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Experiments

Computation

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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Biomolecular structure determination 
2D-NOESY data

Chromosome structure determination 
3C-based data



http://3DGenomes.org

i
i+2

i+1

i+n

FastQ files to Maps 

Map analysis

Model building

Model analysis



                     previous applications... 
Baù, D. et al. Nat Struct Mol Biol (2011).  
Umbarger, M. A. et al. Mol Cell (2011).  

Le Dily, F. et al. Genes & Dev (2014)

Molecular Cell

Article

The Three-Dimensional Architecture of a Bacterial
Genome and Its Alteration by Genetic Perturbation
Mark A. Umbarger,1,8,* Esteban Toro,2,8 Matthew A. Wright,1 Gregory J. Porreca,1 Davide Baù,4 Sun-Hae Hong,2,3
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SUMMARY

We have determined the three-dimensional (3D)
architecture of the Caulobacter crescentus genome
by combining genome-wide chromatin interaction
detection, live-cell imaging, and computational mod-
eling. Using chromosome conformation capture car-
bon copy (5C), we derive !13 kb resolution 3D
models of the Caulobacter genome. The resulting
models illustrate that the genome is ellipsoidal
with periodically arranged arms. The parS sites,
a pair of short contiguous sequence elements known
to be involved in chromosome segregation, are posi-
tioned at one pole, where they anchor the chromo-
some to the cell and contribute to the formation of
a compact chromatin conformation. Repositioning
these elements resulted in rotations of the chromo-
some that changed the subcellular positions of most
genes. Such rotations did not lead to large-scale
changes in gene expression, indicating that genome
folding does not strongly affect gene regulation.
Collectively, our data suggest that genome folding
is globally dictated by the parS sites and chromo-
some segregation.

INTRODUCTION

The three-dimensional (3D) architecture of the genome both
reflects and regulates its functional state (Dekker, 2008; Than-
bichler and Shapiro, 2006a). For example, chromosome segre-
gation impacts bacterial locus subcellular positioning (Jun and
Mulder, 2006; White et al., 2008), and chromatin loops that place
promoters and distant enhancers within close spatial proximity
play important roles in eukaryotic transcriptional regulation

(Tolhuis et al., 2002; Vernimmen et al., 2007). Such examples
suggest that studies of the high-resolution folding of genomes
will yield insight into genome biology. However, until recently
such studies, which require comprehensive assessments of
the spatial positioning of many loci, have represented major
technical challenges.
The recent development of several high-throughput technolo-

gies, including automated fluorescent imaging (Viollier et al.,
2004) and chromosome conformation capture (3C)-based ap-
proaches (Dekker et al., 2002; Dostie et al., 2006; Duan et al.,
2010; Fullwood et al., 2009; Lieberman-Aiden et al., 2009; Simo-
nis et al., 2006; Zhao et al., 2006), has begun to enable studies of
genome-wide chromosome folding. Fluorescent microscopy-
based approaches allow the accurate determination of the
subcellular positions of increasing numbers of defined chromo-
somal loci, while high-throughput 3C-based approaches enable
quantification of interloci interaction frequencies that can sub-
sequently be used to infer the average 3D distances between
these loci. Studies utilizing one or both of these approaches
have highlighted the potential of genome-wide studies of chro-
mosome structure and have begun to reveal specific features
of chromosome folding, including the transcription-based com-
partmentalization of the human nucleus (Lieberman-Aiden et al.,
2009; Simonis et al., 2006) and the correlation between a locus’
genomic and subcellular positioning in bacteria (Nielsen et al.,
2006; Teleman et al., 1998; Wang et al., 2006b). However, the
detailed structures of genomes are only beginning to be re-
vealed, and many details, including the identities of the se-
quence elements that define such structures, await further
elucidation.
We sought to determine the high-resolution 3D structure of an

entire genome and to utilize the resulting structure to identify the
sequence elements that define its architecture. Toward this
goal, we studied the synchronizable bacterium, Caulobacter
crescentus (hereafter Caulobacter), whose single circular chro-
mosome is organized such that the origin and terminus of repli-
cation reside near opposite poles of the cell and other loci lie
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We developed a general approach that combines chromosome 
conformation capture carbon copy (5C) with the Integrated 
Modeling Platform (IMP) to generate high-resolution three-
dimensional models of chromatin at the megabase scale. 
We applied this approach to the ENm008 domain on human 
chromosome 16, containing the a-globin locus, which is 
expressed in K562 cells and silenced in lymphoblastoid cells 
(GM12878). The models accurately reproduce the known 
looping interactions between the a-globin genes and their 
distal regulatory elements. Further, we find using our approach 
that the domain folds into a single globular conformation in 
GM12878 cells, whereas two globules are formed in K562 
cells. The central cores of these globules are enriched for 
transcribed genes, whereas nontranscribed chromatin is more 
peripheral. We propose that globule formation represents a 
higher-order folding state related to clustering of transcribed 
genes around shared transcription machineries, as previously 
observed by microscopy.

Currently, efforts are directed at producing high-resolution genome 
annotations in which the positions of functional elements or specific 
chromatin states are mapped onto the linear genome sequence1. 
However, these linear representations do not indicate functional or 
structural relationships between distant elements. For instance, recent 
insights suggest that widely spaced functional elements cooperate to 
regulate gene expression by engaging in long-range chromatin loop-
ing interactions. The three-dimensional (3D) organization of chromo-
somes is thought to facilitate compartmentalization2,3, chromatin 
organization4 and spatial sequestration of genes and their regulatory 
elements5–7, all of which may modulate the output and functional 
state of the genome. A general approach for determining the spatial 
organization of chromatin can aid in the identification of long-range 
relationships between genes and distant regulatory elements as well as 
in the identification of higher-order folding principles of chromatin 
in general.

Chromosome conformation capture (3C)-based assays use formalde-
hyde cross-linking followed by restriction digestion and intramolecular  

ligation to study chromatin looping interactions7–12. 3C-based assays 
have been used to show that specific elements such as promoters, 
enhancers and insulators are involved in the formation of chromatin 
loops5,7,13–16. The frequencies at which loci interact reflect chromatin 
folding7,17, and thus comprehensive chromatin interaction data sets 
can help researchers build spatial models of chromatin.

Previously, chromatin conformation has been modeled using 
 polymer models8,18 and molecular-dynamics simulations19, which 
have proven valuable for understanding general features of chromatin  
fibers, including flexibility and compaction20,21. However, such methods 
only partially leverage the current wealth of experimental data on chro-
matin folding. Recently, experimentally driven approaches, in combi-
nation with computational modeling, have resulted in low-resolution  
models for the topological conformation of the immunoglobulin 
heavy chain22, the HoxA23 loci and the yeast genome24. However, 
those methods were limited by the resolution and completeness of the 
input experimental data22, by insufficient model representation, scor-
ing and optimization23, or by limited analysis of the 3D models24.

To overcome such limitations, we developed a new approach that 
couples high-throughput 5C experiments9 with the IMP25. We applied 
this approach to determine the higher-order spatial organization of 
a 500-kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster 
of ubiquitously expressed housekeeping genes is the tissue-specific  

-globin locus that is expressed only in erythroid cells. This 500-kb 
domain corresponds to the ENm008 region extensively studied by the 
ENCODE pilot project (Fig. 1b)1.

The -globin locus has been used widely as a model to study the 
mechanism of long-range and tissue-specific gene regulation15,26–30. 
The -globin genes are upregulated by a set of functional elements 
characterized by the presence of DNase I–hypersensitive sites (HSs) 
located 33 to 48 kb upstream of the  gene. One of these elements, HS40, 
is considered to be of particular importance31,32. This element can act 
as an enhancer in reporter constructs and its deletion greatly affects 
activation of the -globin genes33. HS40 is bound by several erythroid  
transcription factors including GATA factors and NF-E2 (ref. 34). 
Notably, previous 3C studies have demonstrated direct long-range  
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The three-dimensional folding of the -globin gene 
domain reveals formation of chromatin globules
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Distinct structural transitions
of chromatin topological domains
correlate with coordinated
hormone-induced gene regulation
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The human genome is segmented into topologically associating domains (TADs), but the role of this conserved
organization during transient changes in gene expression is not known. Here we describe the distribution of
progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast
cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C
(chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques,
we found that the borders of the ~2000 TADs in these cells are largely maintained after hormone treatment and
that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are
either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are
homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes
in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and
repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within
responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon
treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as
‘‘regulons’’ to enable spatially proximal genes to be coordinately transcribed in response to hormones.

[Keywords: three-dimensional structure of the genome; gene expression; Hi-C; TADs; transcriptional regulation;
epigenetic landscape; progesterone receptor]
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The three-dimensional (3D) organization of the genome
within the cell nucleus is nonrandom and might contrib-
ute to cell-specific gene expression. High-throughput
chromosome conformation capture (3C)-derived (Dekker
et al. 2002) methods have revealed that chromosome
territories are organized in at least two chromatin com-
partments—one open and one closed—that tend to be
spatially segregated depending on their transcriptional
activity (Lieberman-Aiden et al. 2009). At a finer level of
organization, some functionally related genes have been
shown to be brought close in space to be transcribed in
a correlated fashion during cell differentiation. These

genes, which can be located on different chromosomes,
are organized in spatial clusters and preferentially tran-
scribed in the same ‘‘factories’’ (Osborne et al. 2004, 2007;
Cavalli 2007). Whether such mechanisms participate in
transient modifications of the transcription rate in differ-
entiated cells responding to external cues is still unclear
(Fullwood et al. 2009; Kocanova et al. 2010; Hakim et al.
2011). Transient regulation of gene expression at the tran-
scription level depends on the establishment of regulatory

! 2014 Le Dily et al. This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue
publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml).
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(Attribution-NonCommercial 4.0 International), as described at http://
creativecommons.org/licenses/by-nc/4.0/.
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Structuring the COLORs of chromatin



Fly Chromatin COLORs  
Filion et al. (2010). Cell, 143(2), 212–224.

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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Functional COLORs 
Hou et al. (2012). Molecular Cell, 48(3), 471–484.

Figure 1. Partition of the Drosophila Genome into Physical Domains
(A) Genome-wide interaction heatmap at 100 kb resolution for the Drosophila genome in Kc167 cells. Black circles and squares show interactions between

centromeres and telomeres, respectively. Red rectangles show interactions between chromosome arms 2L-2R and 3L-3R, respectively.

(B) Hi-C interaction frequencies displayed as a two-dimensional heat map at single fragment resolution for a 2 Mb region of chromosome 3R alongside with

selected epigenetic marks and chromatin types defined by the presence of various proteins and histone modifications. The white grid on the heat map shows

where the domains are partitioned.

Molecular Cell

3D Organization of the Drosophila Genome

Molecular Cell 48, 471–484, November 9, 2012 ª2012 Elsevier Inc. 473
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Structural COLORs

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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