.3.1: Cytochrome c</u> [46626] (9 families) S covalently-bound heme completes the core
- 5. Family <u>a.3.1.4: Two-domain cytochrome c</u> [46680] (2 protein domains) duplication: consists of two cytochrome c type domains
- 6. Rotein Cytochrome c4 [46681] (2 species)
- 7. Species Pseudomonas stutzeri [TaxId:316] [46682] (3 PDB entries)

Domain d1etpa1: 1etp A:1-92 [15962] complexed with hem

Details for d1etpa1

PDB Entry: <u>letp (more details)</u> PDB Description: crystal structure of cytochrome c4 from pseudomonas stutzeri PDB Compounds: (A:) cytochrome c4

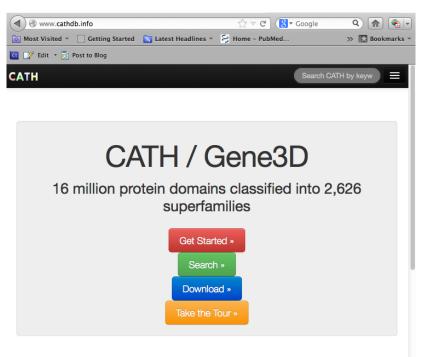
SCOP Domain Sequences for d1etpa1:

Sequence; same for both SEQRES and ATOM records: (download)

>dletpal a.3.1.4 (A:1-92) Cytochrome c4 {Pseudomonas stutzeri [TaxId: 316]}
agdaeagqgkvavcgachgvdgnspapnfpklagqgeryllkqlqdikagstpgapegvg
rkvlemtgmldplsdqdlediaayfssqkgsv

SCOP Domain Coordinates for d1etpa1:

Click to download the <u>PDB-style file with coordinates for d1etpa1</u>. (The format of our PDB-style files is described <u>here</u>.)


Timeline for d1etpa1:

<u>dletpal in context of chain</u> Domains from same chain: <u>dletpa2</u>

CATH_{3.5} database

http://www.cathdb.info

What's New?

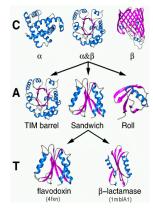
The CATH website has recently undergone a big overhaul. We really hope you find the new pages more useful, easier to use and quicker to load. Please get in touch and let us know what you think.

Searching CATH

- Search by ID / keyword
- Search by FASTA sequence
- Search by PDB structure

Example pages

- PDB "1dan"
- Domain "1cukA01"
- Relatives of "1cukA01"
- Superfamily "HUPs"
- Functional Family


Uses FSSP for superimposition

- ✓ Recognized as "standard of gold"
- ✓ Semi-automatic classification
- ✓ Clear classification of structures in: CLASS
 ARCHITECTURE

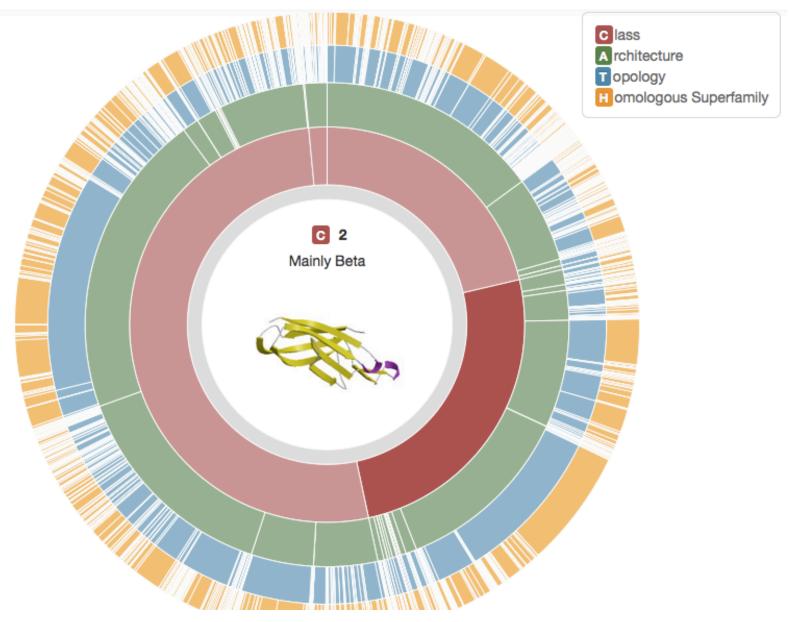
TOPOLOGY

- HOMOLOGOUS SUPERFAMILIES
- ✓ Some large number of tools already available
- ✓ Easy to navigate

Semi-automatic classification Domain boundaries definition

173,536 CATH Domains 2,626 CATH Superfamilies 51,334 PDBs

Orengo, C.A., et al. (1997) Structure. 5. 1093-1108.

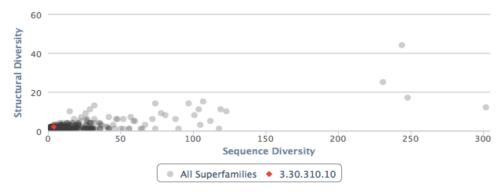

Browse - tree

Top of CATH Hierarchy (4 Classes)

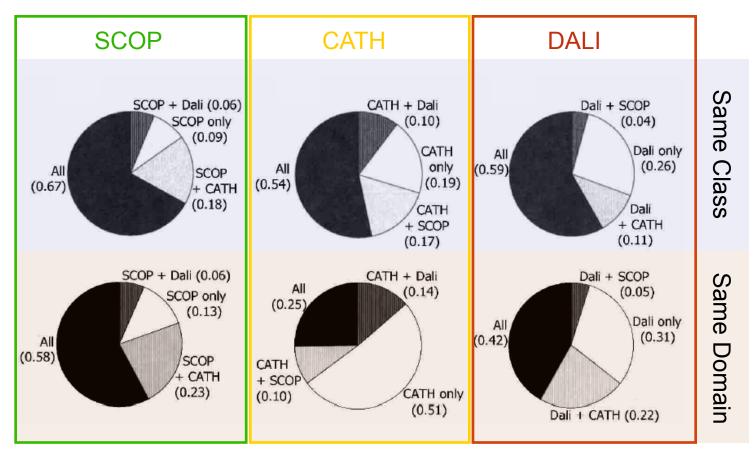
	erfamily	⊳
CATH ID	2,20,28,40	⊳
Non-redundant Sequences (<35% se id)	1	_
Domains	3	
Example Domain	2apoB00 [PDB]	⊳
		⊳
1		
57		\triangleright

					-	
C	1	Mainl	y Alph	а		
C	2	Mainl	y Beta			5 Architectures, 386 Folds, 875 Superfamilies, 37038 Domains
1	N I	2.10	Ribbo	n		20 Architectures, 229 Folds, 520 Superfamilies, 43881 Domains
1	N I	2.20	Single	e Shee	t	25 Folds, 31 Superfamilies, 1733 Domains
\triangleright	T	2.20	0.20	Antho	pleurin-A	20 Folds, 31 Superfamilies, 683 Domains
\triangleright	Т	2.20	0.25	N-terr	ninal domain of TfIIb	3 Superfamilies, 21 Domains
⊿	ī	2.20	0.28	Rubre	rythrin, domain 2	6 Superfamilies, 342 Domains
	_	H 2	.20.2	8.10	Not yet named	5 Superfamilies, 209 Domains
		H 2	.20.2	8.20	Not yet named	131 Domains
		2	.20.2	8.30	RNA polymerase ii, chain L	11 Domains
		H 2	.20.2	8.40	Nop10-like SnoRNP	61 Domains
		H 2	.20.2	8.50	degv family protein	3 Domains
\triangleright	T	2.20	0.50	Outer	Surface Protein A; domain 2	3 Domains
\triangleright	T	2.20	0.60	Hepar	in-binding Growth Factor, Midkine; Chain A	1 Superfamilies, 1 Domains
\triangleright	T	2.20	0.70	Ubiqu	itin Ligase Nedd4; Chain: W;	1 Superfamilies, 1 Domains
\triangleright	T	2.20	0.80	Lipovi	tellin-phosvitin complex, chain A, domain 4	1 Superfamilies, 60 Domains
\triangleright	T	2.20	0.90	Lipovi	tellin-phosvitin complex; beta-sheet shell regions	1 Superfamilies, 1 Domains
\triangleright	T	2.20	0.100	TSP	-1 type 1 repeat	1 Superfamilies, 1 Domains
\triangleright	T	2.20	0.110	Histo	one H3 K4-specific methyltransferase SET7/9 N-term	inal domain 1 Superfamilies, 3 Domains
\triangleright	Т	2.20	0.120	Mult	imodular pneumococcal cell wall endolysin, domain 3	1 Superfamilies, 3 Domains
\triangleright	T	2.20	0.130	S-ad	enosyl-L-methionine-dependent methyltransferases	1 Superfamilies, 6 Domains
⊳	-	2.20	140	a64	E2 bacfr protoin fold	1 Cunarfamiliae O Domaine

Browse - sunburst



SUPERFAMILY LINKS	GO Diversity	EC Diversity	Species Diversity	Superfamily Sum	mar
Summary Superfamily Superposition	Unique GO annotations	Unique EC annotations	Unique species annotations	A general summary of inform for this superfamily.	mation
Classification / Domains				Structures	
Alignments Structural Neighbourhood				Domains:	14
Functional Annotations Taxonomy				Domains (< 95% seq id):	15
Multi-Domain Organisation				Domains (< 35% seq id):	4
unctional Families	93 Unique GO terms 🗲	2 Unique EC terms >	433 Unique species >	Unique PDBs:	41
erview of the Structural Clusters (SC) and	Structural Diversity	Domain Organisation	Enzyme Function	Alignments	
nctional Families (FF) within this CATH perfamily	Structural domains within this	View multi-domain architectures via	- Evolution of Enzyme Function via	Structural Clusters:	2
	superfamily	ArchSchema (Laskowski/EBI)	FunTree (Furnham/EBI)	FunFam Clusters:	2
			<u> </u>	Function	
SC:O TATA-box-b			FunTree	Unique EC:	2
		ArchSchema		Unique GO:	93


Sequence/Structure Diversity

Overview of the sequence / structure diversity of this superfamily compared to other superfamilies in CATH. Click on the chart to view the data in more detail.

Classification of the structural space Not an easy task!

Domain definition AND domain classification

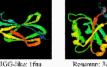

Fold	SCOP codes	CATH codes	Dali codes	Population
Immunoglobulin-like	b.1, b.2, b.3, b.5, b.7	2.60.40, 2.60.97, 2.70.50, 6.1.250, 6.1.251	2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 2.35, 2.43	642
Rossman fold	c.2, c.16, c.23, c.32, c.33, c.37, c.41, c.44, c.62, c.65, c.66, c.69, c.78	3.40.50	1.1, 1.3, 1.15, 1.17	424
TIM barrel	c.1, c.6	3.20.20, 6.1.22	1.35	205
Jelly roll	b.10, b.13, b.18, b.19, b.22, b.23, b.29	2.60.120	2.43, 2.45	162
α-β plait	d.41, d.51, d.58, d.89, d.94	3.30.70, 3.40.462	5.3, 5.8, 5.12, 6.23, 6.26, 6.28, 6.45, 6.60	121
DNA/RNA binding 3-helix bundle	a.4	1.10.10	3.153, 3.154, 3.155, 3.156, 3.157, 3.160, 3.162, 3.164, 5.17, 6.157, 6.158, 6.160	105
Globin	a.1, f.1	1.10.490	3.62, 3.159	84
Four-helix bundle	a.24, a.25, a.26, a.63	1.20.120	3.35	78
β grasp (ubiquitin-like)	d.15	3.10.20	2.3, 2.4, 2.5, 6.62, 6.63	70
EF-hand	a.39	1.10.238	3.136, 3.146, 3.147, 6.156	67
Trypsin-like serine protease	b.47	2.40.10	6.108	66
Thioredoxin-like	c.47	3.40.30	1.51, 1.52	64
OB fold	b.40	2.40.50	4.10, 4.11, 4.16, 7.266	64
More IG-like	b.6	2.60.40	2.34	55
Cytochrome C	a.3	1.10.1250	3.232	48
More Rossman folds	c.5, c.25, c.26, c.29, c.53	3.40.50	1.7, 1.8	45
SH3 barrel	b.34	2.30.30	4.23, 4.26, 4.27, 6.111, 6.112, 6.117	45
FAD/NAD(P) binding domain	c.3	3.50.50	1.6	42
Knottins	g.3	3.30.30	5.17, 6.196, 6.197	39
C-type lectin-like	d.169	3.10.40, 3.10.100, 3.90.6	6.195	36
Lipocalin	b.60	2.40.128	6.71	36
Trefoil	b.42	2.80.10	6.81	32
C2H2 & C2H2 Zinc finger	g.37	3.30.160	6.206, 6.207	30
snake toxin-like	g.7	2.10.60	6.198	29
Acid proteases	b.50	2.40.70	2.21	29
more Rossman folds	c.48, c.54, c.56	3.40.50, 3.40.630	1.2	29
Glutathione S-transferase	a.45	1.20.1050	3.84	28
IL-8 like (OB fold)	d.9	2.40.50	4.19, 6.103	28
PLP dependent transferases	c.67		1.23	27
Laminin-like (knottins)	g.3	2.10.25	7.244, 7.246	26

Table 2. SCOP, CATH, and Dali codes associated with the 30 most populated metafolds

4. Number of folds in nature

HM barrel: Typi

TIM

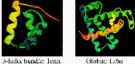
fibronechit

Trypsin-like serine

Rossman: 1ght

transposon yô resol vase

lipocalin: Life


fatty acid binding prot.

Rossman: 2pth

poptidyl IRNA

hydrolase

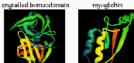
protease: 1qq4 a-lytic procase

Globin: Labo

Thioredoxin like: 1ev4

GST AI-I

SH3 barrel: 1abg


co-spectrin SH3

trefoil: 14d

bovine trypsin

GST (C-termi: lev4

GST A1-1

OB fold: Imje

C≤pA

FAD/NAD(P) hinding

domain; Lebd

oxidereductase

Zn finger: 2adr

Zn finger (ADR)

Sso7d

42

azurin

knottin: 1snb

neurotoxin BMK M8

snake toxin: Intri

Jelly Roll: Isac

SAP

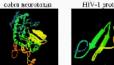
α-β plait Iris

86

EF-hand: dich

calbindin

Cytochrome C: Thre



type II antificeze prot.

II. S like (OB): IEFA P1.P dep. transforase: 1e5f Laminin like: Lylm mothicuine y lyase. conculation factor IX.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
fibronectionCheYTIMSAPS6 $M \rightarrow 0$ Gev $M \rightarrow 0$ Gev $M \rightarrow 0$ Gev <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3-helix bundle: 1enh Engrailed HomeodomainGlobin: 1aón myoglobin4-helix bundle: 2abb phosphotransfer domainb-grasp: 1pgb Protein GEF-hand: 4icb calbindin $I = 1$ Trypsin -like serine protease: 1q4 oclytic protease $I = 1$					
Engrailed HomeodomainmyoglobinphosphotransferdomainProtein Gcalbindin I			N1 000		на осг
Trypsin-like serine protease: 1qq4 c-lytic proteaseN CST A1-1C CSpAIGG-like: 1e65 azurinCytochrome C: 1hrc cytochrome C c^2 d_{-} <td></td> <td></td> <td></td> <td></td> <td></td>					
α -lytic proteaseGST A1-1CspAazurincytochrome C c^2 m^2 m^2 m^2 m^2 m^2 m^2 $n = 1$ m^2 m^2 m^2 m^2 m^2 m^2 $n = 1$ m^2 m^2 m^2 m^2 m^2 m^2 $n = 1$ m^2 m^2 m^2 m^2 m^2 m^2 $n = 1$ m^2 m^2 m^2 m^2 m^2 m^2 $n = 1$ m^2 m^2 m^2 m^2 m^2 m^2 $n = 1$ m^2 </td <td></td> <td>Thioredoxin -like: 1ev4</td> <td>OB fold: 1mjc</td> <td>IGG-like: 1e65</td> <td></td>		Thioredoxin -like: 1ev4	OB fold: 1mjc	IGG-like: 1e65	
N Rossman: 1ght transposon $\gamma\delta$ resolvaseN SH3 barrel: 1shg Or-spectrin SH3N FAP/NAD(P) binding domain: 1ebd oxidoreductaseN c2 knottin: 1 snb neurotoxin BMK M8N c2 c2 knottin: 1 snb neurotoxin BMK M8N occ c2 c2 c4 c4N c2 c2 c4N c2 c4 c2 c4N c2 c4 c2 c4N c2 c4 c2 c4N c2 c4 c4N c2 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4N c4 c4 c4 c4N c4 c4 c4 c4N c4 c		GST A1-1	CspA	azurin	cytochrome C
Lipocalin : life fatty acid binding prot.	Rossman: 1ght		domain: 1ebd	knottin : 1snb	175 P2 1 (8)
fatty acid binding prot. bovine trypsin Zn finger (ADR) cobra neurotoxin HIV-1 protease Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Rossman: 2pth Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR Image: ADR <td></td> <td></td> <td>N1</td> <td></td> <td></td>			N1		
Rossman: 2pth GST (C-term): 1ev4 IL-8 like (OB): 1bf4 PLP dep. transferase : 1e5f Laminin-like: 1edm					
pepudyi ukina I GSTA1-1 Sso/d I methionine V-lyase coagulation	Rossman: 2pth peptidyl tRNA	GST (C-term): lev4		PLP dep. transferase : le5f methionine \u03c4 yase	

5. Sequences VS fold structures

Structure is three to ten times more conserved than sequence--a study of structural response in protein cores.

Illergård K, Ardell DH, Elofsson A.

Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.

Structure is three to ten times more conserved than sequence—A study of structural response in protein cores

Kristoffer Illergård,¹ David H. Ardell,^{2,3} and Arne Elofsson^{1*}

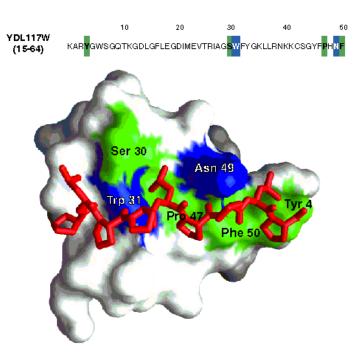
¹ Center for Biomembrane Research and Stockholm Bioinformatics Center, Department of Biochemistry

and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden

² Department of Natural Sciences, School of Natural Sciences, University of California, Merced, California 95344

³ Linnaeus Centre for Bioinformatics, Uppsala University, SE-751 24 Uppsala, Sweden

ABSTRACT


Protein structures change during evolution in response to mutations. Here, we analyze the mapping between sequence and structure in a set of structurally aligned protein domains. To avoid artifacts, we restricted our attention only to the core components of these structures. We found that on average, using different measures of structural change, protein cores evolve linearly with evolutionary distance (amino acid substitutions are ait). This is true impresenting of

INTRODUCTION

Evolutionary changes of individual protein domain primary structures that become fixed in populations are mainly replacements of single amino acid residues and short insertions or deletions. Since most three-dimensional structures of proteins are determined by their sequences¹ and solvent interactions, higher-order structure will also change in response to these changes. The extent of higher-order structural perturbation in response to sequence evolution will depend on the type and location of sequence changes. Some single mutations will completely disrupt structure, while others that conserve the physicochemical properties of the sequence will barely affect structure at all.²

Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, structure is more conserved in evolution than sequence.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.