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Stage 1: Gathering Information. Information is collected in the form of data
from wet lab experiments, as well as statistical tendencies such as atomic
statistical potentials, physical laws such as molecular mechanics force fields, and
any other feature that can be converted into a score for use to assess features of a
structural model.

Stage 2: Choosing How To Represent And Evaluate Models. The
resolution of the representation depends on the quantity and resolution of the
available information and should be commensurate with the resolution of the
final models: different parts of a model may be represented at different
resolutions, and one part of the model may be represented at several different
resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the
uncertainty in the information.

Stage 3: Finding Models That Score Well. The search for models that score
well is performed using any of a variety of sampling and optimization schemes
(such as the Monte Carlo method). There may be many models that score well if
the data are incomplete or none if the data are inconsistent due to errors or
unconsidered states of the assembly.

Stage 4: Analyzing Resulting Models and Information. The ensemble of
good-scoring models needs to be clustered and analyzed to ascertain their
precision and accuracy, and to check for inconsistent information. Analysis can
also suggest what are likely to be the most informative experiments to perform in
the next iteration.

Integrative modeling iterates through these stages until a satisfactory model is
built. Many iterations of the cycle may be required, given the need to gather more
data as well as to resolve errors and inconsistent data.
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Complex genome organization
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Chromosome size

Level I: Radial genome organization

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9-13 (2008).

Gene density
Expression
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Level II: Euchromatin vs heterochromatin

Electron microscopy

Euchromatin:
chromatin that is located away from the nuclear lamina, is generally less

densely packed, and contains actively transcribed genes

Heterochromatin:
chromatin that is near the nuclear lamina, tightly condensed, and

transcriptionally silent
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Level IIl: Lamina-genome interactions
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Most genes in Lamina Associated Domains are transcriptionally silent,
suggesting that lamina-genome interactions are widely involved in the

control of gene expression

Adapted from Molecular Cell 38, 603-613, 2010
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Level IV: Higher-order organization




Level V: Chromatin loops

Gene —
enhancers\ —> Gene
Gene __»
activity

Loops bring distal genomic regions in close proximity to one another
This In turn can have profound effects on gene transcription

Enhancers can be thousands of kilobases away from their target genes in any
direction (or even on a separate chromosome)
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Level V: Loop-extrusion as a driving force
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Level VI: Nucleosome

Chromosome Chromatin fibre Nucleosome

Adapted from Richard E. Ballermann, 2012
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Complex genome organization
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Modeling Genomes
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Experiments

Computation
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Biomolecular structure determination

2D-NOESY data

Chromosome structure determination

5C data
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Chromosome Conformation Capture
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Chromosome Conformation Capture

3C 5C 4C Hi-C ChiP-loop ChIA-PET
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TECHNICAL REPORTS

Analysis of hundreds of cis-regulatory landscapes at high
resolution in a single, high-throughput experiment

Jim R Hughes!, Nigel Roberts!, Simon McGowan?, Deborah Hay!, Eleni Giannoulatou?, Magnus Lynch!,
Marco De Gobbil, Stephen Taylor2, Richard Gibbons! & Douglas R Higgs!

Gene expression during di and differentiation is
regulated in a cell- and stage-specific manner by complex
networks of intergenic and intragenic cis-reg y el

whose numbers and representation in the genome far exceed
those of structural genes. Using chromosome conformation
capture, it is now possible to analyze in detail the interaction
between enhancers, silencers, boundary elements and
promoters at individual loci, but these techniques are not
readily scalable. Here we present a high-throughput approach
(Capture-C) to analyze cis interactions, interrogating
hundreds of specific interactions at high resolution in a

single experiment. We show how this approach will facilitate
detailed, genome-wide analysis to elucidate the general
principles by which cis-acting sequences control gene
expression. In addition, we show how Capture-C will expedite
identification of the target genes and functional effects of
SNPs that are associated with complex diseases, which most
frequently lie in intergenic cis-acting regulatory elements.

It is now possible to rapidly map the positions of many cis-regulatory
sequences (promoters, enhancers, silencers and boundary elements)
across the genome by analyzing chromatin structure, histone modi-
fications and the binding of transcription factors and cofactors!'~4.
Detailed studies of a relatively small number of individual genes have
revealed unexpected levels of complexity in their interactions with
cis-regulatory sequences. Expression of a single gene is often control-
led by multiple regulatory elements that may lie tens to hundreds of
kilobases upstream or downstream of their targets. In addition, the
regulatory elements controlling one gene may lie within the introns
of another, unrelated gene. Detailed studies of individual loci
have revealed some mechanistic insights into how cis-acting ele-
ments regulate gene expression, but because only a few loci have been
studied in detail, general principles have not yet emerged.
Understanding the mechanisms underlying long-range regulation of
gene expression is of critical importance in molecular medicine, as it
was recently shown that most SNPs that are associated with complex
diseases lie within distal cis-regulatory elements and presumably alter

the timing or levels of expression of their target genes in specific
cell types. Therefore, a major challenge in mammalian genetics is to
develop high-throughput techniques to link specific cis-regulatory
elements to their cognate genes and determine how these interactions
and their associated variants influence gene expression during devel-
opment and differentiation.

It has been shown that when cis-acting sequences influence
gene expression, they may physically interact with the promoter(s)
they regulate. The resulting physical contacts can be detected by
various protocols, which are generally referred to as chromosome
conformation capture or 3C. These techniques involve digestion and
re-ligation of fixed chromatin followed by quantification of ligation
junctions, which reflect the frequencies of interaction®®.

Several adaptations of the original 3C method (4C, 5C, HiC and
ChIA-PET) have been developed to assay interactions across the
genome but are currently unsuitable for linking cis-acting sequences
with gene promoters both at high resolution and in a high-throughput
manner’~1°. To map enhancer-promoter interactions in detail using
chromosome conformation capture requires a resolution of ~1-2 kb
because most cis-acting sequences are in the range of hundreds of
basepairs in length and may be closely clustered. Some versions of
the 4C-seq method can map interactions at this resolution, but they
only interrogate a single region of interest at a time!. However any
given cell type contains thousands of active promoters and even
greater numbers of potential cis-acting sequences®. Also, typically
the number of significant disease-associated genome-wide association
study (GWAS) variants affecting these elements are numbered in the
thousands!!. Hence, using 4C-seq to interrogate each active element
and its associated variants individually is laborious and prohibitively
expensive. Clearly, this represents a major bottleneck in our ability
to investigate both the normal regulation of genes and the effects of
sequence variants.

Here we present a new approach to this problem. Capture-C
combines oligonucleotide capture technology (OCT), 3C and
high-throughput sequencing and enables researchers to interrogate cis
interactions at hundreds of selected loci at high resolution in a single
assay. When combined with the corresponding epigenetic data that

IMedical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK. 2Computational Biology
Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK. Correspondence should be addressed to D.R.H. (doug.higgs@imm.ox.ac.uk)

or J.R.H. (jim.hughes@imm.ox.ac.uk).

Received 24 June 2013; accepted 12 December 2013; published online 12 January 2014; doi:10.1038/ng.2871

NATURE GENETICS ADVANCE ONLINE PUBLICATION

chag



NN N
o= X
1

—th — — — — — — — —

Predicted chromosome

O=NDWARUIONOOO=NWAOIOON00W©
T T T

Z

Chromosome Conformation Capture
for de-novo assembly

Accuracy = 0.999 (n =28,234)
100 Mb
1 1 1 1 ‘_l_\
vV % &x o © A @ 9 0 X O DX ORGP T

Actual chromosome

chag



Chromosome Conformation Capture
for meta genomics
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Modeling 3D Genomes

Bau, D. & Marti-Renom, M. A. Methods 58, 300-306 (2012).
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Examples...
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Caulobacter crescentus genome
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The 3D architecture of Caulobacter Crescentus
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Minus Probe Genome Position (mbp)
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Genome organization in Caulobacter crescentus

Arms are helical
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Moving the porS sites 400 Kb away from Ori
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sites results in whole genome rotation!
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Genome architecture in Caulobacter

<
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M.A. Umbarger, et al. Molecular Cell (2011) 44:252-264
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From Sequence to Function
5C+ IMP

Technology

D. Bat and M.A. Marti-Renom Chromosome Res (2011) 19:25-35.
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On TADs and hormones
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Progesterone-requlated transcription in breast cancer

> 2,000 genes Up-regulated
> 2,000 genes Down-regulated

Regulation in 3D?

Vicent et al 2011, Wright et al 2012, Ballare et al 2012
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Experimental design
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Are there TADs? how robust?

>2.000 detected TADs

0 10 15 25 >30 0 10 15 25 >30

B conserved

B 100kb
0 +200kb or more
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Are TADs homogeneous?
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% of genes per TAD with
positive or negative fold change
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Fold change per TAD (Log2)

Do TADs respond differently to Pg treatment?
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Modeling 3D TADs

61 genomic regions containing 209 TADs covering 267Mb
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How TADs respond structurally to Pg?
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How TADs respond structurally to Pg?
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Model for TAD regulation

Repressed TAD
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Bridging the Resolution Gap in Structural Modeling of 3D

Genome Organization

Marc A. Marti-Renom™, Leonid A. Mirny?>

1 Structural Genomics Laboratory, Bioinformatics and Genomics Department, Centro de Investigacion Principe Felipe, Valencia, Spain, 2 Harvard-MIT Division of Health
Sciences and Technology, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an °‘‘Editors’ Outlook’ article for PLoS
Computational Biology

Recent experimental and computational advances are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.

We present two complementary approaches to address this
challenge: (i) the first approach aims at developing simple polymer
models of chromatin and determining relevant interactions (both

@ PLoS Computational Biology | www.ploscompbiol.org

physical and biological) that explain experimental observations; (ii)
the second approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein “foldability” and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence
situ hybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.

Using cellular and molecular biology, novel chromosome
conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large
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