Do colors have a structure?

Davide Baù

Genome Biology Group (CNAG) Structural Genomics Group (CRG)

Are the 5-type chromatin colors structurally different?

Derivation of the 5-type chromatin color

Filion et al. (2010). Cell, 143(2), 212-224

Derivation of the 5-type chromatin colors

Filion et al. (2010). Cell, 143(2), 212-224

Color definitions

Are chromatin colors functional domains?

Hou et al. (2012). Molecular Cell, 48(3), 471-484

Percentage of chromatin surrounding TAD borders

Are chromatin colors functional domains?

Hou et al. (2012). Molecular Cell, 48(3), 471-484

Resolution gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Knowl	edge								
*******					IDM			6 11 8 X 12 15 6 10 5 18 Y 13 7 12 120 3 14 1 4 7 19 18 7 2 16 9 7 18	7
10 ⁰		10 ³			10 ⁶			DNA length 10 ⁹] nt
								Volume	1
10 ⁻⁹	10 ⁻⁶		10 ⁻³		10°			10 ³	μm³
								Time]
10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10 ⁻⁴	10 ⁻²		10°	10 ²	10 ³	S
								Resolution]
10 ⁻³			10 ⁻²				10 ⁻¹		μ

Hi-C technology

Lieberman-Aiden, E. et al. Science 326, 289–293 (2009) http://3dg.umassmed.edu

Structure determination using Hi-C data

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 3C-based data

The Integrative Modeling Platform framework

http://www.integrativemodeling.org

Russel, D. et al. PLOS Biology 10, e1001244 (2012)

The four stages of integrative modeling

Representation

Constituent parts of the molecule

Representation

Constituent parts of the molecule

Harmonic

$$H_{i,j} = k (d_{i,j} - d_{i,j}^0)^2$$

Harmonic Lower Bound

$$\begin{cases} if \ d_{i,j} \le d_{i,j}^{0}; & lbH_{i,j} = k(d_{i,j} - d_{i,j}^{0})^{2} \\ if \ d_{i,j} > d_{i,j}^{0}; & lbH_{i,j} = 0 \end{cases}$$

Harmonic Upper Bound

$$\begin{cases} if \ d_{i,j} \ge d_{i,j}^{0}; & ubH_{i,j} = k(d_{i,j} - d_{i,j}^{0})^{2} \\ if \ d_{i,j} < d_{i,j}^{0}; & ubH_{i,j} = 0 \end{cases}$$

3D modeling of the 5-type chromatin colors

Filion et al. (2010). Cell, 143(2), 212-224

Color definitions

Structural properties

50 1Mb regions. 10 enriched for each color

GREEN dense region 2R:510000-1530000

0.1% 1.0% 98.3% 0% 0%

2.0% 2.4% 1.6% 2.0% 92.0%

Structural properties

50 1Mb regions. 10 enriched for each color

BLUE dense region X:2340000-3370000 12.7% 11.3% 1.1% 50.6% 23.3%

BLACK dense region 2L:17500000-18530000

2.0% 2.4% 1.6% 2.0% 92.0%

Accessibility (%)

Density (bp/nm)

Interactions

Angle

Structural properties

50 1Mb regions. 10 enriched for each color

BLACK dense region 2L:17500000-18530000

1% 0% 0% 0% 98% 1%

Structural features of the 5-colors

The 5-type chromatin colors structurally different

Position on chr2L (Kb) 16000 16200 16400 16600 1 MRG15 VAR)3-7 VAR)3-7 VAR)3-7 VAR)3-7 VAR)3-7 VAR)3-9 VAR)3-9 VAR)3-9 VAR)3-7 VAR)3-9 VAR)3-9 VAR)3-9 VAR)3-9 VAR)3-9 VAR)3-9 VAR)3-9 VAR)3-7 VAR)3-9 VAR)3-9 VAR)3-1 VAR)3

17000

Nov 24th-27th Lisbon

FUNDAÇÃO CALOUSTE GULBENKIAN Instituto Gulbenkian de Ciência

http://gtpb.igc.gulbenkian.pt

Acknowledgments

François Serra
Marc A. Marti-Renom
David Dufour
Mike Goodstadt
Gireesh Bogu

Francisco Martínez-Jiménez Yannick Spill Marco di Stefano Yasmina Cuartero Paula Soler Irene Farabella

Guillaume Filion

Gene Regulation, Stem Cells and Cancer Centre de Regulació Genòmica Barcelona, Spain

