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Resolution Gap
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Hybrid Method

Bau, D. & Marti-Renom, M. A. Methods 58, 300-306 (2012).
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Hi-C technology
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RESEARCH HIGHLIGHTS

Genomes in 3D improve one-dimensional assemblies

Ch i a

The Human Genome

provide scaffolds for de novo genome
assemblies.

Itis the story of the Ugly Duckling for
scientists; data that nitially had been dis-
carded turn out to be very useful

‘When Job Dekker of the University of

Projects had physical and genetic maps
that helped place sequence, but these maps
are labor-intensive to make and their pro-
duction is not scalable.

Both groups realized that Hi-C provided
the data to put contigs in the right order

“The idea has been
percolating for a while” says Shendure, “but

Hi-C data help find the right genomic positon

his team
first developed ‘Hi-C in 2009, a method
to probe all g de interactions in

three dimensions (3D), they came across
a phenomenon that at the time seemed
annoying. “When two loci are close to
each other in the linear sequence, they
contact each other more frequently,”
explains Dekker. “The signal is very, very
strong, and you have to normalize it out
of the data to find interestin a
tions.” But computational biologist Noam
Kaplan, upon joining the laboratory as a
postdoc, saw the discarded Hi-C data from
a different perspective. “If we see things
that are interacting frequently in 3D, we
know that they must be close in the one-
dimensional sequence;” says Kaplan. And
he realized that this knowledge could be a
boon for genome assemblies that are still
very fragmented when derived only from
high-throughput sequencing data.
Independently, Jay Shendure of the
University of Washington in Seattle,
together with his graduate student Joshua
Burton, also discussed ways to use Hi-C
data for better genome assemblies.
Shendures group is part of an effort to
develop a $1,000 genome, and their focus
was on increasing contiguity, the length
of assemblies without gaps. “We can eas-
ily generate 100 times as much sequenc-
ing data as the entire Human Genome
Project,” says Shendure, “but the best
assemblers in the world can't get anything
close to the quality of the original assem-
bly?” Top computational tools can assemble
short reads into 40-kilobase ‘contigs’ but
cannot bridge larger gaps to place those
contigs with respect to one another on

Researchers in the two labs tackled this
challenge differently. Kaplan and Dekker
employed a two-tier approach, first
using the higher interaction frequency
between loci on the same chromosome to
place contigs on chromosomes and then
using a probabilistic model to predict
the genomic locus along the chromo-
some based on interaction frequency and
genomic distance. This worked well for
de novo assembly of the human genome,

of short sequence reads. Adapted from Nature
(Burton et al, 2013).

interactions of genomic loci, which Hi-C
originally had been designed to discover,
that can mask the signal used for scaffold-
ing. Dekker and his team recently solved
the structure of the metaphase chromo-
some, and Kaplan suggests that such
metaphase Hi-C data will get rid of cell
type-specific interactions

Researchers in Shendure’s lab will focus
on making the Hi-C protocol robust for

and the itto pre-
dict the locations of previously unplaced
fragments of the human genome. The
approach only required a library of paired-
end short inserts and Hi-C data.
Shendure and his team, on the other
hand, used libraries of paired-end short
reads, a library of 3-kilobase mate pairs
and Hi-C data for their algorithm, named
Lachesis,in reference to one of the Greek
Fates. In a tiered approach, they created
high-quality de niovo assemblies of the
human, mouse and fly genomes. Unlike
the algorithm by the Dekker group,
Lachesis cannot infer the chromosome
‘numbers of an organism, but it can orient
contigs the right way after placement.
Looking forward, both Dekker and
Shendure see the need for integrated
rather than step-wise data analysis. “An
approach that simultaneously takes into
account all data types in a single step is
likely to do better;” says Shendure.
Additional improvements will also
come from the experimental side.
Current Hi-C data show cell type-specific

data are all derived from cell lines.

Other recent work has shown that Hi-C
data can be used to reconstruct haplo-
types; Kaplan sees the combination of
genome assembly and haplotype phasing
as an exciting possibility.

Neither the Dekker nor the Shendure
teams havea track record in genome assem-
bly, so both groups are eager for assembly
experts to try out their algorithms and
suggest further improvements. Recent
community-driven comparisons have
‘made clear that there is not one program
that outperforms all others, but the algo-
rithms from the Dekker and Shendure labs
will provide an important starting point for
bridging large gaps in the assemblies.
Nicole Rusk
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BTW, de novo assembly!
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Biomolecular structure determination

2D-NOESY data

Chromosome structure determination

3C-based data
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and system representation
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Mating-specific structure for yeast chrill?
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5C chromosome conformation

Chr. 11l - 317 kb: Mating Type Switching
HML . MAT HMR

. ] 1)

Chr. V - 577 kb: Control

Chr. XII - 1 Mb: rDNA array

rRNA
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Interactions
between
chromosomes
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within
/ a chromosome

Xl vs. X

~100,000 possible
Interactions!
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Global structure is similar between mating types
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Difference in chromosome conformation

- = Enrichment of interaction in MATq.

Log,(MATo. / MATa
Il ) - = Enrichment of interaction in MATa

Only major difference in
conformation is on
chromosome Il
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Difference in conformation of the left arm of chromosome Il
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Average 3D models of Chrlll using TADbit

5C data converted

5C Contact . . Random initial Fitting to distance
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Mating type-specific conformation of chromosome Il
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3D chrlll for mating in yeast
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Structuring the COLORs of chromatin

v
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53 chromatin proteins

Position on chr2L (kb)
16000 16200 16400 16600

16000 16200 16400 16600
Position on chr2L (kb)

The COLORs

16800 17000
Principal component analysis
PC2
-5 -10 -5 0 5 10 15
e
Oo
o
e
&
mo
O
o
T
-5 -10 -5 0 5 10 15
PC2
Hidden Markov model
16800 17000

chag



Functional COLORs

50 ~1Mb regions

- 10 for each color
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Structural COLORs

chag



Structural COLORs
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Structural COLORs

Position on chr2L (kb)
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53 chromatin proteins
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On TADs and hormones

>
o

Y

)
Qad
*?

N
0]

:4=’

Miguel Beato & Guillaume Filion

Gene Regulation, Stem Cells and Cancer

FrangOis Ie Dily DqVide Bal\J Frqngois Serrq Centre de Regulacié Gendmica

Barcelona, Spain

chag



Progesterone-requlated transcription in breast cancer

> 2,000 genes Up-regulated
> 2,000 genes Down-regulated

Regulation in 3D?

Vicent et al 2011, Wright et al 2012, Ballare et al 2012
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Experimental design
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Are there TADs? how robust?

Size (Mb)

>2.000 detected TADs
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Are TADs homogeneous?
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Fold change per TAD (Logz)

Do TADs respond differently to Pg treatment?
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Modeling 3D TAD:s

61 genomic regions containing 209 TADs covering 267Mb
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STRUCTURE FUNCTION
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Structure >> Function!
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http://3DGenomes.org
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