Docking & drug discovery

Máster de bioinformática, Universidad de Valencia 27 - Abril - 2015

fmartinez@pcb.ub.es

I

- Introduction
- Small molecules binding site prediction
 - de-novo.
 - comparative.
- Predicting binding molecules.
 - Docking.
 - What is docking?
 - Autodock and state-of-the-art methods.
 - An application in drug discovery : ISENTRESS.
 - Comparative Docking. nAnnolyze.
 - Knowledge-based methods.

Objective

TO LEARN HOW-TO PREDICT SMALL-MOLECULES BINDING SITES AND HOW TO USE AutoDock Vina FOR DOCKING SMALL MOLECULES IN THE SURFACE OF A PROTEIN

Nomenclature

Ligand: Structure (usually a small molecule) that binds to the binding site.

Receptor: Structure (usually a protein) that contains the active binding site.

Binding site: Set of amino-acids (residues) that physically interact with the ligand (usually within 6 Ångstroms).

From sequence to function...

Program

binding site prediction

- •Sometimes, we know the binding site for a ligand because it has been cocrystalized with the protein.
- Localize the binding site/s for a given molecule.
- There could be several binding sites in a protein surface.
- Allosteric and orthosteric binding sites.
- Two different approaches for binding site prediction : de novo & comparative prediction.

Protein function from structure ab-initio localization of binding sites

Rossi. Localization of binding sites in protein structures by optimization of a composite scoring function. Protein Science (2006) vol. 15 (10) pp. 2366-2380

Downloaded from www.proteinscience.org on September 18, 2006

Localization of binding sites in protein structures by optimization of a composite scoring function

ANDREA ROSSI, MARC A. MARTI-RENOM, AND ANDREJ SALI Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 94143-2552, USA (RECEIVED March 28, 2006; FINAL REVISION July 10, 2006; ACCEPTED July 11, 2006)

Abstract

The rise in the number of functionally uncharacterized protein structures is increasing the demand for structure-based methods for functional annotation. Here, we describe a method for predicting the location of a binding site of a given type on a target protein structure. The method begins by constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on the protein surface. The scoring function is a weighted linear combination of the z-scores of various properties of protein structure and sequence, including amino acid residue conservation, compactness, protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set of previously identified instances of the binding-site type on known protein structures. The scoring function can easily incorporate different types of information useful in localization, thus increasing the applicability and accuracy of the approach. To test the method, 1008 known protein structures were split into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various nucleotides, binding sites were correctly identified in 55%–73% of the cases. The method is completely automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics setting.

Keywords: protein function annotation; small ligand binding-site localization

chosen because of their function, but rather by their HEADER record of their PDB files. In contrast, only 174 location in the protein sequence-structure space (Burley (0.5%) of the 35,199 protein structures solved outside of et al. 1999; Brenner 2000, 2001; Sali 2001; Vitkup et al. 2001; Chance et al. 2002; Goldsmith-Fischman and Honig 2003). Therefore, the number of functionally To class uncharacterized protein structures is growing. Of the 36,606 entries in the Protein Data Bank (PDB) (Kouranov et al. 2006) as of February 23, 2006, 1407 structures were on the known structures, automated structure-based func-

Many protein targets of structural biologists are no longer of which had an unknown function according to the

deposited by structural genomics consortia, 985 (70%) tional annotation is required (Wallace et al. 1996, 1997; Kleywegt 1999; Thornton et al. 2000; Babbitt 2003; Reprint requests to: Andrea Rossi or Andrej Sali, Departments of liopharmaceutical Sciences and Pharmaceutical Chemistry, California situes for the locations and types of binding sites on situe for Operative Reprint the Reprint Pharmaceutical Chemistry, California Biopharmaceutucai sciences and rharmaceutucai chemisny, camorina Institute for Quantiative Biomedical Research, University of California, San Francisco Byers Hall, Office 503B, 1700 4th Street, San Francisco, CA 94143-2552, USA; e-mail: andrea@salilab.org or sali@salilab.org; fax: (415) 514-4231.

Article published online ahead of print. Article and publication date are at http://www.proteinscience.org/cgi/doi/10.1110/ps.062247506.

To classify the functions of thousands of uncharacter-

a given structure, because the binding sites define the

The most principled computational approach to pre dicting the molecular function is to dock a large library of potential ligands against the surface of the protein. In

Protein Science (2006), 15:1-15. Published by Cold Spring Harbor Laboratory Press. Copyright © 2006 The Protein Society

8

Representation

Scoring NAD (NICOTINAMIDE-ADENINE-DINUCLEOTIDE)

Ligand fingerprints

	Compactness	Conservation	Charge density	B-factor	Protrusion coefficient	Convexity score	Hydrophobicity
ADP	-1.266	-2.009	0.447	-0.414	-1.521	-1.388	-0.118
AMP	-1.62	-1.962	0.341	-0.381	-1.909	-1.944	-0.518
ANP	-1.007	-2.227	0.176	-0.392	-1.706	-1.595	-0.14
АТР	-1.122	-2.156	0.228	-0.274	-1.845	-1.768	0.038
BOG	-2.067	-0.012	0.552	-0.465	-0.356	-0.49	-0.781
CIT	-2.948	-1.58	0.563	-0.527	-0.922	-0.838	-0.113
FAD	0.505	-2.108	0.366	-0.702	-1.735	-1.725	-0.75
FMN	-1.132	-1.98	0.382	-0.387	-1.803	-1.886	-0.695
FUC	-3.43	0.016	-0.295	-0.123	0.002	0.132	0.459
GAL	-3.186	-0.538	-0.234	-0.068	-0.906	-0.987	0.298
GDP	-1.061	-1.471	0.409	-0.81	-1.472	-1.423	0.182
GLC	-2.813	-1.247	-0.207	-0.399	-1.247	-1.337	-0.089
HEC	-0.172	-0.912	0.286	-0.325	-1.153	-1.27	-1.282
HEM	-0.65 I	-1.571	0.683	-0.51	-1.797	-1.937	-1.47
MAN	-3.72	0.131	0.105	-0.52	-0.605	-0.509	0.405
MES	-3.049	-0.24	-0.338	-0.479	-0.714	-0.926	0.296
NAD	-0.005	-1.852	0.156	-0.232	-1.775	-1.804	-0.858
NAG	-3.419	-0.46	-0.126	-0.154	-0.341	-0.523	-0.078
NAP	-0.009	-1.898	0.612	-0.321	-1.587	-1.656	-0.336
NDP	0.217	-1.741	0.535	-0.312	-1.463	-1.562	-0.498

Ligand fingerprints

Prediction accuracy

Protein function from structure

Comparative annotation. AnnoLite and AnnoLyze.

Marti-Renom et al. The AnnoLite and AnnoLyze programs for comparative annotation of protein structures. BMC Bioinformatics (2007) vol. 8 (Suppl 4) pp. S4

AnnoLyze

Panner	site seq. id.	conservatio	n	(size proportional to the local conservation)	
Dortoor	Av. binding	Av. residue		Residues in predicted binding site	
inherited par	rtners:1				
ACY	15.8	87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135	
<u>80G</u>	20.0	00	<u>0.111</u>	19 20 21 48 49 51 96 98 136	
CRY	20.0	00	<u>0.111</u>	23 29 31 37 44 48 49 83 85 94 96 103 121	
<u>MO2</u>				48 49 52 62 63 66 67 113 116	

AnnoLyze

Method

Inherited ligands: 4						
Ligand	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)			
<u>MO2</u>	59.03	<u>0.185</u>	48 49 52 62 63 66 67 113 116			
CRY	20.00	<u>0.111</u>	23 29 31 37 44 48 49 83 85 94 96 103 121			
<u>80G</u>	20.00	<u>0.111</u>	19 20 21 48 49 51 96 98 136			
<u>ACY</u>	15.87	<u>0.163</u>	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135			

inherited p	artners:1		
Partner	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)
<u>d.113.1.1</u>	23.68	<u>0.948</u>	19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145

Other binding-site prediction web methods

• Metapocket 2.0 (<u>http://projects.biotec.tu-dresden.de/metapocket/</u>).

★ Metapredictor : LIGSITE, PASS, Q-SiteFinder, SURNET, Fpocket, GECOM, ConCavity, POCASA.

• LISE (<u>http://lise.ibms.sinica.edu.tw</u>).

★ Binding Site-Enriched Protein Triangles method. Published in April 2012.

Leis, Simon, Sebastian Schneider, and Martin Zacharias. "In silico prediction of binding sites on proteins." *Current medicinal chemistry* 17.15 (2010): 1550-1562.

Predicting protein ligand interactions

Prediction details & accuracy

Monday, April 27, 15

Prediction details & accuracy

free structure methods

*Based on previous knowledge.
*Many different methods.
*Good performance.
*Poor information about the interaction.

Prediction details & accuracy

free structure methods

structure based methods

Virtual Docking

*Based on previous knowledge.
*Many different methods.
*Good performance.
*Poor information about the interaction.

*Very precise. Ligand and receptor orientation.
*Needs the binding-site.
*Needs the structure or a reliable 3D-model.
*Not applicable at wide scale.

Computational time

Prediction details & accuracy

free structure methods

*Based on previous knowledge. *Many different methods. *Good performance. *Poor information about the interaction.

structure based methods

Comparative Docking

*Outputs binding-site localization.
*Based on structural comparisons.
*Applicable at wide scale.
*Needs the structure or a reliable 3D-model.

Virtual Docking

*Very precise. Ligand and receptor orientation.
*Needs the binding-site.
*Needs the structure or a reliable 3D-model.
*Not applicable at wide scale.

Computational time

Docking of small molecules. Autodock Vina

DISCLAIMER!

Credit should go to Dr. Oleg Trott, Dr. Ruth Huey and Dr. Garret M. Morris

http://autodock.scripps.edu
http://vina.scripps.edu

	Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading					
	OLEG TROIT, ARTHUR I. OLSON Department of Melecular Biology. The Scripps Research Institute. La Jolla. California					
	Received 3 March 2009 DOI 10.100 Published online in Wiley InterScie	Accepted 21 April 2009 2fjcc.21334 nee (www.interscience.wiley.com).				
	Abstract: AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user.					
	© 2009 Wiley Periodicals, Inc. J Comput Chem 00: 000- Key words: AutoDock; molecular docking; virtual screenii	000, 2009 ag: computer-aided drug design; multithreading; scoring				
	<text><text><text><text><text><section-header><section-header><text><list-item><list-item><text></text></list-item></list-item></text></section-header></section-header></text></text></text></text></text>	<text><text><text><text><text></text></text></text></text></text>				
O. Trott, A.	J. Olson, Journal of	Computational Chemistr	ry (2009)			

What is docking?

Predicting the best ways two molecules interact.

- ♦ Obtain the 3D structures of the two molecules.
- Locate the best binding site (Remember AnnoLyze, Metapocket...)
- ♦ Here, small molecule docking in protein.
- Determine the best binding mode. (POSE).

What is docking?

Predicting the best ways two molecules interact.

- ♦ X-ray and NMR structures are just ONE of the possible solutions
- There is a need for a search solution.
- Can we get all possible solutions?

What is docking?

Predicting the **best** ways two molecules interact.

- We need to quantify or rank solutions
- We need a good scoring function for such ranking
- Can we determine the best solution?

As everything in **BIOINFORMATICS...**

REPRESENTATION SAMPLING SCORING

REPRESENTATION

SCORING

AutoDock Vina: Force Field-Based Scoring

 $\Delta G_{binding} = \Delta G_{vdW} + \Delta G_{elec} + \Delta G_{hbond} + \Delta G_{desolv} + \Delta G_{tors}$

• ΔG_{vdW} G_{vdW} 12-6 Lennard-Jones potential

• ΔG_{elec}

Coulombic with Solmajer-dielectric $\epsilon(r) = A + \frac{B}{1 + ke^{-\lambda Br}}$

• ΔG_{hhourd}

12-10 Potential with Goodford Directionality

• ΔG_{desolv}

Stouten Pairwise Atomic Solvation Parameters

• ΔG_{tors}

Number of rotatable bonds

http://autodock.scripps.edu/resources/science/equations

PROBLEM! Unaffordable CPU time...

Dihidrofolate reductase with a metotrexate (4dfr.pdb)

N=T^{360/i}

N: number of conformations T: number of rotable bonds I: incremental degrees Metotrexato 10 rotable bonds 30° increments (discrete) 10¹² plausible conformations!

SOLUTION Use of grid maps!

- ♦ Saves lots of time (compared to classical MM/MD).
- ♦ Need to map each atom to a grid point.
- Limits the search space!. From continue to discrete space.

AutoGrid Vina + ADT Tools Use of grid maps!

Center of grid *

♦ center of a bind ligand.

♦ a selected atom or coordinate.

Sinding Site Center of Mass (CoM).

Box dimension *

At least, two times the size of the ligand.

- ♦ 3-Dimensions X,Y, Z.
- Grid resolution (spacing)
 - default 0.375 Angstroms.
- Number of grid points (dimension)
 - on the second second

With VINA + ADT Tools much simplified (*)

Vina + AutoDock Tools Good that we have AutoDock Tools (ATD)

AutoDock Tools Very useful and easy to use!

- Is the free GUI for AutoDock.
- We can use it for setting up grid size and grid position.
- We can also prepare the input molecules :
 - Adding all hydrogens or only polar hydrogens.
 - Assigning polar charges to the ligand and the receptor.
 - Set up rotatable bonds in the ligand using a graphical version of AutoTors.
 - Select the flexible side chains in flexible docking.
- Useful for analyzing the results, after vina docking.

Simulated Annealing

Use of a Genetic Algorithm as a sampling method

- Each conformation is described as a set of rotational angles.
- 64 possible angles are allowed to each of the bond in the ligand.
- Each plausible dihedral angle is codified in a set of binary bits (2⁶=64)
- Each conformation is codified by a so called chromosome with 4 × 6 bits (0 or 1)

111010.010110.001011.010010

Population (ie, set of chromosomes or configurations)

Genetic operators...

Genetic operators...

OH

011010.010110.011010.010111 Recombination 001010.010101.011010.010111

001010.010101.000101.010001

 H_2N

011010.010110. 000101.010001

Genetic operators...

011010.010110.011010.010111 111010.010110.001011.010010 001010.010101.000101.010001 101001.101110.101010.001000 001010.101000.011101.001011

Migration

1111110.010010.0111110.010101 101010.110110.011011.011010 001010.010101.000101.010001 101101.101010.101011.001100 011010.100000.011001.101011

Vina docking results

Goodsell, D. S. and Olson, A. J. (1990), Automated Docking of Substrates to Proteins by Simulated Annealing Proteins:Structure, Function and Genetics., 8: 195-202. Morris, G. M., et al. (1996), Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 J. Computer-Aided Molecular Design, 10: 293-304. Morris, G. M., et al. (1998), Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function J. Computational Chemistry, 19: 1639-1662. Huey, R., et al. (2007), A Semiempirical Free Energy Force Field with Charge-Based Desolvation J. Computational Chemistry, 28: 1145-1152.

Vina docking results

Goodsell, D. S. and Olson, A. J. (1990), Automated Docking of Substrates to Proteins by Simulated Annealing Proteins:Structure, Function and Genetics., 8: 195-202. Morris, G. M., et al. (1996), Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 J. Computer-Aided Molecular Design, 10: 293-304. Morris, G. M., et al. (1998), Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function J. Computational Chemistry, 19: 1639-1662. Huey, R., et al. (2007), A Semiempirical Free Energy Force Field with Charge-Based Desolvation J. Computational Chemistry, 28: 1145-1152.

Vina docking results One practical case...

Vina output log

HCBR + Rimonabant

# If you #	used AutoDo	ock Vina in	your work,	please cit	te:jcc.21	334 # #
# 0 Tro	++ ^ 1 01	son				vina # scr
# 0. 110 # AutoDo	ck Vina: imr	accuracy of	f docking	#		
# with a	new scoring	function	efficient	optimizatio	n and	#
# with a # multit	hreading lo	urnal of Co	mnutationa	al Chemistry	/ 31 (201	a)a∶# vo
# 455-46	1		mpucacione	etected 4	PUS	#
# 455 40	-					ne. #
# DOT 10	.1002/icc.21	334				na f # nct
#						q∫si # e .
" # Please	see http://	vina.script	s.edu for	more inform	nation.	8284 # 564
#########	#######################################	*######################################	###########		#######################################	#####
	The costab		27000	etining res	ULTS	done.
WARNING:		space volum	ie > 27000	Angs trom-3	(See FAQ) dist fro
Perected	4 CPUS					
Sotting	un the scori	ing function	dana			
	Setting up the scoring function done.					
lising ra	Analyzing the binding site done.					
Derforming search done						
Refining results done						
Relining	1650(15	done.				
mode l	affinity	dist from h	est mode			
	kcal/mol)	rmsd 1.b.l	rmsd u.h.			
	+-	+-				
1	-11.3	0.000	0.000			
2	-10.4	1.077	2.294			
3	-10.2	1.327	2.006			
4	-10.0	2.334	4.484			
5	-9.9	14.488	16.499			
6	-9.9	1.542	3.005			
7	-9.8	36.046	37.733			
8	-9.8	36.084	37.975			
9	-9.8	32.479	34.497			
Writing	output d	lone.				
fran@dav	ide-desktop:	~/Documents	/TestProje	ect/autodock	k vina 1	1 2 lin
Limpoor (T T M P T chi	octod (5/1 0 k				

AutoDock Vina Where to get help...

Vina 1.1.1 Alternatives

AutoDock 4.0 Why AutoDock over others

AutoDock 4.0 Why AutoDock over others

Vina vs. Autodock 4

Important improvements...

4-fold faster More accurate 521.85 AutoDock 49% 51% RMSD > 2 8.41 RMSD < 2 AutoDock Vina (cpu=1) Vina (cpu=8) 1.16 22% Vina 78% 0 100 200 300 400 500 600 0% 20% 40% 80% 60% 100%

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

Improvements of Vina Recently published...

Handoko, S. D., Xuchang Ouyang, Chinh Tran To Su, Chee Keong Kwoh & Yew Soon Ong. IEEE/ACM Trans. Comput. Biol. and Bioinf. 9, 1266–1272

receptor) and a small molecule (the ligand). Since it can be computing resources to-date. In 2009, AutoDock Vina [7] used in predicting binding conformations and affinities (referred to as Vina afterward) was released by the same between drug molecules and their target proteins, leading who invented the earlier versions of AutoDock, which is one of the most popular docking software. Vina uses an those bindings, molecular docking is with great value to drug design [1] empirical scoring function to evaluate the binding affinity between the molecules, and the iterated local search global drug design [1].

attempts to find the binding conformation with global lowest reported to be successful to achieve approximately two energy, the landscape of which is approximated by a scoring function. The introduction of flexibility in the ligand, or further in the receptor as well, will make the problem more conduction of the state of the st sophisticated [1], [2]. The major issue of the difficulty comes search procedure of Vina. By heuristically preventing some from the large number of degrees of freedom in modeling the of the intermediate points from performing local search, our molecular system. Since 1980s, various programs and soft-improved version of Vina, named QuickVina (QVina), ware have been developed in order to perform molecular achieved a maximum speed-up of about 25 times with an binding, such as DOCK [1], AutoDock [3], GOLD [4], ICM [5], average speed-up of 8.34 over a testing data set of and FlexX [6] and different scoring functions have been 231 protein-ligand complexes from the PDBBind [8] and a

- S.D. Handoko is with the Centre for Computational Intelligence, School of Computer Engineering, Nanyang Technological University, Blk N4, #B1a-02, Nanyang Avenue, Singapore 639798. E-mail: sdlandoko@htt.edu.sg.
 X. Ouyang and C.T. Su are with the BioInformatics Research Centre, School of Computer Engineering, Nanyang Technological University, Blk N4, #B1a-02, Nanyang Avenue, Singapore 639798.
 C.K. Kuoh and Y.S. Ong are with the School of Computer Engineering, Nanyang Technological University, Blk N4, #02a-26, Nanyang Avenue, Singapore 639798. E-mail: lasokkuoh, aspsong/@htt.edu.sg.
 C.K. Kuoh and Y.S. Ong are with the School of Computer Engineering, Nanyang Technological University, Blk N4, #02a-26, Nanyang Avenue, Singapore 639798. E-mail: lasokkuoh, aspsong/@htt.edu.sg.
 At the time this paper is drafted, the source code of the AutoDock Vina is available free of charge at its website: http://wina.com/university.blk.edu.sg.

 $M_{
m to}$ find the binding between a macromolecule (the still a time-consuming task even with the most powerful Generally, docking is an optimization problem that optimizer for global optimization. This combination is

tendency to have a higher speed-up with the larger number of degrees of freedom, without compromising the quality of

Manuscript received 8 Nov. 2011; revised 11 Mar. 2012; accepted 20 Apr. http://vina.scripps.edu/. With the lack of detailed explana-2012: published online 23 May 2012. For information on obtaining reprints of this article, please send e-mail to: tcbb@computer.org, and reference IEEECS Log Number TCBSB1:2011-11/2020. Digital Object Identifier no. 10.1109/TCBB.2012.82. 1545-5963/12/\$31.00 © 2012 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

we present the pseudocode of the global optimization

How should also up to the state of the state

Dyiai Oper devides w. 70.1195/7128.272.22. approach employed by Vina. Fundamentally, it is a form of

46

AutoDock Example Discovery of a novel binding trench in HIV Integrase

Where patients come first 😪 MERCK		ents & Caregivers Health	care Professionals Worldwide
HOME ABOUT MERCK P	RODUCTS NEWSROOM INVESTOR RELATIONS CAREERS	RESEARCH LICENSIN	G THE MERCK MANUALS
Newsroom	Product News		1 In
Product News			
Research & Development News			
Corporate News			
Financial News	FDA Approves ISENTRESS™ (raltegravir) Tabl	ir) Tablets, First-in-	ABOUT ISENTRESS
Corporate Responsibility News	Class Oral HIV-1 Integrase Inhibitor		Full Prescribing Information
Fact Sheet	WHITEHOUSE STATION, N.J., Oct. 12, 2007 - Merck & Co	k & Co., Inc., announced FDA) granted ISENTRESS™	
Executive Speeches	today that the U.S. Food and Drug Administration (FDA) gr		
Webcasts	antiretroviral agents for the treatment of HIV-1 infection in 1		
VIOXX® (rofecoxib) Information Center	experienced adult patients who have evidence of viral rep strains resistant to multiple antiretroviral agents.		
<u>Contact Newsroom</u> Podcast <u>RSS</u>	This indication is based on analyses of plasma HIV-1 RNA weeks in two controlled studies of ISENTRESS [pronounce studies were conducted in clinically advanced, three-class [nucleoside reverse transcriptase inhibitors (NRTIs), non-re transcriptase inhibitors (NNRTIs) and protease inhibitors (experienced adults. The use of other active agents with IS associated with a greater likelihood of treatment response efficacy of ISENTRESS have not been established in treat patients or pediatric patients. There are no study results d effect of ISENTRESS on clinical progression of HIV-1 infect data will be required before the FDA can consider tradition ISENTRESS.	A levels up through 24 ed i-sen-tris]. These is antiretroviral nucleoside reverse Pls)] treatment- SENTRESS is b. The safety and iment-naïve adult lemonstrating the ction. Longer term nal approval for	
	workers were the second as a more that the test more that the test more that the test of other active agents with IS experienced adults. The use of other active agents with IS associated with a greater likelihood of treatment response efficacy of ISENTRESS have not been established in treat patients or pediatric patients. There are no study results d effect of ISENTRESS on clinical progression of HIV-1 infect data will be required before the FDA can consider tradition ISENTRESS.	Nucleonable reverse P(s)] treatment- SENTRESS is ment-naïve aduit emonstrating the ption. Longer term nal approval for	

One structure known with 5CITEP

- Not clear (low resolution)
- Sinding site near to DNA interacting site
- Loop near the binding
- [,] Docking + Molecular Dynamics
 - AMBER snapshots
 - AutoDock flexible torsion thetetrazolering and indole ring.

F Α D

R=

Where patients come	first Patients & Caregivers Healthe Quick Find V	care Professionals Worldwide Search				
HOME ABOUT MERCK PRODUCTS NEWSROOM INVESTOR RELATIONS CAREERS RESEARCH LICENSING THE MERCK MANUALS						
Newsroom	Product News	Carbon				
Product News						
Research & Development News						
Corporate News						
Financial News	FDA Approves ISENTRESS™ (raitegravir) Tablets, First-in-	ABOUT ISENTRESS				
Corporate Responsibility	Class Oral HIV-1 Integrase Inhibitor	Eul Prescribing Information				
News		2 Patient Product Information				
Fact Sheet	today that the U.S. Food and Drug Administration (FDA) granted ISENTRESS™					
Webcasts	(raltegravir) tablets accelerated approval for use in combination with other					
VIOXX® (rofecoxib) Information Center	antiretroviral agents for the treatment of HIV-1 infection in treatment- experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents.					
 Contact Newsroom Podcast RSS 	This indication is based on analyses of plasma HIV-1 RNA levels up through 24 weeks in two controlled studies of ISENTRESS [pronounced i-sen-tris]. These studies were conducted in clinically advanced, three-class antiretroviral [nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs)] treatment-experienced adults. The use of other active agents with ISENTRESS is associated with a greater likelihood of treatment response. The safety and efficacy of ISENTRESS have not been established in treatment-naïve adult patients or pediatric patients. There are no study results demonstrating the effect of ISENTRESS on clinical progression of HIV-1 infection. Longer term data will be required before the FDA can consider traditional approval for ISENTRESS.					
	effect of ISENTRESS on clinical progression of HIV-1 infection. Longer term data will be required before the FDA can consider traditional approval for ISENTRESS.					

AutoDock / Vina Practical considerations

- * What problem does AutoDock solve?
 - *Flexible* ligands (4.0 *flexible* protein).
- * What range of problems is feasible?
 - * Depends on the search method:
 - * LGA > GA >> SA >> LS
 - * SA : can output trajectories, D < about 8 torsions.
 - * LGA: D < about 8-32 torsions.
- * When is AutoDock not suitable?
 - * No 3D-structures are available;
 - * Modelled structure of poor quality;
 - * Too many (32 torsions, 2048 atoms, 22 atom types);
 - * Target protein too flexible.

Free structure methods Similarity ensemble approach (SEA)

ANALYSIS

Relating protein pharmacology by ligand chemistry

Michael J Keiser^{1,2}, Bryan L Roth^{3,4}, Blaine N Armbruster⁴, Paul Ernsberger³, John J Irwin¹ & Brian K Shoichet¹

http://sea.bkslab.org/search/

Keiser, Michael J., et al. "Relating protein pharmacology by ligand chemistry." Nature biotechnology 25.2 (2007): 197-206.

Predicting small molecules mode of action using structural network biology

RESEARCH ARTICLE

Ligand-Target Prediction by Structural Network Biology Using nAnnoLyze

Francisco Martínez-Jiménez^{1,2}, Marc A. Marti-Renom^{1,2,3}*

 Genome Biology Group, Centre Nacional d'Aanàlisi Genòmica (CNAG), Barcelona, Spain, 2 Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain,
 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

* mmarti@pcb.ub.cat

Finding out drugs mode of action...

Phenotype

Monday, April 27, 15

Finding out drugs mode of action...

Prediction details & accuracy

Monday, April 27, 15

Prediction details & accuracy

free structure methods

*Based on previous knowledge.
*Many different methods.
*Good performance.
*Poor information about the interaction.

Prediction details & accuracy

free structure methods

structure based methods

Virtual Docking

*Based on previous knowledge.
*Many different methods.
*Good performance.
*Poor information about the interaction.

*Very precise. Ligand and receptor orientation.
*Needs the binding-site.
*Needs the structure or a reliable 3D-model.
*Not applicable at wide scale.

Computational time

Prediction details & accuracy

free structure methods

*Based on previous knowledge. *Many different methods. *Good performance. *Poor information about the interaction.

structure based methods

Comparative Docking

*Outputs binding-site localization.
*Based on structural comparisons.
*Applicable at wide scale.
*Needs the structure or a reliable 3D-model.

Virtual Docking

*Very precise. Ligand and receptor orientation.
*Needs the binding-site.
*Needs the structure or a reliable 3D-model.
*Not applicable at wide scale.

Computational time

Network-based Method nAnnolyze

Looking for targets...

Looking for targets...

Looking for targets...

Looking for targets...

Ligand	Target	Distance Global Z-score		Local Z-score
DZP	tl	1.3	-1.6	-2.5
DZP	t2	2.5	2.3	I.02
DZP	tM	1.9	-1.6	-3.16
DZP	tN	2.6	2.42	2.97

Comparison with BINDNET...

- 232 approved FDA drugs co-crystallized with a protein.
- Test-set = 6,282 true drug-protein pairs and 5,981 negative pairs.

Applying the method, modeling genomes...

PDB templates

	Human	Bacterial proteomes			
3D reliable models	31,734 with overlapping	5,008 no overlapping			
Different Proteins	14,000	5,008 different proteins			
Inherited binding-sites	64,000	30,000			

Searching for Drugbank drugs interactions...

64,000 Human binding sites

30,000 bacterial binding sites

Searching for Drugbank drugs interactions...

64,000 Human binding sites

30,000 bacterial binding sites

Sorafenib pathway targeting through binding of several protein

Sorafenib pathway targeting through binding of several protein

Target	Score	Structure	KEGG Pathway
MAPK 14	0.99	Yes	MAPK signaling Fox0 signaling VEGF signaling Rap1 signaling RIG-I-like receptor signaling Acute myeloid leukemia
CDK19	0.97	No	-
FLTI	0.90	Yes	Ras signaling pathway
RAF I	0.89	Yes	MAPK signaling Ras signaling Rap1 signaling VEGF signaling Fox0 signaling pathway Acute myeloid leukemia
ARAF	0.88	Yes	Fox0 signaling Acute myeloid leukemia
CDK10	0.88	No	-
BRAF	0.88	Yes	MAPK signaling Rap1 signaling Fox0 signaling Acute myeloid leukemia
CDK8	0.87	Yes	-
FLT3	0.86	Yes	Acute myeloid leukemia
MAPK 15	0.86	No	-

Annotated (Chembl, PubChem, Drugbank, PDB)

Not Annotated

Sorafenib pathway targeting through binding of several protein

Target	Score	Structure	KEGG Pathway
MAPK 14	0.99 Yes		MAPK signaling Fox0 signaling VEGF signaling Rap1 signaling RIG-I-like receptor signaling Acute myeloid leukemia
CDK19	0.97	No	-
FLTI	0.90	Yes	Ras signaling pathway
RAF I	0.89	Yes	MAPK signaling Ras signaling Rap1 signaling VEGF signaling Fox0 signaling pathway Acute myeloid leukemia
ARAF	0.88	Yes	Fox0 signaling Acute myeloid leukemia
CDK10	0.88	No	-
BRAF	0.88	Yes	MAPK signaling Rap1 signaling Fox0 signaling Acute myeloid leukemia
CDK8	0.87	Yes	-
FLT3	0.86	Yes	Acute myeloid leukemia
MAPK 15	0.86	No	-

Annotated (Chembl, PubChem, Drugbank, PDB)

Not Annotated

Antimicrobial drugs against *Mycobacterium tuberculosis*

One third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis.

WHOTuber2012. Global Tuberculosis Report 2012.

Tuberculosis incidence...

MultiDrugResistant-TB

Methods

2D-Chemogenomics Approach

Historical Approach

3D-Structural Approach

						ChEMBLdb									6
(c) () () () () () () () () ()		+ 🛛 🕼 https://w	ww.ebi.ac.uk/o	hembldb/drug/ap	provals					R55 C	(Q. Co	ogle			
C III Google+ Fa	cebook Tumblr	ChEMBL-og An	alytics Twitt	er LinkedIn F10	00 PubMed Pu	JbChem Wiki	pedia C	Campus Intranet	Science *	EBI + Computing	 Finance 	 Travel * 	News	r Nature	5.4
EMBL-EBI			Enter Text Here		Find	Help Feedb	ack								
Databases Tools	Research	Training I	ndustry	About Us Help		Site Index 💫	5								
1	EBI > Databases :	> Small Molecules >	ChEMBL Databa	se > Home									201 KNOKE	OFEN	SERVICE.
ChEMBL	Search ChEM	MBLdb			Compounds	a Targets	Assays	Activity Source File	Ľ						
ChEMBLdb	ChEMBLdb	Compound	Search Prote	in Target Search	Browse Targets	Browse D	rugs	Drug Approval	s						
ChEMBL-NTD	The following tabl	in lints U.C. Frand on	d Dava Adminis	testes (504) days a		alaan las Fatilia		- 0000 0010 and							
Kinase SARfari	are to the corresp	onding Drug Appro	oval Monograpi	is on the ChEMBL-o	g.	loiecular Entitie	s (INMES)	in 2009, 2010, and	2011. Links						
GPCR SARfari	Browse Drug	Approvals													0
DrugEBIlity	Generic Name	Trade Names	ATC Code	Date of Approval		Drug	Monograp	h			lo	on			
ChEMBL Group	Brentuximab	Adcetris	L01XC12	19-Aug-2011	http://chembl.blo	gspot.com/2011/	8/new-dru	ig-approvals-2011-pt->	cxv.html	Y 5 0	8		J.	X –	
Downloads															5 L
Web Services	Vemurafenib	Zelboraf	L01XE15	17-Aug-2011	http://chembl.blo	gspot.com/2011/0	8/new-dru	g-approvals-2011-pt-x	oxiv.html				9	ál 🗆	
FAQ	Ticagreior	Brilinta	B01AC24	20-Jul-2011	http://chembl.blogs	pot.com/2011/07/	new-drug-	approvals-2011-pt-xxi	i.html.html	0 5			•		
ChEMBLdb Statistics	Indacaterol Maleate	Arcapta	R03AC18	02-Jul-2011	http://chembl.blo	gspot.com/2011/)7/new-dru	ug-approvals-2011-pt-)	xxi.html	0 5 🖸			•		
Targets: 8,603	Rivaroxaban	Xarelto	801AX06	01-Jul-2011	http://chembl.bk	gspot.com/2011/	07/new-dr.	ug-approvals-2011-pt-	xxihtml	050					
1,195,368 Distinct compounds:	Azficel-T	laViv	Not Assigned	21-Jun-2011	http://chembil.blog	ispot.com/2011/0	Sinew-drug Lihtmi	p-approvals-2011-pt-x	x-azficel-	0 5 0					
1,060,258 Activities: 5,479,146	Balatacant	Nutrite	1044428	15-Jup 2011	http://chambi.biz	2011	None de	in account 2011. ct.	via html	150				V .	
Publications: 42,516															
	Ezogabine	Potiga	N03AX21	10-Jun-2011	http://chembl.blo	gspot.com/2011/	6/new-dru	ap-approvals-2011-pt->	eviii.html	≌ 5 ■		11			
ChEMBL Blog ChEMBL Reinsse	Fidaxomicin	Dificid	Not Assigned	27-May-2011	http://chembi.blo	gspot.com/2011/	6/new-dru	ug-approvals-2011-pt-	<u>xvi.html</u>	0 5			•	X 🗌	
Scheduling PhD studentship	Telaprevir	Incivek	Not Assigned	23-May-2011	http://chembl.bio	aspot.com/2011/	05/new-dr.	uo-approvais-2011-pt-	xvi.html	050			•		
Available for Oct 2012 Intake	Ripivirine	Edurant	Not Assigned	20-May-2011	http://chembl.bk	ogspot.com/2011/	05/new-dri	ug-approvals-2011-pt-	xv.html	05					
	Boceprevir	Victrelis	Not Assigned	13-May-2011	http://chembl.bio	aspot.com/2011/	05/new-dr.	ug-approvals-2011-pt-	xiv.html	050					
	Linagiptin	Tradjenta	A108H05	02-May-2011	http://chembl.bk	ogspot.com/2011/	05/new-dri	up-approvals-2011-pt-	xii.html	0 5 🖸					
	Abiraterone	Zytiga	Not Assigned	28-Apr-2011	http://chembi.blo	gspot.com/2011/	5/new-dru	ig-approvals-2011-par	t-xi.html	0 5 0				X	
	μφχ													view 1 - 69	J of 69

centre nacional d'anàlisi genòm centro nacional de análisis gen

Target Prediction for an Open Access Set of Compounds Active against *Mycobacterium tuberculosis*

Francisco Martínez-Jiménez^{1,2}, George Papadatos³, Lun Yang⁴, Iain M. Wallace³, Vinod Kumar⁴, Ursula Pieper⁵, Andrej Sali⁵, James R. Brown⁴*, John P. Overington³*, Marc A. Marti-Renom^{1,2}*

1 Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain, **2** Gene Regulation Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, **3** European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom, **4** Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America, **5** Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America

DOI: 10.1002/cmdc.201200428

Fueling Open-Source Drug Discovery: 177 Small-Molecule Leads against Tuberculosis

Lluís Ballell,^{*[a]} Robert H. Bates,^[a] Rob J. Young,^[b] Daniel Alvarez-Gomez,^[a] Emilio Alvarez-Ruiz,^[a] Vanessa Barroso,^[a] Delia Blanco,^[a] Benigno Crespo,^[a] Jaime Escribano,^[a] Rubén González,^[a] Sonia Lozano,^[a] Sophie Huss,^[a] Angel Santos-Villarejo,^[a] José Julio Martín-Plaza,^[a] Alfonso Mendoza,^[a] María José Rebollo-Lopez,^[a] Modesto Remuiñan-Blanco,^[a] José Luis Lavandera,^[a] Esther Pérez-Herran,^[a] Francisco Javier Gamo-Benito,^[a] José Francisco García-Bustos,^[a] David Barros,^[a] Julia P. Castro,^[a] and Nicholas Cammack^[a]

Release of 50 new, drug-like compounds and their computational target predictions for open source anti-tubercular drug discovery. María Jose Rebollo-Lopez¹, Joël Lelièvre^{1*}, Daniel Alvarez-Gomez¹, Julia Castro-Pichel¹, **Francisco Martínez-Jiménez**^{2,3}, George Papadatos⁴, Vinod Kumar⁵, Gonzalo Colmenarejo⁶, Grace Mugumbate⁴, Mark Hurle⁵, Vanessa Barroso⁶, Rob J. Young⁷, Robert H. Bates¹; Eva Maria Lopez-Roman¹, Alfonso Mendoza-Losana¹, James R. Brown⁵, Emilio Alvarez-Ruiz⁶, **Marc A. Marti-Renom**^{2,3,8**}, John P. Overington⁴, Nicholas Cammack¹, Lluís Ballell¹ & David Barros-Aguire¹. *ACS Infectious Diseases.* (**Submittted**)

Targeting Ebola virus with small molecules?

Editorial

Small molecule inhibitors of ebola virus infection

Edwige Picazo and Fabrizio Giordanetto

Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany

Could the Ebola virus matrix protein VP40 be a drug target?

Robert V Stahelin

Indiana University School of Madiane-South Bend, Department of Biochemistry and Molecular Biology, South Bend, IN, USA

Screening of topical drugs against hair Louse

Torsten Schwede's group

Swiss Institute of Bioinformatics

BIOZENTRUM

Universität Basel The Center for Molecular Life Sciences

nAn	nolyz	ze			
	Home	Help	About	Download	
		Introduce your qu	ery molecule		

Select the organism

O Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium smegmatis

Homo Sapiens

Submit

+ Toggle Statistics

Download

http://nannolyze.cnag.cat

Hands on !

- Monday 11th May : AutoDock Vina tutorial.
- We will use (in LINUX!) :
 - AutoDock Tools ADT . <u>http://mgltools.scripps.edu/</u> <u>downloads</u>
 - AutoDock Vina. <u>http://vina.scripps.edu/download.html</u>
 - Pymol . <u>http://www.pymol.org/</u>

fmartinez@pcb.ub.es

Vina

There is a nice tutorial, let's try it :)

Acknowledgements

This presentation was based on:

"Using AutoDock 4 with ADT. A tutorial"

by Dr. Ruth Huey and Dr. Garret M. Morris

Vina Tutorial by Dr. Oleg Trott

