

Visualizing the third dimension of genomes

Marc A. Marti-Renom Genome Biology Group (CNAG) Structural Genomics Group (CRG)

Resolution Gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Know	edge								
AND ALL					IDM			$\begin{array}{c} 6 \\ 11 \\ 5 \\ 12 \\ 20 \\ 3 \\ 18 \\ 7 \\ 2 \\ 16 \\ 9 \\ 7 \\ 2 \\ 16 \\ 9 \\ 7 \\ 16 \\ 9 \\ 7 \\ 16 \\ 9 \\ 7 \\ 18 \\ 7 \\ 2 \\ 16 \\ 9 \\ 7 \\ 18 \\ 7 \\ 18 \\ 7 \\ 2 \\ 16 \\ 9 \\ 7 \\ 18 \\ 7 \\ 18 \\ 7 \\ 2 \\ 16 \\ 9 \\ 7 \\ 18 \\ 18$	
100		10 ³			106			DNA length	nt
10		10			10			10	ш
								Volume	
10 ⁻⁹		10 ⁻⁶	10 ⁻	3		10 ⁰		10 ³	μm³
								Time	
10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10 ⁻⁴	10 ⁻²		10 [°]	10 ²	10 ³	S
								Resolution	
10 ⁻³			10 ⁻²				10 ⁻¹	nessination	μ

Hybrid Method

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 3C-based data

Junier (2012) Nucleic Acids Research

Diversity of representations NO LINK to 1D and Log data

What we need...

Connection to 1D and 2D data (**CellBase**) Multi-scale representation (under development)

Cross-platform (**Greenhouse**) Multi-screen support (**Greenhouse**) Hand-gesture support (**Greenhouse** + **kinect/leap**)

OBLONG's Greenhouse

http://greenhouse.oblong.com

OMEagination

Gesture based 3D visualization of brain structures and activity.

Created in collaboration with University of California San Francisco and Lawrence Berkeley National Laboratory as part of the OME Precision Medicine Summit using Oblong Greenhouse SDK, FSLView, and a consumer depth sensor.

Collaborating on the project: Bill Seeley, Jesse Brown, and Andrew Trujillo from UCSF MEMORY AND AGING CENTER; Leonid Oliker (Future Technologies Group), Gunther Weber IVisualization Group and the NERSC Analytics Team), Aydın Buluç (Applied Mathematics & Scientific Computing), and Daniela Ushizima (Vis/Analytics Group) from LAWRENCE BERKELEY NATIONAL LABORATORY; Stacey Chang (Health & Wellness practice) from IDEO; Kwin Kramer, David Kung, Sarah Vieweg, John Carpenter, Corey Porter, Mattie Ruth Kramer Backman, and Michael Schuresko from OBLONG INDUSTRIES.

Copyright © 2013. oblong industries, inc.

UCSF / LBNL developed using Greenhouse

OBLONG

Structuring the COLORs of chromatin

10-10-

Fly Chromatin COLORs

Filion et al. (2010). Cell, 143(2), 212-224.

chromatin

Nucleus

proteins

The STRUCTURE of COLORs in the fly genome

http://3DGenomes.org

				Luim.		
10	ster.		-			
ART	ICLE	t Hhou a	st al. (2012)	CELL		
5241	CHES .	1 Drowog	wile relaring	uster		
ASS	MELY	1 80GP 1				
CILI	THE	1. 84167				
EXP	REMENT TH	PE : HI-C				\bigvee
100	WTEF LEB	I CSI NM	16.8			r
RES	W0CTUL0	1.10000				
CHIC	HISONE	1.8				
STA	17	1 15500	100			
ENO		I Stewn	500			
1	X:155900	01-15000000	-4997.512	-14445.484	6862.361	
2	X:156800	01-15650000	-4258.454	-54470.804	8934.828	
3	X:156100	01-15520000	-4978.555	-14415.348	7882.625	
4	X:156200	1-15530000	-4035.936	-14318.296	7995.1001	
- 5	X:156300	01-15640000	-4976.995	-14358.728	7875.177	
. 6	X:156400	01-15650000	-4884.587	-14327.885	7875.855	
1.	X:156500	01-15660000	-4930.424	-14392.395	7137.914	
- 8	X:156688	01-15870000	-4858.193	-14488.213	7582.532	
- 9 :	X:156700	01-15680000	-4856.283	-14347.263	7267.829	
18	X:156880	11-15600000	-4776.328	-14388.248	7156.217	
11	X:150000	01-15700000	-4821.549	14452.505	7283.987	
12	X:157000	01-15/10000	-4852, 523	-14541.284	7187.585	
13	X:157100	01-15720000	-4907.808	-14583.206	7119.326	
14	X:157200	01-15/30000	-4919.553	+14541.712	7827.894	
15	X:157300	01-15740000	-4848.228	-14596.950	7055.235	
36	X:157400	01-15750000	-4750.283	-54539.379	7855.179	
27	X:157500	01-15760000	-4728.704	-14478.629	7062.837	
18	X:157688	01-15770000	-4638.692	+54570.434	7918.915	
19	X:157700	01-15780000	-4758.675	-14508.357	6928.896	
28	X:157888	81-15/100000	-4734, 381	-14436.217	6388.335	
21	X:157900	01 15800000	4757.711	-14448.468	6004.005	
22	X:158888	01-158309890	-4/48.483	-14357.549	8958.225	
23	X:158100	01-15820000	-4784.942	-14286.947	6062.468	
24	X:158700	01-15830000	-4818.942	+34245.789	6837,858	
25	X:158300	01-15840000	-4751.912	-14241.125	6966.872	

Acknowledgments

Mike Goodstadt Francisco Martínez-Jiménez

> François Serra Davide Baù

> > François le Dily David Dufour Gireesh Bogu

Miguel Beato Thomas Graf **Guillaume Filion**

http://3DGenomes.org http://marciuslab.org http://cnag.cat · http://crg.cat

USTITUCIÓ CATALANA DI