nAnnolyze : ligand-target prediction by structural network biology

Francisco Martínez-Jiménez Student Symposium, JdBI2014, Sevilla

Phenotype

Prediction details & accuracy

Prediction details & accuracy

free structure methods

*Based on previous knowledge.
*Many different methods.
*Good performance.
*Poor information about the interaction.

Prediction details & accuracy

free structure methods

structure based methods

Virtual Docking

*Based on previous knowledge.
*Many different methods.
*Good performance.
*Poor information about the interaction.

*Very precise. Ligand and receptor orientation.
*Needs the binding-site.
*Needs the structure or a reliable 3D-model.
*Not applicable at wide scale.

Computational time

Prediction details & accuracy

free structure methods

*Based on previous knowledge. *Many different methods. *Good performance. *Poor information about the interaction.

structure based methods

Comparative Docking

*Outputs binding-site localization.
*Based on structural comparisons.
*Applicable at wide scale.
*Needs the structure or a reliable 3D-model.

Virtual Docking

*Very precise. Ligand and receptor orientation.
*Needs the binding-site.
*Needs the structure or a reliable 3D-model.
*Not applicable at wide scale.

Computational time

Network-based Method nAnnolyze

Ligand subnetwork

- Retrieved 7,609 high drug-likeness* compounds from PDB.
- Nodes of highly similar compounds: cliques of similarities.
- 4,101 nodes of ligand clusters and 24,856 edges.
- Edges weight = normalized similarity score.

* Bickerton, G. R., Paolini, G. V, Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. *Nature chemistry*, 4(2), 90-8.

Protein binding-site network

- Binding-sites for the 7,609 compounds: 28,299 binding-sites.
- Similarities between proteins by structural comparisons of the binding-site.
- 19,483 **nodes** of binding-sites and 29,811 **edges**.
- Edges weight = normalized binding-site similarity score.

Link the two subnetworks by edges between protein structures and their co-crystallized ligands.

Ligand	Target	Distance	Global Z-score	Local Z-score
DZP	tl	1.3	-1.6	-2.5
DZP	t2	2.5	2.3	I.02
DZP	tM	1.9	-1.6	-3.16
DZP	tN	2.6	2.42	2.97

Benchmarking

- 232 approved FDA drugs co-crystallized with a protein.
- Test-set = 6,282 true drug-protein pairs and 5,981 negative pairs.
- Drug ID = 0.97 AUC
- Anonymous compounds = 0.73 AUC

Applying the method, modeling genomes...

PDB templates

	Human Bacterial proteon	
3D reliable models	31,734 with overlapping	5,008 no overlapping
Different Proteins	14,000	5,008 different proteins
Inherited binding-sites	64,000	30,000

Searching for Drugbank drugs interactions...

Searching for Drugbank drugs interactions...

Human Cyclooxygenase-1 targeted by NSAID drugs

- 21 out of the 44 approved FDA drugs against COX-1 (score > 0.85).
- Human structure model from the sheep COX-1.
- Predicted binding site includes Tyrosine 385.

Drug ID	Drug name	nAnnoLyze score
DB00712	Flurbiprofen	0.97
DB00328	Indomethacin	0.97
DB01600	Tiaprofenicacid	0.96
DB00870	Suprofen	0.96
DB00821	Carprofen	0.96
DB00788	Naproxen	0.96
DB00500	Tolmetin	0.94
DB00465	Ketorolac	0.94
DB00963	Bromfenac	0.92
DB00586	Diclofenac	0.91
DB06802	Nepafenac	0.90
DB01283	Lumiracoxib	0.90
DB00784	Mefenamicacid	0.89
DB00861	Diflunisal	0.88
DB04552	NiflumicAcid	0.88
DB00991	Oxaprozin	0.88
DB01050	Ibuprofen	0.87
DB00939	Meclofenamicacid	0.86
DB01399	Salsalate	0.86
DB01009	Ketoprofen	0.86
DB00605	Sulindac	0.85

Sorafenib pathway targeting through binding of several protein

Sorafenib pathway targeting through binding of several protein

Target	Score	Structure	KEGG Pathway
MAPK 14	0.99	Yes	MAPK signaling Fox0 signaling VEGF signaling Rap1 signaling RIG-I-like receptor signaling Acute myeloid leukemia
CDK19	0.97	No	-
FLTI	0.90	Yes	Ras signaling pathway
RAF I	0.89	Yes	MAPK signaling Ras signaling Rap1 signaling VEGF signaling Fox0 signaling pathway Acute myeloid leukemia
ARAF	0.88	Yes	Fox0 signaling Acute myeloid leukemia
CDK10	0.88	No	-
BRAF	0.88	Yes	MAPK signaling Rap1 signaling Fox0 signaling Acute myeloid leukemia
CDK8	0.87	Yes	-
FLT3	0.86	Yes	Acute myeloid leukemia
MAPK 15	0.86	No	-

Annotated (Chembl, PubChem, Drugbank, PDB)

Not Annotated

Sorafenib pathway targeting through binding of several protein

Target	Score	Structure	KEGG Pathway
MAPK 14	0.99	Yes	MAPK signaling Fox0 signaling VEGF signaling Rap1 signaling RIG-I-like receptor signaling Acute myeloid leukemia
CDK19	0.97	No	-
FLTI	0.90	Yes	Ras signaling pathway
RAF I	0.89	Yes	MAPK signaling Ras signaling Rap1 signaling VEGF signaling Fox0 signaling pathway Acute myeloid leukemia
ARAF	0.88	Yes	Fox0 signaling Acute myeloid leukemia
CDK10	0.88	No	-
BRAF	0.88	Yes	MAPK signaling Rap1 signaling Fox0 signaling Acute myeloid leukemia
CDK8	0.87	Yes	-
FLT3	0.86	Yes	Acute myeloid leukemia
MAPK 15	0.86	No	-

Annotated (Chembl, PubChem, Drugbank, PDB)

Not Annotated

Antimicrobial drugs against Mycobacterium tuberculosis

OPEN OACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Target Prediction for an Open Access Set of Compounds Active against *Mycobacterium tuberculosis*

Francisco Martínez-Jiménez^{1,2}, George Papadatos³, Lun Yang⁴, Iain M. Wallace³, Vinod Kumar⁴, Ursula Pieper⁵, Andrej Sali⁵, James R. Brown⁴*, John P. Overington³*, Marc A. Marti-Renom^{1,2}*

1 Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain, **2** Gene Regulation Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, **3** European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom, **4** Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America, **5** Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America

Highlights oral presentation Tuesday,23

nAn	noly	ze			
	Home	Help	About	Download	
		Introduce your qu ID of the molecule	DB00398		

Select the organism

O Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium smegmatis

Homo Sapiens

Submit

+ Toggle Statistics

Download

http://nannolyze.cnag.cat

Acknowledgments

Davide Baù Gireesh K. Bogu François le Dily Marc A. Marti-Renom David Dufour François Serra Michael Goodstadt Yasmina Cuartero

COLLABORATORS

Jim Brown (GSK) LLuís Ballell (GSK) John Overington (EBI-EMBL) Andrej Sali (UCSF) Anna Tramontano (Sapienza University)

http://marciuslab.org
http://integrativemodeling.org
http://cnag.cat · http://crg.cat

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

