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Are the 5-type chromatin colors structurally different?



a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.

A

C

B

Principal component analysis

Hidden Markov model

53
 ch

ro
m

at
in 

pr
ot

ein
s

16000 16200 16400 16600 16800 17000

Position on chr2L (kb)

PC1
PC2
PC3

type

16000 16200 16400 16600 16800 17000

Position on chr2L (kb)

MRG15
SU(VAR)3−7
SU(VAR)3−9

HP6
HP1
LHR

CAF1
ASF1

MUS209
TOP1

RPII18
SIR2

RPD3
CDK7
DSP1
DF31
MAX

PCAF
ASH2
HP1c
CtBP
JRA

BRM
ECR
BCD

MED31
SU(VAR)2−10

LOLAL
GAF

CG31367
ACT5C

TIP60
MNT

SIN3A
TBP

DWG
PHOL
PROD

BEAF32b
SU(HW)

LAM
D1
H1

SUUR
EFF
IAL

GRO
PHO

CTCF
PC

E(Z)
PCL
SCE

Genes+
-

−2
0

−1
0

0
10

20
PC

1

−15 −10 −5 0 5 10 15
PC2

−15 −10 −5 0 5 10 15

−1
5

−1
0

−5
0

5
10

PC2

PC
3

Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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Principal Component Analysis

Derivation of the 5-type chromatin color
Filion et al. (2010). Cell, 143(2), 212–224

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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Derivation of the 5-type chromatin colors
Filion et al. (2010). Cell, 143(2), 212–224

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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Are chromatin colors functional domains?
Hou et al. (2012). Molecular Cell, 48(3), 471–484

Figure 1. Partition of the Drosophila Genome into Physical Domains
(A) Genome-wide interaction heatmap at 100 kb resolution for the Drosophila genome in Kc167 cells. Black circles and squares show interactions between

centromeres and telomeres, respectively. Red rectangles show interactions between chromosome arms 2L-2R and 3L-3R, respectively.

(B) Hi-C interaction frequencies displayed as a two-dimensional heat map at single fragment resolution for a 2 Mb region of chromosome 3R alongside with

selected epigenetic marks and chromatin types defined by the presence of various proteins and histone modifications. The white grid on the heat map shows

where the domains are partitioned.
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Are chromatin colors functional domains?
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Figure 1. Partition of the Drosophila Genome into Physical Domains
(A) Genome-wide interaction heatmap at 100 kb resolution for the Drosophila genome in Kc167 cells. Black circles and squares show interactions between

centromeres and telomeres, respectively. Red rectangles show interactions between chromosome arms 2L-2R and 3L-3R, respectively.

(B) Hi-C interaction frequencies displayed as a two-dimensional heat map at single fragment resolution for a 2 Mb region of chromosome 3R alongside with

selected epigenetic marks and chromatin types defined by the presence of various proteins and histone modifications. The white grid on the heat map shows

where the domains are partitioned.
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Resolution gap
Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)
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(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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Chr.18 (Hind III)

Hi-C technology
Lieberman-Aiden, E. et al.  Science 326, 289–293 (2009)

http://3dg.umassmed.edu

http://my5c.umassmed.edu
http://my5c.umassmed.edu


Biomolecular structure determination
2D-NOESY data

Chromosome structure determination
3C-based data

Structure determination using Hi-C data
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Data collection

Analysis of the results 

Optimization

the overlay assay and affinity purification data (Supplementary
Information).

Optimization

With the scoring function in hand, the positions of the proteins are
determined by optimization of the scoring function (Supplementary
Information), resulting in structures that are consistent with the data
(Fig. 1). The optimization starts with a random configuration of the
constituent proteins’ beads, and then iteratively moves them so as to
minimize violations of the restraints (Fig. 8). In essence, the restraints
cooperate to slowly ‘pull together’ the proteins into a good-scoring
configuration. We use standard methods of conjugate gradients and
molecular dynamics with simulated annealing (Supplementary
Information). These methods allow the evolving structure some
‘breathing room’ to explore the scoring function landscape, min-
imizing the likelihood of getting caught in local scoring function
minima (Fig. 8a). To comprehensively sample structures consistent
with the data, independent optimizations of randomly generated
initial configurations were performed until an ensemble of 1,000

structures satisfying the input restraints was obtained (approxi-
mately 200,000 trials were required, running for approximately
30 days on 200 CPUs) (Fig. 8b).

Ensemble interpretation

We analysed the ensemble of 1,000 structures that satisfy the input
data (Fig. 8b) in terms of protein positions, contacts and configura-
tion (Figs 9 and 10).
Protein positions. These 1,000 structures were first superposed
(Fig. 9a) (Supplementary Information). Next, the superposed struc-
tures were converted into the probability of any volume element
being occupied by a given protein (that is, the ‘localization probabi-
lity’) (Fig. 9b). The spread around the maximum localization prob-
ability of each protein describes how precisely its position was
defined by the input data. The positions that have a single narrow
maximum in their probability distribution in the ensemble are deter-
mined most precisely. When multiple maxima are present in the
distribution at the precision of interest, the input restraints are insuf-
ficient to define the single native state of that protein (or there are
multiple native states).

The actual localization probabilities yielded single pronounced
maxima for almost all proteins, demonstrating that the input
restraints define one predominant structure. The average standard
deviation for the distance between neighbouring protein centroids is
5 nm; the precision of the larger, centrally positioned proteins seems
to be higher than that of the anchor domains of some FG nucleopor-
ins. This level of precision defines a region smaller than the diameters
of many nucleoporins. Thus, our map is sufficient to determine the
relative positions of proteins in the NPC; we do not interpret features
smaller than this precision. On the basis of the localization probabi-
lities (Fig. 9b), we also define the volume most likely occupied by each
protein, termed the ‘localization volume’ (Figs 9c and 10a). The
localization volumes of the proteins overlap only to a small degree,
such that only 10% of the NPC volume is assigned to two or more
proteins, again underscoring how well the position of each nucleo-
porin is resolved. On the basis of our current data, we are not able to
distinguish between the two possible mirror-symmetric structures;
here, we present one of them.
Protein contacts. The proximities of any two proteins in the struc-
ture can be measured by their relative ‘contact frequency’, which is
defined by how often the two proteins contact each other in the
ensemble (Fig. 10b). Contacts are highly conserved among the
ensemble structures, despite some variability; 32 protein pairs have
a contact frequency higher than 65%. Of all the 435 contact frequen-
cies, 7% are high (65–100%) and 73% are low (0–25%); this again
demonstrates that the structure is well defined, as an ensemble of
varied structures would yield mainly medium contact frequencies.
Notably, few high-contact frequencies are seen between proteins of
the same type, indicating that the NPC is held together primarily by
heterotypic interactions.

We can improve our determination of contacts by considering not
only the contact frequencies but also the composite data (Fig. 10c).
More specifically, we define two proteins to be ‘adjacent’ if their
relative contact frequency is larger than 65% or if they appear in
the maximal spanning tree of any composite graph whose edge
weights correspond to contact frequencies (as explained in Fig.
10c). If two proteins are adjacent, they are more likely to interact
with each other in the native NPC structure than when they are not
adjacent36. In total, 51 types of adjacencies were found (Fig. 10d). A
particularly large number of adjacencies are observed for Nic96 and
Nup82, which both appear in two copies per symmetry unit, as well as
for the core proteins Nup192 and Nup188. Whereas the latter two
proteins bridge the bulk of the NPC to the membrane proteins and
also provide anchor sites for FG nucleoporins, Nic96 bridges major
ring structures of the NPC and also serves as an anchor site for FG
nucleoporins37. Most FG nucleoporins are peripherally located and
therefore show only a few adjacencies.
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Figure 8 | Calculation of the NPC bead structure by satisfaction of spatial
restraints. a, Representation of the optimization process as it progresses
from an initial random configuration to an optimal structure. The graph
shows the relationship between the score (a measure of the consistency
between the configuration and the input data) and the average contact
similarity. The contact similarity quantifies how similar two configurations
are in terms of the number and types of their protein contacts; a contact
between two proteins occurs if the distance between their closest beads is
less than 1.4 times the sum of the bead radii (Supplementary Information).
The average contact similarity at a given score is determined from the
contact similarities between the lowest scoring configuration and a sample of
100 configurations with the given score. Error bars indicate standard
deviation. Representative configurations at various stages of the
optimization process from left (very large scores) to right (with a score of 0)
are shown above the graph; a score of 0 indicates that all input restraints have
been satisfied. As the score approaches zero, the contact similarity increases,
showing that there is only a single cluster of closely related configurations
that satisfy the input data. b, Distribution of configuration scores. The
presence of configurations with the score close to 0 demonstrates that our
sampling procedure finds configurations consistent with the input data.
These configurations satisfy all the input restraints within the experimental
error.

ARTICLES NATURE | Vol 450 | 29 November 2007

690
Nature   ©2007 Publishing Group

Representation
and scoring

The four stages of integrative modeling



Representation
Constituent parts of the molecule

i
i+2

i+1

i+n

d < d0 d = d0 d > d0



i
i+2

i+1

i+n

Harmonic Lower Bound

Harmonic Upper Bound 

Harmonic

€ 

Hi, j = k di, j − di, j
0( )

2
 

€ 

if di, j ≤ di, j
0 ; lbHi, j = k di, j − di, j

0( )
2

if di, j > di, j
0 ; lbHi, j = 0

$ 

% 
& 

' & 
 

€ 

if di, j ≥ di, j
0 ; ubHi, j = k di, j − di, j

0( )
2

if di, j < di, j
0 ; ubHi, j = 0

$ 

% 
& 

' & 
 

Representation
Constituent parts of the molecule



3D modeling of the 5-type chromatin colors
Filion et al. (2010). Cell, 143(2), 212–224

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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The 5-type chromatin colors structurally different

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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