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One third of the world’s population is infected with 
Mycobacterium tuberculosis, the causative agent of 

tuberculosis.
WHOTuber2012. Global Tuberculosis Report 2012.
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Tuberculosis incidence...
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FIGURE 2.5 Estimated TB incidence rates, 2011
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FIGURE 2.6 Estimated HIV prevalence in new TB cases, 2011
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FIGURE 4.7 Notifi ed cases of MDR-TB as a percentage of MDR-TB cases estimated to occur among notifi ed pulmonary 
TB cases, 2011a     
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a MDR-TB notifi cations from 2010 are used for 18 countries with missing 2011 data.

children; in the 37 that did, children represented 1–13% 

of total enrolments.

While the absolute numbers of TB cases notifi ed with 

MDR-TB and started on second-line treatment remain 

low compared with the Global Plan’s targets, enrolments 

increased by 21% globally between 2010 and 2011 (Fig-
ure 4.5). Country plans envisage increased enrolments 

between 2012 and 2015, although numbers remain well 

below targets, partly as a result of incomplete informa-

tion on forecasts in countries with large burdens, such as 

China, the Russian Federation and South Africa. To reach 

the targets set out in the Global Plan and advance towards 

universal access to treatment, a bold and concerted drive 

will be needed on many fronts of TB care, particularly in 

the countries where the highest burden is located. 

4.2.3  Treatment outcomes for MDR-TB and XDR-TB
Standardized monitoring methods and indicators have 

allowed countries to report MDR-TB treatment outcomes 

in a comparable manner for several years.1 In most cas-

es, treatment of MDR-TB lasts 20 months or longer, and 

requires daily administration of drugs that are more toxic 

and less effective than those used to treat drug-suscep-

tible forms of TB. In a few countries, shorter treatment 

regimens are being used to treat patients with MDR-TB 

(Box 4.3). 

A total of 107 countries reported outcomes for more 

than 25 000 MDR-TB cases started on treatment in 2009 

(Table 4.2; Figure 4.8). This is equivalent to 54% of the 

number of MDR-TB cases notifi ed by countries in the 

same year. The Global Plan envisages that by 2015, all 

countries will report outcomes for all notifi ed MDR-TB 

cases. In contrast, among 117 countries reporting at least 

one case of MDR-TB in 2009, 60 overall – including 10 

high MDR-TB burden countries – reported outcomes for a 

cohort whose size exceeded 80% of original notifi cations.

The proportion of MDR-TB patients who successfully 

completed treatment varied from 44% (Eastern Mediter-

ranean Region) to 58% (South-East Asia Region). Deaths 

were highest in the African Region (19%) and the pro-

portion of patients whose treatment failed was highest in 

the European Region (12%). Overall, treatment success 

was 48%, while 28% of cases were reported as lost to 

follow-up or had no outcome information. Among a subset 

of 200 XDR-TB patients in 14 countries, treatment success 

was 33% overall and 26% died. The Global Plan’s target 

for 2015 of achieving at least 75% treatment success in 

MDR-TB patients was only reached by 30/107 countries. 

Moving towards the target for treatment success requires 

enhancing and scaling up the currently available drug 

1 These methods and indicators are defi ned in Guidelines for the 
programmatic management of drug-resistant tuberculosis, Emer-
gency update 2008. Geneva, World Health Organization, 2008 
(WHO/HTM/TB/2008.402). It is anticipated that revised defi -
nitions of treatment outcomes will be released in 2013 follow-
ing piloting in several countries.
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Phenotypic screening against 
Mycobacterium tuberculosis

Ballell, L.et al (2013). Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem.
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776 compounds chemical features
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Phenotypic screenings
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this proposal is that the MMOA is a key factor for the 
success of all approaches, but is addressed in different 
ways and at different points in the various approaches. 

In the more common target-based approach, drug 
discovery is generally hypothesis-driven, and there are 
at least three hypotheses that must be correct to result 
in a new drug. The first hypothesis, which also applies 
to other discovery approaches, is that activity in the 
preclinical screens that are used to select a drug candi-
date will translate effectively into clinically meaningful 
activity in patients. The other two hypotheses are that 
the target that is selected is important in human disease 
and that the MMOA of drug candidates at the target in 
question is one that is capable of achieving the desired 
biological response. Successful target-based discov-
ery of first-in-class drugs with tolerable safety profiles 
requires the time and resources to investigate all three 
hypotheses. In particular, the importance of hypoth-
esis testing to identify an appropriate MMOA may be 
an underappreciated challenge that — if neglected — 
could contribute to increased attrition rates for such 
approaches. In other words, it is clearly difficult to 
rationally identify the specific molecular interactions 
from all of the potential dynamic molecular interac-
tions that will contribute to an optimal MMOA. Thus, 
the key biochemical nuances that are important for the 
translation of the molecular interaction (between a drug 
and the target) to an optimal pharmacological response 
could be missed with target-based approaches. 

By contrast, in the case of phenotypic-based screening 
approaches, assuming that a screening assay that trans-
lates effectively to human disease is available or can be 
identified, a potential key advantage of this approach over 
target-based approaches is that there is no preconceived 
idea of the MMOA and target hypothesis. This could 
considerably aid the identification of molecules with 
appropriate targets (and possibly multiple targets) and 
MMOAs, which might be less likely to emerge rapidly, if 
at all, from pursuing a focused target-based hypothesis. 
However, two limitations of phenotypic-based screening 

approaches should also be noted. First, it will often be 
necessary to characterize the MMOA of active molecules 
that are identified in phenotypic screens to aid the opti-
mization of a drug candidate, but substantial progress has 
been made in approaches to achieve this — for example, 
approaches based on RNA interference54,55. Second, phe-
notypic assays are often lower in throughput than stand-
ard target-based assays, although considerable progress 
has also been made in recent years to automate such 
assays and increase their throughput56–58.

Finally, as has often been noted in reviews of the role 
of natural products in drug discovery32,59, discovery 
strategies that are based on natural substances have an 
inherent advantage: the biology, target and MMOA are 
often likely to be have been optimized already through 
evolution, and so modifying such substances can be a 
fruitful approach. Similarly, some of the biologics that 
have been approved are harnessing endogenous mecha-
nisms in a rational way — for example, by providing a 
natural protein that is reduced in a given disease state, 
as is the case for enzyme replacement therapies for 
lyosomal storage disorders. In other cases though, it is 
apparent that the precise MMOA of biologics might also 
be important in their biological effects, as illustrated by 
the differences in the properties of two monoclonal 
antibodies that target CD20 on B cells60 — rituximab 
and ofatumumab — although neither of these were 
approved in the 10-year period we studied. Telling et 
al.60 conclude that the recognition of a novel epitope 
cooperates with a slow off-rate in determining the activ-
ity of CD20 monoclonal antibodies in the activation of 
complement and the induction of tumour cell lysis.

The importance of the MMOA is further supported 
by the evolution of the MMOA within drug classes, from 
the first-in-class molecule to the best-in-class molecule, 
which is not widely appreciated. For example, in some 
cases in which there is no mechanism-based toxicity, the 
evolution of drugs in a given class towards the best-in-
class has been associated with slower dissociation rates 
at the target. This has been observed with antihistamines 

Figure 3 | Cumulative distribution of new drugs by discovery strategy. a | First-in-class drugs. A lag is not strongly 
apparent in a comparison of the cumulative number of small-molecule new molecular entities (NMEs) that were 
discovered from the different approaches during the period ana lysed. b | Follower drugs. For follower drugs, the ratio  
of small-molecule NMEs discovered through target-based screening to those discovered through phenotypic screening 
appears to increase in the second half of the time period. 

ANALYSIS

NATURE REVIEWS | DRUG DISCOVERY  VOLUME 10 | JULY 2011 | 515

© 2011 Macmillan Publishers Limited. All rights reserved
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Finding out the mode of action...

Phenotype
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Similar binding-sites tend to bind 
similar ligands 
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Network-based Method
nAnnolyze
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Applying the method, modeling genomes...

Bacterial proteomes
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Looking for targets...
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Ligand Target Distance Global Z-score Local Z-score

GSK1 pknB Kinase 1.3 -1.6 -2.5

GSK1 mapB 2.5 2.3 1.02

GSK1 sahH 1.9 -1.6 -3.16

GSK1 Mmpl3 2.6 2.42 2.97
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Statistical assessment of predicted links 
between compounds and targets

• We merged all the predictions from the 3 methods. 

•Significance of links using groups of similar compounds and the 
targets KEGG pathways. 

•LogOdds. Odds of an observation given its probability. 

• p-value using Fisher´s exact test for 2x2 contingency table comparing 
two groups of annotations.  
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Compound dataset diversity
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Compound dataset diversity
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Targeting essential aminoacids 
metabolism pathways 
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Significant drug-protein pairs
Table 2. Significant links between GSK compound families and KEGG pathways.

GSK Family Compound Target Pathways

1 GSK975784A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975810A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975839A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

Rv2299c No Pathway

GSK975840A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975842A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

Rv2045c No Pathway

Rv2139 Pyrimidine metabolism (mtu00240)

Rv2299c No Pathway

Rv2483c No Pathway

3 GSK547481A Rv0194 ABC transporters (mtu02010)

GSK547490A Rv0194 ABC transporters (mtu02010)

GSK547491A Rv0194 ABC transporters (mtu02010)

GSK547499A Rv0194 ABC transporters (mtu02010)

GSK547500A Rv0194 ABC transporters (mtu02010)

GSK547511A Rv0194 ABC transporters (mtu02010)

GSK547512A Rv0194 ABC transporters (mtu02010)

GSK547527A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv0194 ABC transporters (mtu02010)

GSK547528A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv0194 ABC transporters (mtu02010)

GSK547543A Rv0194 ABC transporters (mtu02010)

7 GSK1829727A Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

MoA Prediction against TB

PLOS Computational Biology | www.ploscompbiol.org 9 October 2013 | Volume 9 | Issue 10 | e1003253

Table 2. Cont.

GSK Family Compound Target Pathways

GSK1829729A Rv3855 No Pathway

Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK1829816A Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK479031A Rv0053 Ribosome (mtu03010)

Rv0379 NoPathway (mtu00000)

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK957094A Rv3170 Gly, Ser and Thr metabolism (mtu00260)

Arginine and proline metabolism (mtu00330)

Histidine metabolism (mtu00340)

Tyrosine metabolism (mtu00350)

Phenylalanine metabolism (mtu00360)

Tryptophan metabolism (mtu00380)

Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

9 GSK1188379A Rv0194 ABC transporters (mtu02010)

GSK1188380A Rv0194 ABC transporters (mtu02010)

16 GSK1825940A Rv0194 ABC transporters (mtu02010)

GSK1825944A Rv0194 ABC transporters (mtu02010)

35 BRL-10143SA Rv1649 Aminoacyl-tRNA biosynthesis (mtu00970)

Rv2763c One carbon pool by folate (mtu00670)

Folate biosynthesis (mtu00790)

One carbon pool by folate (mtu00670)

Rv2764c Pyrimidine metabolism (mtu00240)

BRL-51093AM Rv2763c One carbon pool by folate (mtu00670)

Rv2764c Folate biosynthesis (mtu00790)

One carbon pool by folate (mtu00670)

MoA Prediction against TB
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compounds) were obtained directly from the ChEMBL database
(as deposition set http://dx.doi.org/10.6019/CHEMBL2095176).
Chemical properties of the compounds (Figure 1) were calculated
as previously described [12].

Exploring the chemogenomics space
A multi-category Naı̈ve Bayesian classifier (MCNBC) was

built using structural and bioactivity information from the
ChEMBL database (version 14) [16]. In brief, the classifier
learns the various classes (in this case protein targets) by
considering the frequency of occurrence of certain sub-
structural features for the different chemical compounds. Given
a new, unseen compound, the model calculates a Bayesian
probability score based on the molecule’s individual features
and produces a ranked list of likely targets. The model was built
in Accelrys Pipeline Pilot (version 8.5). The structure and
bioactivity data were extracted from the ChEMBL database and
conformed the following filters: (i) the activity value was better
than 10 uM (pIC50.5), (ii) the target type was a protein, (iii)
the activity type was IC50, Ki or EC50, and (iv) the target
confidence score was above 7.0. The last filter ensured that
there was a reported direct interaction between the ligand and
the protein target. The script resulted in 489,056 distinct
compound-target pairs. To increase the robustness of the model,
only targets with 40 or more active compounds were considered
further, thus reducing the number of unique compound-target
pairs to 466,686, spanning 1,258 distinct targets and 271,918
distinct compounds.

Two multiple-category models were subsequently built.
Firstly, a model was created by choosing at random 85% of
the compound records as the training set, so that the remaining
15% could be used as a test set for model validation, ensuring no
overlapping structures in the 85-15 partition [17]. The MCNBC
trained on 85% of the 271,918 ChEMBL compounds and
associated targets was then used to predict the targets for the
remaining 15% of the ChEMBL subset, containing 40,788
distinct compounds, unseen by the model. Standard ECFP_6
fingerprints were employed as molecular descriptors for the
classifier [26]. These fingerprints encode a molecular structure
as a series of overlapping features/fragments of a diameter of up
to three bond lengths.

For each compound in the test set, the Pipeline Pilot model
generated a likelihood score Ptotal for all possible targets. This is

derived by the Laplacian-corrected Bayes rule of conditional
probability P(A|Fi) for each fingerprint feature i of the
compound.

Pi ADFið Þ~ AFiz1ð Þ= TFi A=Tð Þz1½ $

Ptotal~logP Pi ADFið Þð Þ~
X

log Pi ADFið Þ

where Fi is the ith fingerprint feature; A is the number of active
molecules for a target; T is the total number of molecules; AFi is
the number of active molecules containing feature i; and TFi is
the number of all molecules containing feature i.

For the purposes of this validation, only the top five target
predictions were considered (i.e., the ones with the highest positive
likelihood score). This reflects a real-life situation where only a
small number of target predictions can be practically and
economically tested experimentally. To test the accuracy of the
method, the five target predictions were then compared to the
actual target reported for that particular compound.

The model derived by the training set ranked the correct target
highest among all 1,258 possible targets for 82% of the compounds
in the test set (Figure 6A). The target is correctly predicted on the
second guess for 6% of the compounds and correctly predicted on
the third guess for 2% of the compounds. In total, 92% of the
compounds in the test set are correctly assigned to their known
targets within the top five predicted targets. The ChEMBL
database groups most of the individual protein targets into a
hierarchical classification of target family names. Given this
information, further analysis was done to examine the accuracy of
the target classification predictions. Individual targets were
replaced by their respective protein classification annotation using
a lookup dictionary. In total, 568 unique protein classification
labels were considered. The model’s predictive power improves,
returning the correct protein family as the top ranked prediction in
88% of the compounds and within the top five predictions in 94%
of the compounds (Figure 6A). After the successful validation of
the method, a second model was created utilizing 100% of the
data and keeping the rest of the parameters intact. The derived
model was then used for predicting the targets of all GSK
compounds.

Table 2. Cont.

GSK Family Compound Target Pathways

Pyrimidine metabolism (mtu00240)

173 GSK1402290A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3834c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3105c No Pathway

Rv3135 No Pathway

334 GSK270671A Rv1284 Nitrogen metabolism (mtu00910)

Rv3588c Nitrogen metabolism (mtu00910)

Rv3273 Nitrogen metabolism (mtu00910)

Rv1707 No Pathway

Target genes in italics are either in vivo or in vitro essential in the TraSH Essentiality database [21]. Pathways highlighted in bold are responsible of the significant link to
the GSK family.
doi:10.1371/journal.pcbi.1003253.t002
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