# Autodock Vina tutorial

### Master Bioinformática Universidad de Valencia 04-05-2014

Francisco Martínez-Jiménez fmartinez@pcb.ub.es

I

# Hands on...

- We will :
  - Predict the binding site for a given protein structure.
    - Using Metapocket2.
  - Dock a small molecule (inhibitor) into the predicted binding site.
    - Using Autodock Vina.
    - Visualize the ligand POSE. Creating a complex with the inhibitor and the protein.

https://www.dropbox.com/s/96xrk0vy6s0658e/valencia\_docking.tar.gz

# Studying the receptor.

Visualize the protein structure with pymol.

>pymol /path to directory/receptor.pdb

 Show the structure as cartoons. (With secondary structure representation). In Pymol.

show as -> cartoon.

Is there a putative binding pocket?

## Predicting binding sites..



About

You might like our other meta servers: metaDBSite metaPPI 2.0

### Welcome to metaPocket 2.0!



## **Retrieving the top predicted binding** site...

#### 4. Potential ligand binding sites

The potential 1 ligand binding sites in your protein:

| HEADER | binding site ID: | 1          |            |            |            |
|--------|------------------|------------|------------|------------|------------|
| RESI   | ILE_A^203^       | PRO_A^205^ | GLY_A^206^ | LEU_A^207^ | GLY_A^208^ |
| RESI   | TYR_A^202^       | LEU_A^204^ | ASP_A^209^ | MET_A^142^ | ASN_A^198^ |
| RESI   | ALA_A^210^       | GLY_A^201^ | ALA_A^144^ | GLY_A^211^ | LYS_A^200^ |
| RESI   | ALA_A^81^        | PRO_A^141^ | ARG_A^80^  | THR_A^145^ | ARG_A^105^ |
| RESI   | ASP_A^140^       | ILE_A^143^ | VAL_A^113^ | MET_A^117^ | LEU_A^79^  |
| RESI   | PHE_A^215^       | ALA_A^146^ | THR_A^148^ | LYS_A^111^ | GLU_A^112^ |
| RESI   | GLY_A^110^       | SER_A^147^ | GLU_A^107^ | ASP_A^109^ | ILE_A^78^  |
| RESI   | ALA_A^103^       | PRO_A^114^ | VAL_A^108^ | MET_A^149^ | TYR_A^122^ |
| RESI   | SER_A^104^       | VAL_A^119^ | ASP_A^116^ | VAL_A^106^ | ASP_A^118^ |
| RESI   | GLY_A^102^       | ILE_A^101^ | ASN_A^199^ |            |            |
|        |                  |            |            |            |            |

#### Download files of potential binding sites:

A python script to visualize the protein structure and potential binding sites using PyMOL.

(\*\*Note: Please make sure to download all the following files to the same folder before to run this script.)

The potential binding atoms of top 1 binding sites (PDB format).

The potential binding atoms of all the binding sites (PDB format).

The potential binding residues of top 1 binding sites (PDB format).

The potential binding residues of all the binding sites (PDB format).

5

# Visualizing predicted binding site + protein structure



# Getting the binding site Center of Mass

- In pymol there is a plugin that calculates the CoM of an certain region.
   <u>http://www.pymolwiki.org/index.php/Center\_of\_mass</u>
- Nevertheless, the plugin is not installed but the point is :

### X: 28.035454 Y:119.400581 Z:9.578382

# **Exploring the ligand...**

- Visualize the ligand in pymol.
- File -> open -> ligand.mol2
- Show as -> sticks.
- Label -> Atom name.



# Preparing the ligand for docking...

- Open Autodock Tools.
- Ligand -> Input -> Open -> ligand.mol2
- Ligand -> Torsion Tree -> Choose Torsion ( Default ).
- Save the \*.pdbqt file in your working directory.
- **Remember!**, we have to measure the ligand size.
- Display -> Measure -> Distance. (~15 Å).

# Preparing the receptor...

- Grid -> macromolecule -> Open -> receptor.pdb
- Save the \*.pdbqt file in your working directory.
- Visualize as ribbons.
- Grid center: Center of Mass.
- Grid -> Grid Box.

### X: 28.035454 Y:119.400581 Z:9.578382

• Grid size : double of the ligand size. ( ~30 Å).

## Setting the config file for vina...

11

 $\label{eq:constraint} \begin{array}{l} \mbox{receptor} = \mbox{path}to\_receptor.pdbqt\\ \mbox{ligand} = \mbox{path}to\_ligand.pdbqt\\ \mbox{out} = \mbox{path}to\_out\_file.pdbqt\\ \mbox{log} = \mbox{path}to\_log\_file.txt\\ \mbox{center}x = X\\ \mbox{center}y = Y\\ \mbox{center}z = Z \end{array}$ 

num\_models = Num\_models exhaustiveness= 8

> size\_x = 30size\_y = 30size\_z = 30

>vina --help\_advanced

| ran@davide-desktop:~/D        | ocuments/master_valencia\$ ./       | vinahelp_advanced                             |
|-------------------------------|-------------------------------------|-----------------------------------------------|
| Most Visited 🔻 🔘 Gettin       |                                     |                                               |
| receptor argenueda            | rigid part of the receptor          | (PDBOT) ticlas Gmail Drive Calendar           |
| flex arg                      | flexible side chains, if an         | y (PDBQT)                                     |
| ligand arg                    | ligand (PDBQT)                      |                                               |
| Google.                       |                                     |                                               |
| earch space (required)        | ·                                   |                                               |
| center_x arg                  | X coordinate of the center          |                                               |
| center_z arg                  | 7 coordinate of the center          |                                               |
| size x arg                    | size in the X dimension (An         | astroms)                                      |
| size y arg                    | size in the Y dimension (An         | gstroms)                                      |
| size_z arg                    | size in the Z dimension (An         | gstroms) a Business Analytics Curso Oficial 2 |
|                               |                                     |                                               |
| utput (optional):             | output models (DDBOT) the           | default is chosen based on                    |
| Destacados                    | the ligand file name                | default is chosen based on                    |
| logtarg                       | optionally, write log file          |                                               |
| Enviados                      | Markei Anzaga                       |                                               |
| dvanced options (see t        | he manual): guien de Sigeco va a es |                                               |
| score_only                    |                                     | score only - search space                     |
| ► Circulos 🔕                  |                                     | can be omitted                                |
| local_only                    |                                     | do local search only                          |
|                               |                                     | to avoid clashes                              |
| weight gauss1 arg (           | =-0.035579)                         | gauss 1 weight                                |
| weight_gauss2 arg (           | =-0.005156) aki s                   | gauss_2 weight                                |
| weight_repulsion ar           | g (=0.84024500000000002)            | repulsion weight                              |
| <pre>weight_hydrophobic</pre> | arg (=-0.03506900000000000)         | hydrophobic weight                            |
| weight_hydrogen arg           | (=-0.587439000000000004)            | Hydrogen bond weight                          |
| weight_rot arg (=0.           | 05845999999999999998)               | N_rot weight                                  |
| isc (optional):               |                                     |                                               |
| cpu arg                       | the number of CPUs to u             | se (the default is to try to                  |
|                               | detect the number of CP             | Us or, failing that, use 1)                   |
| seede argendar 👘 🕂            | explicit random seed                |                                               |
| exhaustiveness arg            | (=8) exhaustiveness of the g        | lobal search (roughly                         |
| num modes ard (-9)            | proportional to time):              | It<br>na modes to generate                    |
| energy range arg (=5)         | 3) maximum energy differen          | ce between the best binding                   |
| energy_range arg (            | mode and the worst one              | displayed (kcal/mol)                          |
|                               |                                     |                                               |
| onfiguration file (opt        | ional):                             |                                               |
| config arg                    | the above options can be pu         | t here                                        |
| nformation (ontional).        |                                     |                                               |
| help                          | display usage summary               |                                               |
| help advanced                 | display usage summary with          | advanced options                              |
| version                       | display program version             |                                               |
|                               |                                     |                                               |
| version                       | display program version             |                                               |
| help advanced                 | display usage summary with          | advanced ontions                              |
|                               | dicelay neade sumary                |                                               |
|                               |                                     |                                               |
|                               |                                     |                                               |
|                               |                                     |                                               |

# Run Vina!!

### >vina --config=/path\_to\_config\_file/config.txt

| <pre>fran@davide-desktop:~/Documents/master_valencia\$ ./vinac</pre>                                                                                                                                                                                                                 | config=config_2.txt                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ****                                                                                                                                                                                                                                                                                 | #######US Chemical Science                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| # If you used AutoDock Vina in your work, please cite:                                                                                                                                                                                                                               | #                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| # CRG Francois Ser. (2), Borrador                                                                                                                                                                                                                                                    | Redit#os ahi va lamoprog                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| # O. Trott, A. J. Olson,                                                                                                                                                                                                                                                             | #                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| # AutoDock Vina: improving the speed and accuracy of docking                                                                                                                                                                                                                         | <b>g</b> sin a <b>#</b> nto) Francesce klav                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| <pre># with a new scoring function, efficient optimization and #</pre>                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| # multithreading, Journal of Computational Chemistry 31 (201                                                                                                                                                                                                                         | 10) a #nto) Francisco Mari                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| # 455-461                                                                                                                                                                                                                                                                            | #                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| # Google Calendar 👘 🛞 📕 🖓 🛑 Fr., Gi. (4), Borrador                                                                                                                                                                                                                                   | Real #15 Inma -> mouse? -                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| # DOI 10.1002/jcc.21334                                                                                                                                                                                                                                                              | #                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| # Borrador                                                                                                                                                                                                                                                                           | (sin a <b>#</b> nto) + Hola Francesta:                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| <pre># Please see http://vina.scripps.edu for more information.</pre>                                                                                                                                                                                                                | #                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| ***************************************                                                                                                                                                                                                                                              | ####### CNAG/Gomis 1991                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| WARNING: The search space volume > 27000 Angstrom^3 (See FAQ<br>Detected 4 CPUs<br>Reading input done.<br>Setting up the scoring function done.<br>Analyzing the binding site done.<br>Using random seed: -1305734982<br>Performing search<br>0% 10 20 30 40 50 60 70 80 90 100%<br> | <ul> <li>Q) In asunto) en Franceschier</li> <li>(sin asunto) en adelo 12 ± 1</li> <li>Recibitos target validation p</li> <li>(sin asunto) e Eu people Electronication</li> <li>(sin asunto) e Eu people Electronication</li> <li>(sin asunto) e Eu people Electronication</li> </ul> |  |  |  |  |  |  |  |  |
| 0% 10 <u>70 30 40 50 60 70 80 90 100</u> %                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| Performing search I5                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |

# Analyze the output...

### >more log\_file.txt

| #dIf/y                                                       | you used AutoDoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :k Vina in  | your work, please cite:            | #               |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|-----------------|--|--|
| #dev/:                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                    | #               |  |  |
| #0./                                                         | Frott, A. J. Ols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on,76,0401  | 47%n/media/c15113b0-936            | 9 <b>#</b> 4ele |  |  |
| # AutoDock Vina: improving the speed and accuracy of docking |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                    |                 |  |  |
| # with                                                       | hearnew/scoring/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | function,   | efficient optimization and         | #               |  |  |
| # mul                                                        | tithreading, Jou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | irnal of Co | omputational Chemistry 31 (2010)   | #               |  |  |
| # 455                                                        | -401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                    | #               |  |  |
| #<br># DOT                                                   | 10 1002/jcc 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24          |                                    | #               |  |  |
| # DOI<br>#                                                   | 10.1002/JCC.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 534         |                                    | #               |  |  |
| #Plea                                                        | ase see http://w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ina scrin   | ns edu for more information.       | #               |  |  |
| #####                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ##########  |                                    | ##              |  |  |
| WARNTI                                                       | NG: The search a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | $me > 27000$ Apastrom^3 (See EAO)  |                 |  |  |
| Detect                                                       | ted 4 CPIIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | space votu  | lie > 27000 Allyseroll 5 (See PAQ) |                 |  |  |
| Readi                                                        | ng input dor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne.         |                                    |                 |  |  |
| Setti                                                        | ng up the scori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng function | n done.                            |                 |  |  |
| Analy                                                        | zing the binding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | site        | done.                              |                 |  |  |
| Usina                                                        | random seed: -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 305734982   | "integer" walue="5"/>              |                 |  |  |
| Perfo                                                        | rming search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | done.       |                                    |                 |  |  |
| Refin                                                        | ing results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | done.       |                                    |                 |  |  |
|                                                              | <att 5"="" name="ty&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;mode&lt;/td&gt;&lt;td&gt;  affinity   c&lt;/td&gt;&lt;td&gt;list from b&lt;/td&gt;&lt;td&gt;best mode&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;  (kcal/mol)   r&lt;/td&gt;&lt;td&gt;rmsd l.b. &lt;/td&gt;&lt;td&gt;rmsd u.b.&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;++&lt;/td&gt;&lt;td&gt;+&lt;/td&gt;&lt;td&gt;yalu="></att> |             |                                    |                 |  |  |
| 1                                                            | -9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000       | 0.000                              |                 |  |  |
| 2                                                            | -9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.716       | 2.266                              |                 |  |  |
| 3                                                            | -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.545       | 8.194                              |                 |  |  |
| 4                                                            | -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.205       | 8.979                              |                 |  |  |
| 5                                                            | -9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.806       | 8.467                              |                 |  |  |
| 6                                                            | -9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.756       | 7.807                              |                 |  |  |
| 7                                                            | -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.479       | 4.540                              |                 |  |  |
| 8                                                            | -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.492       | 3.125                              |                 |  |  |
| 9                                                            | -8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.300       | 3.561                              |                 |  |  |
| 10                                                           | -8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.711       | 11.420                             |                 |  |  |
| 11                                                           | -8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.843       | 2.343                              |                 |  |  |
| 12                                                           | -8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.321       | 8.198                              |                 |  |  |
| 13                                                           | -8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.421       | 3.4/1                              |                 |  |  |
| 14                                                           | -8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.240       | 3.591                              |                 |  |  |
| 15                                                           | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.000       | 0.004                              |                 |  |  |
| 10                                                           | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.379       | 3.000                              |                 |  |  |
| 1/                                                           | -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.929       | 4 951                              |                 |  |  |
| Writi                                                        | output de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.722       | 4.951                              |                 |  |  |
| Writi                                                        | na outnut de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                    |                 |  |  |
| 18                                                           | -7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.722       | 4.951                              |                 |  |  |
| 17                                                           | -8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.929       | 4.943                              |                 |  |  |
| 16                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 3 888                              |                 |  |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 8-2013                             |                 |  |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                    |                 |  |  |

# Visualize the output...

>pymol receptor.pdb out\_docking.pdbqt



## How good are our solutions?

pymol - Open -> Solutions/receptor\_ligand.pdb



# But... What is our complex?

## Let's figure it out !

:)