Structure determination of genomes and genomic domains by satisfaction of spatial restraints

Marc A. Marti-Renom Structural Genomics Group (CNAG-CRG)

Structural Genomics Group

http://www.marciuslab.org

Integrative Modeling Platform

http://www.integrativemodeling.org

From: Russel, D. et al. PLOS Biology 10, e1001244 (2012).

Complex genome organization

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9–13 (2008).

Complex genome organization

Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290–299 (2013).

Marina Corral

Resolution Gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Hybrid Method

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Structure determination by satisfaction of spatial restraints

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 3C-based data

TADbit previous applications...

Baù, D. et al. Nat Struct Mol Biol (2011). Umbarger, M. A. et al. Mol Cell (2011).

Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation

François Le Dily et al. Genes and Development (2014)

Progesterone-regulated transcription in breast cancer

Vicent et al 2011, Wright et al 2012, Ballare et al 2012

> 2,000 genes Up-regulated> 2,000 genes Down-regulated

Regulation in 3D?

Experimental design

Are there TADs? how robust?

Are TADs homogeneous?

Do TADs respond differently to Pg treatment?

Do TADs respond differently to Pg treatment?

Pg induced fold change per TAD (6h)

cnag 🤶 🔮

Modeling 3D TADs

61 genomic regions containing 209 TADs covering 267Mb

How TADs respond structurally to Pg?

How TADs respond structurally to Pg?

Model for TAD regulation

Acknowledgments

François le Dily Davide Baù François Serra

Gireesh Bogu Yasmina Cuartero David Dufour Irene Farabella Francesca di Giovani Mike Goodstadt Francisco Martínez-Jiménez Paula Soler **Yannick Spill** Marco di Stefano Marie Trussart

Job Dekker

Program in Systems Biology Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester, MA, USA

Kerstin Bystricky

Chromatin and gene expression Laboratoire de Biologie Moléculaire Eucaryote - CNRS Toulouse, France

Miguel Beato & Guillaume Filion

Gene Regulation, Stem Cells and Cancer Centre de Regulació Genòmica Barcelona, Spain

http://marciuslab.org http://3DGenomes.org http://cnag.crg.cat

