## Structural Bioinformatics

Davide Baù Staff Scientist Genome Biology Group (CNAG) Structural Genomics Group (CRG)

dbau@pcb.ub.cat



## Proteins











## Take home message

**Biochemical function** Activity depends on the 3D structure

Evolution conserve Structure is more conserved than sequence

> Protein types Fibrous Membrane Globular



### Nucleic acids DNA and RNA







### Take home message

**DNA and RNA** Polymers of nucleotide units

Nucleobase (G,C,A,T - U) + sugar +phosphate

DNA Store the genetic information RNA Implicated in various biological processes



## The nuclear organization of DNA



Adapted from Richard E. Ballermann, 2012



## Complex genome organization

Cavalli, G. & Misteli, Nat Struct Mol Biol 20, 290–299 (2013)





### Take home message

Chromatin = DNA + (histone) proteins + other biomolecules

The genome is well organized and hierarchically packaged

Histone modifications affect chromatin structure and activity

3C-like data measure the frequency of interaction between distant loci



# Databases, alignments and structure classification





## Known structures





#### The Protein Data Bank http://www.pdb.org



In PDB at a Glance 35471 Distinct Protein Sequences 28030 Structures of Human Sequences 7595 Nucleic Acid Containing Structures More Statistics





### Yearly growth of total structures http://www.pdb.org





### Yearly growth of total structures http://www.pdb.org



#### **PDB Current Holdings Breakdown**

| Exp.Method             | Proteins | Nucleic Acids | Protein/NA<br>Complexes | Other | Total  |
|------------------------|----------|---------------|-------------------------|-------|--------|
| X-RAY                  | 89684    | 1612          | 4426                    | 4     | 95726  |
| NMR                    | 9534     | 1112          | 224                     | 8     | 10878  |
| ELECTRON<br>MICROSCOPY | 549      | 29            | 177                     | 0     | 755    |
| HYBRID                 | 68       | 3             | 2                       | 1     | 74     |
| other                  | 164      | 4             | 6                       | 13    | 187    |
| Total                  | 99999    | 2760          | 4835                    | 26    | 107620 |





### PDB format http://www.pdb.org

| HEADER | EXTRAC    | ELLULAR MAT   | TRIX            | 22-JA            | N-98 1A3I  |
|--------|-----------|---------------|-----------------|------------------|------------|
| TITLE  | X-RAY     | CRYSTALLOGI   | RAPHIC DETERM   | INATION OF A COL | LAGEN-LIKE |
| TITLE  | 2 PEPTI   | DE WITH THE   | REPEATING S     | EQUENCE (PRO-PRO | -GLY)      |
|        |           |               |                 |                  |            |
| EXPDTA | X-RAY     | DIFFRACTION   | 1               |                  |            |
| AUTHOR | R.Z.KR    | AMER, L.VITA  | GLIANO, J.BEI   | LA,R.BERISIO,L.M | AZZARELLA, |
| AUTHOR | 2 B.BRO   | DSKY, A. ZAGA | ARI, H.M. BERMA | N                |            |
|        |           |               |                 |                  |            |
| REMARK | 350 BIOMO | LECULE: 1     |                 |                  |            |
| REMARK | 350 APPLY | THE FOLLOW    | VING TO CHAIN   | IS: A, B, C      |            |
| REMARK | 350 BIO   | MT1 1 1.      | .000000 0.00    | 00000 0.000000   | 0.00000    |
| REMARK | 350 BIO   | MT2 1 0.      | .000000 1.00    | 00000 0.000000   | 0.00000    |
|        |           |               |                 |                  |            |
| SEQRES | 1 A       | 9 PRO PRO     | GLY PRO PRO     | GLY PRO PRO GLY  |            |
| SEQRES | 1 B       | 6 PRO PRO     | GLY PRO PRO     | GLY              |            |
| SEQRES | 1 C       | 6 PRO PRO     | GLY PRO PRO     | GLY              |            |
|        |           |               |                 |                  |            |
| ATOM   | 1 N       | PRO A 1       | 8.316           | 21.206 21.530    | 1.00 17.44 |
| ATOM   | 2 CA      | PRO A 1       | 7.608           | 20.729 20.336    | 1.00 17.44 |
| ATOM   | 3 C       | PRO A 1       | 8.487           | 20.707 19.092    | 1.00 17.44 |
| ATOM   | 4 0       | PRO A 1       | 9.466           | 21.457 19.005    | 1.00 17.44 |
| ATOM   | 5 CB      | PRO A 1       | 6.460           | 21.723 20.211    | 1.00 22.26 |
|        |           |               |                 |                  |            |
| HETATM | 130 C     | ACY 401       | 3.682           | 22.541 11.236    | 1.00 21.19 |
| HETATM | 131 0     | ACY 401       | 2.807           | 23.097 10.553    | 1.00 21.19 |
| HETATM | 132 OXT   | ACY 401       | 4.306           | 23.101 12.291    | 1.00 21.19 |
|        |           |               |                 |                  |            |

NCCOC

000

# PDB format http://www.pdb.org

| ATOM    | 1  | N   | GLY | A | 1 | 15.740 | 11.178 | -11.733 | 1.00 | 0.00 |  |
|---------|----|-----|-----|---|---|--------|--------|---------|------|------|--|
| ATOM    | 2  | CA  | GLY | A | 1 | 15.234 | 10.462 | -10.556 | 1.00 | 0.00 |  |
| ATOM    | 3  | C   | GLY | A | 1 | 16.284 | 9.483  | -9.998  | 1.00 | 0.00 |  |
| ATOM    | 4  | 0   | GLY | A | 1 | 17,150 | 8,979  | -10.709 | 1.00 | 0.00 |  |
| ATOM    | 5  | N   | LEU | A | 2 | 16,122 | 9.240  | -8,705  | 1.00 | 0.00 |  |
| ATOM    | 6  | CA  | LEU | A | 2 | 16.803 | 8.164  | -7.994  | 1.00 | 0.00 |  |
| ATOM    | 7  | C   | LEU | A | 2 | 17,902 | 7.481  | -8.831  | 1.00 | 0.00 |  |
| ATOM    | 8  | 0   | LEU | A | 2 | 19.057 | 7.424  | -8.402  | 1.00 | 0.00 |  |
| ATOM    | 9  | CB  | LEU | A | 2 | 15.755 | 7,101  | -7.594  | 1.00 | 0.00 |  |
| ATOM    | 10 | CG  | LEU | A | 2 | 14.565 | 7.724  | -6.856  | 1.00 | 0.00 |  |
| ATOM    | 11 | CD1 | LEU | A | 2 | 14,958 | 8.214  | -5.453  | 1.00 | 0.00 |  |
| ATOM    | 12 | CD2 | LEU | A | 2 | 13,894 | 8.850  | -7.657  | 1.00 | 0.00 |  |
| ATOM    | 13 | N   | SER | A | 3 | 17.505 | 6,971  | -9,986  | 1.00 | 0.00 |  |
| ATOM    | 14 | CA  | SER | A | 3 | 18,416 | 6.404  | -10,972 | 1.00 | 0.00 |  |
| ATOM    | 15 | C   | SER | A | 3 | 19.535 | 5.484  | -10.470 | 1.00 | 0.00 |  |
| ATOM    | 16 | õ   | SER | A | 3 | 19,869 | 5.398  | -9.293  | 1.00 | 0.00 |  |
| ATOM    | 17 | CB  | SER | A | 3 | 19.079 | 7.578  | -11.738 | 1.00 | 0.00 |  |
| ATOM    | 18 | 00  | SER | h | 3 | 19,875 | 8.293  | -10.785 | 1.00 | 0.00 |  |
| ATOM    | 19 | N   | ASP | h | 4 | 20,127 | 4 842  | -11 478 | 1 00 | 0.00 |  |
| ATOM    | 20 | CA  | ASP | h | 4 | 21.268 | 3.953  | -11.276 | 1.00 | 0.00 |  |
| ATOM    | 21 | C   | ACD | h | 4 | 22 229 | 4 485  | -10 197 | 1 00 | 0.00 |  |
| ATOM    | 22 | õ   | ACP | h | 4 | 22.347 | 3,897  | -9.121  | 1.00 | 0.00 |  |
| ATOM    | 23 | CB  | ACD | ñ | 4 | 22 048 | 3 770  | -12 587 | 1 00 | 0.00 |  |
| ATOM    | 24 | CG  | ASP | h | 4 | 21,138 | 3.738  | -13,824 | 1.00 | 0.00 |  |
| ATOM    | 25 | OD1 | ACD | h | 4 | 20 964 | 4 938  | -14 416 | 1 00 | 0.00 |  |
| ATOM    | 26 | 002 | ACD | h | 4 | 20.667 | 2 612  | -14.139 | 1.00 | 0.00 |  |
| ATOM    | 27 | N   | GLY | h | 5 | 22.907 | 5 579  | -10.530 | 1.00 | 0.00 |  |
| ATOM    | 28 | Ca  | CLY | A | 5 | 23,875 | 6.166  | -9.594  | 1.00 | 0.00 |  |
| ATOM    | 29 | C   | GLY | h | 5 | 23.310 | 6.210  | -8.163  | 1.00 | 0.00 |  |
| ATOM    | 30 | õ   | GLY | A | 5 | 23.845 | 5 573  | -7.256  | 1.00 | 0.00 |  |
| ATOM    | 31 | N   | GLU | h | 6 | 22.228 | 6.967  | -8.038  | 1.00 | 0.00 |  |
| ATOM    | 32 | Ca  | GLU | A | 6 | 21.545 | 7.090  | -6.742  | 1.00 | 0.00 |  |
| ATOM    | 33 | C   | GLU | h | 6 | 21.419 | 5.695  | -6.103  | 1.00 | 0.00 |  |
| ATOM    | 34 | õ   | GLU | h | 6 | 21,902 | 5.451  | -4.997  | 1.00 | 0.00 |  |
| ATOM    | 35 | CB  | CLU | h | 6 | 20 162 | 7 735  | -6 956  | 1 00 | 0.00 |  |
| ATOM    | 36 | CG  | CLU | h | 6 | 19 493 | 8 120  | -5.628  | 1 00 | 0.00 |  |
| ATOM    | 37 | CD  | CLU | h | 6 | 18 554 | 0 328  | -5 804  | 1 00 | 0.00 |  |
| ATOM    | 38 | OPI | GLU | h | 6 | 17 794 | 9 578  | -4 827  | 1 00 | 0.00 |  |
| ATOM    | 30 | OF2 | GLU | h | 6 | 18 634 | 9 959  | -6.891  | 1.00 | 0.00 |  |
| ATOM    | 40 | N   | TPP | h | 7 | 20 694 | 4 832  | -6.811  | 1 00 | 0.00 |  |
| ATOM    | 41 | Ca  | TRP | h | 7 | 20.454 | 3.477  | -6.298  | 1.00 | 0.00 |  |
| ATOM    | 42 | C   | TPD | ñ | 7 | 21 756 | 2 847  | -5 765  | 1 00 | 0.00 |  |
| ATOM    | 43 | õ   | TOD | h | 2 | 21 924 | 2 453  | -4 599  | 1.00 | 0.00 |  |
| ATOM    | 44 | CB  | TPD | h | 7 | 19 878 | 2 574  | -7 407  | 1 00 | 0.00 |  |
| ATOM    | 45 | CC  | TPP | h | 7 | 18.599 | 3,146  | -7.920  | 1.00 | 0.00 |  |
| ATOM    | 46 | CD1 | TRP | h | 7 | 18 359 | 3 602  | -9.159  | 1.00 | 0.00 |  |
| ATOM    | 47 | CD2 | TPP | h | 7 | 17.391 | 3,325  | -7.161  | 1.00 | 0.00 |  |
| ATOM    | 48 | NE1 | TRP | h | 7 | 17.049 | 4.030  | -9.246  | 1.00 | 0.00 |  |
| ATOM    | 49 | CE2 | TPP | A | 7 | 16.475 | 3,992  | -8.055  | 1.00 | 0.00 |  |
| ATOM    | 50 | CER | TPP | h | 7 | 17 004 | 3 075  | -5 840  | 1 00 | 0.00 |  |
| and the | 20 | 000 |     | - |   | 111004 | 2.013  |         | 1.00 | 0.00 |  |









cnag 😪 🔮



Reference Management

Quickly save references to

In PDB at a Glance 35471 Distinct Protein Sequences 28030 Structures of Human Sequences 7595 Nucleic Acid Containing Structures More Statistics

MENDE

Time-stamped Copies of the PDB Archive - 01/27/15

tion of Lana Structures with the Main DDB

......

cnag 🨪 🚆



Data in orange boxes are gathered from external resources (when available).

cnag 🨪 🔮

| <ul> <li>Biologica</li> </ul>                                        | Assembly 📀                                                          |
|----------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                                      |                                                                     |
|                                                                      |                                                                     |
| SD View                                                              | More Images                                                         |
| Biological assemb<br>(software)                                      | More Images                                                         |
| Biological assemb<br>(software)<br>Downloadable vie                  | More Images                                                         |
| Biological assemb<br>(software)<br>Downloadable vie<br>Simple Viewer | More Images<br>ly 1 generated by PISA<br>ewers:<br>Protein Workshop |

| ‡ Experimental De | ətails       | Hide |  |  |  |  |
|-------------------|--------------|------|--|--|--|--|
| Method: X-RAY DI  | FFRACTION    |      |  |  |  |  |
| Exp. Data:        |              |      |  |  |  |  |
| Structure Factors | 3            |      |  |  |  |  |
| Resolution[Å]:    | 2.50         |      |  |  |  |  |
| R-Value:          | 0.196 (obs.) |      |  |  |  |  |
| R-Free:           | 0.252        |      |  |  |  |  |
| Space Group:      | P 21 2 21 P  |      |  |  |  |  |
| Unit Cell:        |              |      |  |  |  |  |
| Length [Å]        | Angles [°]   |      |  |  |  |  |
| a = 48.66         | a = 90.00    |      |  |  |  |  |
| b = 58.64         | β = 90.00    |      |  |  |  |  |
| c = 104.59        | γ = 90.00    |      |  |  |  |  |



```
HEADER
         TRANSFERASE
                                                 05-MAR-14 4CS6
TITLE
         CRYSTAL STRUCTURE OF AADA - AN AMINOGLYCOSIDE ADENYLTRANSFERASE
COMPND
         MOL ID: 1;
COMPND
        2 MOLECULE: AMINOGLYCOSIDE ADENYLTRANSFERASE;
COMPND
        3 CHAIN: A;
COMPND 4 FRAGMENT: NUCLEOTIDYLTRANSFERASE DOMAIN AND ALPHA-HELICAL DOMAIN;
COMPND 5 ENGINEERED: YES
SOURCE
         MOL ID: 1;
        2 ORGANISM_SCIENTIFIC: SALMONELLA ENTERICA SUBSP. ENTERICA SEROVAR
SOURCE
SOURCE
        3 TYPHIMURIUM STR. LT2;
SOURCE 4 ORGANISM TAXID: 99287;
SOURCE
        5 EXPRESSION_SYSTEM: ESCHERICHIA COLI;
        6 EXPRESSION SYSTEM TAXID: 469008;
SOURCE
SOURCE
        7 EXPRESSION SYSTEM STRAIN: BL21(DE3);
SOURCE
        8 EXPRESSION_SYSTEM_VARIANT: STAR
         TRANSFERASE, AMINOGLYCOSIDE ADENYLTRANSFERASE, ANT(3'')
KEYWDS
         X-RAY DIFFRACTION
EXPDTA
         Y.CHEN, J.NASVALL, D.I.ANDERSSON, M.SELMER
AUTHOR
REVDAT 1 25-MAR-15 4CS6
                             0
           AUTH Y.CHEN, J.NASVALL, D.I.ANDERSSON, M.SELMER
JRNL
JRNL
           TITL CRYSTAL STRUCTURE OF AADA-AN AMINOGLYCOSIDE
JRNL
           TITL 2 ADENYLTRANSFERASE
JRNL
           REF
                 TO BE PUBLISHED
           REFN
JRNL
REMARK 2
REMARK
        2 RESOLUTION. 2.50 ANGSTROMS.
REMARK
        3
REMARK
        3 REFINEMENT.
REMARK
                        : PHENIX (PHENIX.REFINE)
        3 PROGRAM
                        : PAUL ADAMS, PAVEL AFONINE, VICENT CHEN, IAN
REMARK
        3
            AUTHORS
REMARK
        3
                        : DAVIS, KRESHNA GOPAL, RALF GROSSE-KUNSTLEVE,
REMARK
                        : LI-WEI HUNG, ROBERT IMMORMINO, TOM IOERGER,
        3
REMARK
                       : AIRLIE MCCOY, ERIK MCKEE, NIGEL MORIARTY,
        3
REMARK
        3
                       : REETAL PAI, RANDY READ, JANE RICHARDSON,
REMARK
                       : DAVID RICHARDSON, TOD ROMO, JIM SACCHETTINI,
        3
REMARK
        3
                        : NICHOLAS SAUTER, JACOB SMITH, LAURENT
REMARK
        3
                        : STORONI, TOM TERWILLIGER, PETER ZWART
REMARK
        3
             REFINEMENT TARGET : ML
REMARK
        3
REMARK
        3
REMARK
           DATA USED IN REFINEMENT.
        3
        3 RESOLUTION RANGE HIGH (ANGSTROMS) : 2.502
REMARK
REMARK
        3
            RESOLUTION RANGE LOW (ANGSTROMS) : 39.029
REMARK
            MIN(FOBS/SIGMA FOBS)
        3
                                             : 1.34
REMARK
        3
            COMPLETENESS FOR RANGE
                                          (%): 99.66
REMARK
        3
            NUMBER OF REFLECTIONS
                                             : 10816
REMARK
        3
REMARK
        3 FIT TO DATA USED IN REFINEMENT.
REMARK
        3
           R VALUE (WORKING + TEST SET) : 0.1962
REMARK
        3
            R VALUE
                            (WORKING SET) : 0.1935
REMARK
        3
            FREE R VALUE
                                            : 0.2521
            FREE R VALUE TEST SET SIZE (%) : 4.8
REMARK
        3
REMARK
            FREE R VALUE TEST SET COUNT
        3
                                            : 517
REMARK
REMARK
        3 FIT TO DATA USED IN REFINEMENT (IN BINS).
REMARK
        3
           BIN RESOLUTION RANGE COMPL.
                                             NWORK NFREE
                                                          RWORK RFREE
REMARK
             1 39.0340 - 3.9704 0.99
                                             2685 128 0.1698 0.2001
        3
REMARK
              2 3.9704 - 3.1519
                                    1.00
                                              2571
                                                   120 0.1898 0.2684
        3
              3 3.1519 - 2.7536
4 2.7536 - 2.5019
REMARK
                                    1.00
        3
                                              2543 126 0.2505 0.3378
REMARK
        3
                                    0.99
                                             2500 143 0.2754 0.3924
REMARK
        3
REMARK
        3 BULK SOLVENT MODELLING.
                             : FLAT BULK SOLVENT MODEL
REMARK
        3
            METHOD USED
REMARK
            SOLVENT RADIUS
        3
                               : 1.11
REMARK 3
            SHRINKAGE RADIUS : 0.90
                              : NULL
REMARK
        3
            K_SOL
REMARK
        3
                               : NULL
            B SOL
```







## PDB advanced search http://www.pdb.org





## Alignments



As in any other bioinformatics problem...

- 1. Representation
- 2. Scoring
- 3. Optimization



## Alignments





### Structures Representation



All atoms and coordinates



Dihedral space or distance space



Reduced atom representation







Vector representation

Secondary Structure

Accessible surface (and others)



### Raw scores Scoring

|    | c    | 5   | т   | P   | A   | 4   | 21  | ъ   | x   | Q   | ы   | R  | x   | 34  | 1   | L    | x.  | 1   | ž.  | w   |
|----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|------|-----|-----|-----|-----|
| с  | . 9  | -1  | -1  | - 4 | 0   | 1   | -3  | -J  | - 4 | -J  | -3  | 3  | -J  | -4  | -4  | - 4  | -4  | -2  | -2  | -7  |
| 5. | -1   | 4   | 1.  | -1  | 1   | - 0 | 1   | - 1 |     | . 0 | -1  | -1 |     | -1  | -2  | -2   | -2  | -2  | -2  | -3  |
| Ŧ  | -4   | 1   | 4   | 1.  | - 4 | 1   | . 6 | 1   | 0   | - 0 |     | -4 | . 0 | -4  | -2  | 12   | 4   | -2  | 4   | J   |
| ۶  | -4   | -4  | -1  | 7   | -4  | 4   | -4  | -4  | -4  | -4  | -2  | -2 | -4  | 4   | -3  | -18  | 4   | - 4 | -3  | -4  |
| A, | 0    | 1   | -1  | -1  | 4   | 1 P | -1  | -2  | -1  | -1  | -2  | -4 | -1  | -1  | -4  | -1   | -2  | -2  | -2  | J   |
| 0  | - 3  | - 0 | 1   | - 2 | 0   | . 6 | -2  | -4  | -2  | -2  | -2  | -2 | -3  | -3  | -4  | -4   | 0   | -3  | -3  | -2  |
| N. | -1   | 1   | φ   | -4  | 4   | 0   | 4   | 1   | .0  | 0   | -4  | 0  | 0   | -2  | -3  | -3   | -4  | -3  | 4   | -4  |
| 9  | -3   | . 0 | - 1 | -1  | -2  | -1  | - 1 | 4   | - 2 | 0   | -4  | -2 | -5  | -3  | -3  | -4   | -3  | -3  | -3  | -4  |
| Ľ  | -4   | .0  | 0   | -d  | -4  | -2  | - 0 | 2   | . 8 | 2   | - 2 | 0  | - 1 | -2  | -5  | - 10 | 4   | -3  | -2  | J   |
| Q  | -3   | - 0 | 0   | -1  | -4  | -2  | 0   |     | : 2 | 5   | 0   | 1  | 1   | - 0 | -3  | - 12 | -2  | -3  | -4  | -2  |
| ł. | -3   | -1  | 0   | -2  | -2  | -1  | -1  | 1   | . P |     | 8   | 0  | -1  | -2  | -3  | -3   | -2  | -1  | - 2 | -2  |
| R. | -5   | -1  | -1  | -2  | -1  | -2  | . 0 | -2  | . 0 | 1   | - 0 | 5  | 2   | -4  | -3. | -2   | - 4 | -3  | -2  | - 3 |
| ĸ  | 1.1  | ¢   | 0   | -4  | -4  | -4  | 0   | -4  | - 1 | - 1 | -4  | 2  | . 5 | -4  | -3  | - 4  | - 4 | -0  | 4   | - j |
| 14 | -4   | -4  | -4  | -4  | -4  | - 4 | -2  | -3  | - 3 | 0   | -2  | -4 | -4  | . 4 | 1   | 2    | -4  | 0   | -4  | -4  |
|    | . d. | -2  | -2  | -5  | I   | -4  | -3  | -3  | - 3 | -3  | -3  | -3 | -3  | 1   | -4  | - 2  | - 1 | 0   | -1  | - 3 |
| L  | -å   | -2  | -2  | -5  | -1  | -4  | 3   | -4  | 4   | -2  | -3  | -2 | -3  | 2   | 2   | -4   | 3   | 0   | -1  | -2  |
| V* | -4   | -1  | -7  | -2  | ¢   | -,1 | -3  | -3  | -7  | -7  | -3  | -3 | -7  | 1   | - 3 | 1    | 4   | -4  | -4  | -1  |
| 1  | -2   | -1  | -2  | -4  | -2  | -1  | -3  | -3  | -3  | -3  | -4  | -3 | -3  | . 0 | - 0 | 0    | -1  | - 6 | - 3 | 1   |
| Ŷ  | -2   | - 4 | 4   | -1  | - 3 | 4   | .2  | -3  | -3  | -d  | 2   | -2 | 2   | - 4 | -4  | - 18 | - 1 | 3   | . 7 | - 3 |
| W. | -4   |     | 4   | - 4 | -1  | 4   | - 4 | -4  | - 3 | -2  | -3  | -3 | -3  | -4  | 3   | 4    | - 4 | 1   | - 2 | 11  |

Aminoacid substitutions

 $\text{RMSD} = \sqrt{\frac{1}{N} \sum_{i}^{N} \left( m_i - m_i^* \right)}$ 

Root Mean Square Deviation





Angles or distances

Secondary Structure (H,B,C)

Accessible surface (B,A [%])



### The Root Mean Square Deviation



atom *i* in the first model



# Scoring

Probability that the optimal alignment of two random sequences/structures of the same length and composition as the aligned sequences/structures have at least as good a score as the evaluated alignment.





Analytic:

 $P(S>x) = 1 - exp(-Kmne^{-\lambda e})$ 

Karlin and Altschul, 1990 PNAS 87, pp2264



#### Global dynamic programming alignment Optimizer

|   | match | 1 = 1 | mi    | smatc | h = -1 | ga | gap = -1 |    |  |  |
|---|-------|-------|-------|-------|--------|----|----------|----|--|--|
|   |       | G     | С     | Α     | Т      | G  | С        | U  |  |  |
|   | 0     | -1    | -2    | -3    | -4     | -5 | -6       | -7 |  |  |
| G | -1    | 1.    | _ 0 🔪 | -1    | -2     | -3 | -4       | -5 |  |  |
| Α | -2    | 0     | 0     | 1     | 0      | -1 | -2       | -3 |  |  |
| Т | -3    | -1    | -1    | 0     | 2      | 1  | 0        | -1 |  |  |
| Т | -4    | -2    | -2    | -1    | 1      | 1  | 0        | -1 |  |  |
| A | -5    | -3    | -3    | -1    | 0      | 0  | 0        | -1 |  |  |
| С | -6    | -4    | -2    | -2    | -1     | -1 | 1        | 0  |  |  |
| Α | -7    | -5    | -3    | -1    | -1     | -1 | 0        | 0  |  |  |

Needleman-Wunsch

#### Backtracking to get the best alignment

| Sequences | Best Alignm | ents     |          |
|-----------|-------------|----------|----------|
|           |             |          |          |
| GCATGCU   | GCATG-CU    | GCA-TGCU | GCAT-GCU |
| GATTACA   | G-ATTACA    | G-ATTACA | G-ATTACA |

Needleman and Wunsch (1970) J. Mol Biol, 3 pp443



#### Local dynamic programming alignment Optimizer

|   | mato | h = 2 | . 1 | mism | atch | = -1 | gap = -1 |    |    |
|---|------|-------|-----|------|------|------|----------|----|----|
|   |      | Α     | С   | Α    | С    | Α    | С        | Т  | Α  |
|   | 0    | 0     | 0   | 0    | 0    | 0    | 0        | 0  | 0  |
| Α | 0    | 2     | 1   | 2    | 1    | 2    | 1        | 0  | 2  |
| G | 0    | 1     | 1   | 1    | 1    | 1    | 1        | 0  | 1  |
| С | 0    | 0     | 3   | 2    | 3    | 2    | 3        | 2  | 1  |
| Α | 0    | 2     | 2   | 5    | 4    | 5    | 4        | 3  | 4  |
| С | 0    | 1     | 4   | 4    | 7    | 6    | 7        | 6  | 5  |
| Α | 0    | 2     | 3   | 6    | 6    | 9    | 8        | 7  | 8  |
| С | 0    | 1     | 4   | 5    | 8    | 8    | 11       | 10 | 9  |
| Α | 0    | 2     | 3   | 6    | 7    | 10   | 10       | 10 | 12 |

Smith-Waterman

#### Backtracking to get the best alignment

| Sequences | Best Alignment |  |
|-----------|----------------|--|
| ACACACTA  | А-САСАСТА      |  |
| AGCACACA  | AGCACAC-A      |  |

Smith and Waterman (1981) J. Mol Biol, 147 pp195



### Global vs local alignment Optimizer





### Multiple alignment Optimizer

#### **Pairwise alignments**

Example: 4 sequences A, B, C, D



- similarity +

6 pairwise comparisons then cluster analysis

#### **Multiple alignments**

Following the tree from step 1







### **Coverage vs Accuracy**





Same RMSD ~ 2.5Å

Coverage ~90% C $\alpha$ 

Coverage ~75% Cα



## Structural alignment




# Vector Alignment Search Tool (VAST)

http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml

Vectorial representation of secondary structure elements







Gibrat JF et al. (1996) Curr Opin Struct Biol 3 pp377

cnag (

CRG

### Incremental combinatorial extension (CE)

http://source.rcsb.org/jfatcatserver/ceHome.jsp

#### 8 residues peptides







Shindyalov IN, amd Bourne PE. (1998) Protein Eng. 9 pp739



# Matching molecular models obtained from theory (MAMMOTH)

http://ub.cbm.uam.es/software/mammoth.php

#### 7 residues peptides



#### URMS instead of RMSD



Ortiz AR, (2002) Protein Sci. 11 pp2606



#### Structural alignment in the PDB





## Structural alignment in the PDB

| Structure Alignment View         re-akculated jCf results for 1EL7.A vs. 1E7D.A.         is page provides a summary view of the protein structure alignment.         Structure Alignment Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | - Search - Visualiz                 | - Analyza -          | Download - Learn -                        | More -                | MyRON L |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------------|-----------------------|---------|
| certainlaise jet results for JEDA Ars. 1879 A. s page provides a summary view of the protein structure alignment.          Bruchure Alignment Details:       Successing Oxtones:         Successing Oxtones:       POB ID:         Solar 2000       POB ID:         POB ID:       IEV         Constraint Structure Alignment:       POB ID:         POB ID:       IEV         Constraint Structure Alignment:       POB ID:         POB ID:       IEV         Constraint Structure Alignment:       POB ID:         POB ID:       IEV         Constraint Structure       POB ID:         Reconstraint Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tructure Alig        | nment View                          |                      |                                           |                       |         |
| page provides a summary view of the protein structure alignment.     Excluses Alignment Results     Uignment Details:     SARCOSINE OXTONE     SARCOSINE     SARCOSINE     SARCOSINE     SARCO | e-calculated jCE r   | esuits for 1EL7.A vs. 1             | E7D.A .              |                                           |                       |         |
| Intercents Alignment Lesuits          Outry::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s page provides a su | immary view of the prot             | ein structure aligne | nest.                                     |                       |         |
| Uignment Detailit:       Query::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | itructure Alignme    | nt Results                          |                      |                                           |                       |         |
| Processer 2.30<br>(core: 377.50<br>Mid5) 7.39       PDB ID: 1EL7<br>Date ID: A<br>Length: 34<br>Ength: 197<br>Enumber: 1.5.3.1       PDB ID: 1E7D<br>Chain ID: A<br>Length: 157<br>Similarity: 46%<br>EC number:         comparison Method       EC number: 1.5.3.1       Excomparison Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lignment Details:    | Query: ( orange/d<br>SARCOSINE OX72 | vik grey)            | Subject: ( cyan/light<br>RECOMBINATION EF | UNITY)<br>NDONUCLEASE |         |
| correr:       297.60<br>MrsDi 7.19<br>Badi 3.3%       Chain ID:       A<br>Length:       295<br>Similarity:       9%<br>Similarity:       Chain ID:       A<br>Length:       157<br>Similarity:       46%         correr:       Correr:       Correr:       Correr:       157       Similarity:       46%         Imparison Method         Imparison for other comparison:       Similarity:       10%         Imparison Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | score: 2.30          | POB ID:                             | 1EL7                 | PDB ID:                                   | 1870                  |         |
| Index 7.13<br>Length: 385<br>Similarity: 19%<br>EC number: 1.5.3.1<br>EC number:<br>shere to align other protein chains. Back to the all vs. all search results for 1ETD.A or 1ETD.A<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | core: 397.60         | chain II                            | 1 A 4                | Chain 30                                  | h: A                  |         |
| Similarity: 19% Similarity: 46% EC number:<br>Inspection Method<br>ect these two chains for other comparison Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ald: 3.3%            | Length:                             | 385                  | " Length:                                 | 157                   |         |
| be number: 1.5.4.1 be number:<br>Imparison Hethod<br>let these two chains for other comparison: [ Select Comparison Method 1]<br>is here to align other protein chains. Back to the all vis. all search results for 1EL7.A or 1E70.A<br>junci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | Similar                             | Ey: 19%              | Similar                                   | Ry: 46%               |         |
| ent these two chains for other comparison: [sliest Comparison Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                     |                      |                                           | 1947 B.M.             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and a                |                                     |                      |                                           |                       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                     |                      |                                           | 50.                   |         |



# Classification of the structural space





## SCOPe2.05 database

#### http://scop.berkeley.edu/statistics/ver=2.05



| Class                              | Number of<br>folds | Number of superfamilies | Number of<br>families |
|------------------------------------|--------------------|-------------------------|-----------------------|
| All alpha proteins                 | 286                | 509                     | 1037                  |
| All beta proteins                  | 176                | 359                     | 931                   |
| Alpha and beta proteins (a/b)      | 148                | 245                     | 965                   |
| Alpha and beta proteins (a+b)      | 381                | 558                     | 1301                  |
| Multi-domain proteins              | 68                 | 68                      | 109                   |
| Membrane and cell surface proteins | 57                 | 113                     | 153                   |
| Small proteins                     | 92                 | 132                     | 260                   |
| Total                              | 1208               | 1984                    | 4756                  |

#### Clear classification of structures in:

•CLASS •FOLD •SUPER-FAMILY •FAMILY

Murzin A. G., el at. (1995). J. Mol. Biol. 247, 536-540.



#### SCOP2 database

http://scop2.mrc-Imb.cam.ac.uk/



Nucl. Acids Res. (1 January 2014)42 (D1): D310-D314.

cnag 🦓 🔮

### SCOP2 database

#### http://scop2.mrc-Imb.cam.ac.uk/



Nucl. Acids Res. (1 January 2014)42 (D1): D310-D314.



# CATH4 database

#### http://www.cathdb.info/

| CATH rises Search - Sea                                                         | inte Download About Support                                                                                                                    |                                              | Bearch CATH by keywords or D |  |  |  |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|--|--|--|
|                                                                                 | CATH /                                                                                                                                         | Gene                                         | 3D                           |  |  |  |
| 26 million protein domains classified into 2,738 superfamilies                  |                                                                                                                                                |                                              |                              |  |  |  |
|                                                                                 |                                                                                                                                                |                                              |                              |  |  |  |
| Errowen -                                                                       | Searchy                                                                                                                                        | Down                                         | Take the Tour +              |  |  |  |
|                                                                                 |                                                                                                                                                |                                              |                              |  |  |  |
| What is CATH?                                                                   |                                                                                                                                                | Latest Rele                                  | ase Statistics               |  |  |  |
| CATH is a classification of protein structures downloaded from the Protein Data |                                                                                                                                                | CATH V4.0 Issued on POB dated March 26, 2013 |                              |  |  |  |
| ave diverged from a common ancestor.                                            | Ink. We group protein domains into superfamilies when there is sufficient evidence they<br>se diverged from a common ancestor.                 |                                              | CATH Domains                 |  |  |  |
| Search CATH by text, ID or keyword                                              | Browse CATH Hierarchy     CATH Reease Notes     CATH Tutoriels                                                                                 | 2,738                                        | CATH Supertainties           |  |  |  |
| Search CATH by protein sequence<br>(FASTA)     Search CATH by PDB structure     |                                                                                                                                                | 69,058                                       | Annotated PDBs               |  |  |  |
| xample pages                                                                    |                                                                                                                                                | Gene3D v12 estessed March 18, 2012           |                              |  |  |  |
| zvambie bages                                                                   | "2000" • Functional Family<br>an "TouA401" • Functional Family<br>and "TouA401" • Search for "Holdard"<br>Hamby "HolPs" • Search for "Holdard" | 6,131                                        | Celular Genomes              |  |  |  |
| PDB "20op"     Domain "ToukA01"     Relatives of "ToukA01"                      |                                                                                                                                                | 21,642,155                                   | Perturn Sara annas           |  |  |  |
|                                                                                 |                                                                                                                                                | 21.000,100                                   |                              |  |  |  |
| <ul> <li>Supertamily 'HUPs'</li> </ul>                                          |                                                                                                                                                | 25,615,754                                   | GATH Domain Predictions      |  |  |  |

**Class**: SS composition (mostly alpha, mostly beta, mixed alpha/beta or few secondary structures)

**Architecture:** overall shape SSe orientations in 3D space but ignores the connectivity between them

**Topology (fold family):** fold groups depending on both the overall shape and connectivity of the SSe

Homologous superfamily: groups together homologous protein domains

| Class   | Architecture | Topology | Homologous Superfamily | S35 Family | S60 Family | S95 Family | S100 Family | Domains |
|---------|--------------|----------|------------------------|------------|------------|------------|-------------|---------|
| Class 1 | 5            | 397      | 907                    | 3879       | 5118       | 6737       | 13368       | 48121   |
| Class 2 | 20           | 241      | 547                    | 3650       | 5221       | 8373       | 14526       | 58944   |
| Class 3 | 14           | 626      | 1158                   | 9171       | 13415      | 17047      | 35313       | 125772  |
| Class 4 | 1            | 111      | 126                    | 233        | 293        | 410        | 651         | 3021    |
| TOTAL   | 40           | 1375     | 2738                   | 16933      | 24047      | 32567      | 63858       | 235858  |



#### PFAM http://pfam.xfam.org/



Comments or questions on the site? Send a mail to pfam-help@sanger.ac.uk. Our cockie policy. The Wellcome Trust

#### Pfam domains:

| Source         | Domain    | Start | End |
|----------------|-----------|-------|-----|
| disorder       | n/a       | 1     | 306 |
| low_complexity | n/a       | 2     | 43  |
| low_complexity | n/a       | 51    | 89  |
| low_complexity | n/a       | 117   | 134 |
| low_complexity | n/a       | 205   | 224 |
| low_complexity | n/a       | 252   | 307 |
| coiled_coil    | n/a       | 254   | 276 |
| Pfam A         | zf-H2C2 2 | 386   | 411 |
| Pfam A         | zf-C2H2   | 430   | 453 |
| low_complexity | n/a       | 457   | 469 |
| disorder       | n/a       | 477   | 496 |
| low_complexity | n/a       | 489   | 500 |
| disorder       | n/a       | 547   | 549 |
| disorder       | n/a       | 559   | 562 |
| disorder       | n/a       | 564   | 570 |



### Utility of protein structure models, despite errors



#### Take home message

Protein and Nucleic acids structures are stored in publicly available databases

Proteins are aligned by sequence and by structure

Structural alignments might identify distant homologs that cannot be recognized by sequence comparison

There are several databases that classify protein structures



# Introduction to structure determination

Davide Baù Staff Scientist Genome Biology Group (CNAG) Structural Genomics Group (CRG)

dbau@pcb.ub.cat



### Data groups



Experimental observations





Statistical rules



Laws of physics



#### Structure prediction vs determination



Thursday, April 23, 2009



# The four stages of integrative modeling





### Energy landscape



cnag 🦓 🚆

#### Energy landscape



Global minimum



## The simulating annealing procedure



![](_page_55_Picture_2.jpeg)

# The four stages of integrative modeling

![](_page_56_Figure_1.jpeg)

![](_page_56_Picture_2.jpeg)

![](_page_57_Picture_0.jpeg)

Job Dekker

#### 5C technology http://my5C.umassmed.edu

![](_page_57_Picture_3.jpeg)

![](_page_57_Figure_4.jpeg)

Dostie et al. Genome Res (2006) vol. 16 (10) pp. 1299-309

![](_page_57_Picture_6.jpeg)

### Toy models

![](_page_58_Figure_1.jpeg)

![](_page_58_Picture_2.jpeg)

### Model representation and scoring

Constituent parts of the molecule

![](_page_59_Picture_2.jpeg)

![](_page_59_Figure_3.jpeg)

![](_page_59_Picture_4.jpeg)

#### From 5C data to spatial distances The sample curve

![](_page_60_Figure_1.jpeg)

![](_page_60_Picture_2.jpeg)

### From 5C data to spatial distances

![](_page_61_Picture_1.jpeg)

Neighbor fragments

![](_page_61_Figure_3.jpeg)

![](_page_61_Figure_4.jpeg)

![](_page_61_Picture_5.jpeg)

#### **Parameter optimization**

![](_page_62_Figure_1.jpeg)

![](_page_62_Picture_2.jpeg)

#### Model representation and scoring

Constituent parts of the molecule

![](_page_63_Picture_2.jpeg)

![](_page_63_Figure_3.jpeg)

![](_page_63_Picture_4.jpeg)

### Model representation and scoring

Constituent parts of the molecule

![](_page_64_Figure_2.jpeg)

![](_page_64_Picture_3.jpeg)

#### The resolution gap

![](_page_65_Figure_1.jpeg)

![](_page_65_Picture_2.jpeg)

### Optimization of the scoring function

![](_page_66_Figure_1.jpeg)

![](_page_66_Picture_2.jpeg)

Frequency contact map differences

![](_page_67_Picture_1.jpeg)

cnag 🨪 🚆

### 3D model building with the 5C + IMP approach

![](_page_68_Figure_1.jpeg)

![](_page_68_Figure_2.jpeg)

![](_page_68_Picture_3.jpeg)

![](_page_68_Picture_4.jpeg)

# Genome organization in Caulobacter Crescentus

Arms are helical

![](_page_69_Picture_2.jpeg)

![](_page_69_Figure_3.jpeg)

#### **MIRRORS!**

![](_page_69_Picture_5.jpeg)

#### WOUGH VAHUAUUT

![](_page_70_Picture_1.jpeg)

![](_page_70_Picture_2.jpeg)

![](_page_70_Figure_3.jpeg)

![](_page_70_Picture_4.jpeg)

![](_page_70_Picture_5.jpeg)

#### Take home message

![](_page_71_Figure_1.jpeg)

![](_page_71_Picture_2.jpeg)