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Level I: Radial genome organization
Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9–13 (2008).
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Lack of Correlation 
between Gene Activity 
and Radial Position: The 
Cons
Despite this list of correla-
tions, we now know that the 
notion of localization of inac-
tive genes at the periphery 
and active ones in the nuclear 
interior is an oversimplification 
and is not a universal hallmark 
of gene activation. For most 
biallelically expressed genes 
the two alleles are often in 
vastly different radial posi-
tions in the same nucleus, yet 
their activity status appears 
similar based on the strength 
of fluorescence in situ hybrid-
ization signals (Figure 1A). 
Additionally, a recent study of 
the monoallelically expressed 
GFAP gene demonstrated that although 
the inactive locus is generally more 
peripheral than the active one, in a frac-
tion of nuclei the inactive allele was more 
internally localized than the active allele 
(Takizawa et al., 2008). Another general 
observation argues against a strong link 
between radial location and gene activ-
ity: if radial positioning were directly 
linked to expression, it would follow that 
transcription should occur predominantly 
in the interior of the nucleus. Yet, active 
sites of RNA polymerase II transcription 
are distributed uniformly throughout the 
nucleus (except for the nucleoli) with 
no apparent radial preference (Wan-
sink et al., 1993), although preferential 
internal transcription zones might exist 
in specialized cells (Kosak et al., 2007). 
Similarly, heterochromatin, which is 
largely transcriptionally silent, is not 
restricted to a specific radial position, 
and large blocks of heterochromatin 
can be found throughout the nucleus 
(Figure 1B).

A general link between gene activ-
ity and radial position is even more 
strongly challenged by observations 
on single genes. Many gene loci remain 
in the same radial positions when their 
expression changes (Hewitt et al., 
2004; Meaburn and Misteli, 2008; Zink 
et al., 2004). A lack of direct causality 
between gene expression and radial 
position is also highlighted by the fact 
that genes can become repositioned 

radially in the absence of detectable 
changes to their transcriptional output. 
For example, the Pah gene becomes 
more internally localized during differ-
entiation of mouse neurons, and VEGF 
becomes more peripherally localized 
during the induction of tumor formation 
in breast epithelia, despite no change 
in expression (Meaburn and Misteli, 
2008; Williams et al., 2006). In a recent 
study of 11 randomly selected genes 
analyzed under various growth and 
differentiation conditions, no general 
correlation between activity and radial 
position was found (Meaburn and Mis-
teli, 2008). Finally, even observations 
on a peripherally silenced gene under-
mine the notion of a close link between 
repression and radial positioning. The 
β-globin gene, which is peripheral in 
its inactive form, remains at the periph-
ery during early stages of activation 
and only then undergoes internaliza-
tion (Ragoczy et al., 2006). This lat-
ter observation suggests that internal 
positioning is not a requirement for 
activity and that transcription alone 
does not drive the position of a gene. 
Taken together, the fact that genes can 
alter radial position without changes in 
expression, and that many genes do 
not undergo positional changes when 
their expression levels are modulated, 
indicates that radial positioning is 
functionally not tightly linked to gene 
activity.

A Key Experiment
The pros and cons in the 
long-standing debate on 
the role of radial positioning 
in gene activity are entirely 
based on correlative obser-
vations, often in the absence 
of precise measurements of 
gene activity. A much needed 
key experiment was to arti-
ficially change the position 
of a gene and test the tran-
scriptional consequences. 
This has recently been done 
in three laboratories by arti-
ficially tethering reporter 
genes to the nuclear periph-
ery of mammalian cells using 
various nuclear envelope and 
lamina proteins. The results 
were more ambiguous than 
hoped for. In one system, 

transcription of a reporter gene was 
significantly repressed upon associa-
tion with the nuclear periphery via teth-
ering to the inner nuclear membrane 
protein emerin (Reddy et al., 2008). A 
second system looked at the expres-
sion of multiple endogenous genes in 
domains tethered to the periphery by 
the lamin-associated protein LAP2β. 
Although expression of some genes 
was negatively affected, that of others 
was not (Finlan et al., 2008). Finally, in 
a third approach, an inducible reporter 
was placed at the nuclear periphery by 
interaction with lamin B. Location of the 
reporter at the nuclear periphery did not 
prevent its activation upon stimulation 
and the locus retained its full transcrip-
tional competence (Kumaran and Spec-
tor, 2008). The apparent discrepancies in 
these results likely reflect experimental 
differences between the approaches. 
For example, it is not clear whether the 
induction of transcription after tether-
ing to the periphery involves the same 
regulatory mechanisms as ongoing 
transcription. Additionally, although the 
reporter gene in the study by Reddy et 
al. was repressed upon relocation to 
the periphery, the reduction in expres-
sion was ~2-fold but was not complete 
unlike the case for endogenous genes 
in the study by Finlan et al. This sug-
gests that despite the repressive effect 
of the nuclear periphery, association 
with the periphery alone does not totally 

Figure 1. Radial Positioning of Genes
(A) Active genes can be anywhere in the nucleus. The radial positions of bi-
allelically expressed genes often vary between the two homologous alleles 
in the same nucleus. Shown are the locations of the two alleles of the IGH 
(green) and MYC (red) genes in human lymphocytes.
(B) Functional significance of radial positioning. (Top) Active genes (green) 
exhibit a large range of radial positions; the precise radial position of a locus 
does not correlate with its activity level. (Middle) Inactive genes (red) may as-
sociate with heterochromatin blocks at various radial positions. (Bottom) In 
contrast to radial positioning, physical association with the nuclear periphery 
is often linked to silencing. Genes that are in close proximity to the nuclear 
envelope but do not physically interact with it may be active.
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Level II: Euchromatin vs heterochromatin

Euchromatin:
chromatin that is located away from the nuclear lamina, is generally less 
densely packed, and contains actively transcribed genes

Heterochromatin:
chromatin that is near the nuclear lamina, tightly condensed, and 
transcriptionally silent

elements (SINEs and LINEs) (Caron et al. 2001). Recently, an
association study of a set of molecular marks lead to the
further discrimination of chromatin into five main types
(Filion et al. 2010) (Fig. 1, “colorful chromatin”).

In spite of all the recent progress in this area, the cyto-
logical and molecular definitions of (hetero)chromatin have
not yet been conclusively and comprehensively linked to-
gether. Furthermore, our understanding of the higher order
architecture of chromatin and its functional consequences is
far from satisfactory.

Heterochromatin: a transcriptional silencing
compartment?

One of the most important epigenetic roles of heterochromatin
was recognized very early on. In 1930, Muller (1930) discov-
ered that Drosophila flies treated with X-rays developed ran-
dom color patterns of white and brown patches in the eyes. He
could show that by random mutation, the white gene locus
was translocated adjacent to heterochromatic regions and,
thereafter, silenced. This effect was named position effect
variegation (PEV). Further studies (Demerec and Slizynska
1937) broadened the knowledge about PEV, showing that
genes in direct heterochromatic neighborhood were silenced

before more distal genes. Altogether, these experiments
showed that usually active genes get silenced just by being
in the vicinity of heterochromatin and lead to the development
of the concept of heterochromatin spreading. A similar effect
was reported in different organisms for genes translocated to
telomeric chromosomal regions and referred to as telomeric
position effect variegation (TPEV) (Gehring et al. 1984; Horn
and Cross 1995; Gottschling et al. 1990). (T)PEV is based on
cis chromosomal effects, i.e., genes are affected by hetero-
chromatin proximity within the same chromosome. Inter-
estingly, recent work in Caenorhabditis indicated that
large transgenic repeated arrays of tissue-specific gene
promoters become heterochromatinized and gene activa-
tion within these repeats lead to looping away from the
heterochromatic subnuclear domain (Meister et al. 2010).
A similar looping out of heterochromatin effect upon tran-
scription factor expression of a transgene integrated within
satellite repeat-rich heterochromatin was also observed in
mice (Lundgren et al. 2000). In both studies though, looping
away from the heterochromatin was not always accompanied
by gene activation.

In Drosophila, mouse, and plant cells, constitutive het-
erochromatin is clustered into chromocenters during inter-
phase as depicted exemplarily in a mouse interphase cell in
Fig. 2c. Chromocenters contain pericentric heterochromatin,

Fig. 2 Heterochromatin: in need of definition? Historically and from a
cytological point of view, Emil Heitz (see Fig. 1) distinguished hetero
and euchromatin. a Within an exemplary electron microscopy (EM)
picture (left) of a mouse liver cell nucleus (N nucleus, Nu nucleolus,
NE nuclear envelope), heterochromatin appears as electron dense in
contrast to the more open state of euchromatin. b With the recent
advent of high-throughput epigenomics, molecular features (histone
and DNA modifications) have been assigned to particular chromatin
states and are shown in the simplified graphic enlarged in the center. c
The cell cycle dynamics and cytological organization of the very

condensed chromatin structures around the centromeres can be appre-
ciated in the fluorescence light microscopy (LM) pictures (right) of M
phase and interphase cells. FISH-stained mouse metaphase chromo-
somes and interphase cell with probes against pericentric heterochro-
matin (black) and DNA counterstaining (gray) are shown. Condensed
pericentric heterochromatin regions from multiple chromosomes clus-
ter together in the interphase cell nucleus forming the so-called “chro-
mocenters.” Cytological and molecular definitions have not yet been
conclusively linked together. Scale bars EM 0.5 μm and LM 2 μm
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Level III: Lamina-genome interactions

the process of commitment of NPCs to the neural/glial lineage. In
this scenario the unlocked genes would have functions that are
specific for neurons or glia cells, and hence the activation of
unlocked genes should occur predominantly in neural tissues.
Alternatively, the unlocked genes may serve in a broader set of
cell types but may have been locked in ESCs because their
expression would be somehow detrimental to ESCs. To discrim-
inate between these two models, we studied the expression
status of these genes in 77 nonneural tissues (Figure 6F). While
nonneural tissues still exhibit a preference to activate DLamdown

genes compared to DLamneutr genes, this preference is sig-
nificanty less pronounced than in neural tissues (p = 3 3 10!4,
Wilcoxon test). Most unlocked genes are expressed in a minority
of tissues (Figure S5E), indicating that they tend to have special-
ized functions. Taken together, these results suggest an unlock-
ing mechanism, involving dissociation of silent genes from the
NL upon ESC/NPC differentiation, which primes these genes
for activation later in development. This unlocking appears to
be partially linked to the commitment of NPCs to the neural/glial
lineage and partially to the departure from ESC identity. The
unlocking mechanism is distinct from ‘‘polymerase poising’’
(Core et al., 2008; Muse et al., 2007; Zeitlinger et al., 2007),
because the silent genes that become detached from the NL in
NPCs lack detectable amounts of RNA Pol II at their promoters
(Figures S5A and S5B).

DISCUSSION

The high-resolution Lamin B1 interaction maps presented here
reveal that pluripotent ESCs, multipotent precursor cells, and
terminally differentiated cells share a common global architec-
ture of their chromosomes, characterized by substantially over-
lapping interactions with the NL through more than 1000 large
genomic domains. At a finer level, each differentiation step
involves the highly orchestrated reorganization of NL-chromatin
interactions of hundreds of genes. This reorganization is cumu-
lative over sequential differentiation steps and involves single
transcription units as well as extended DNA regions that encom-
pass multiple genes (Figure 7). Furthermore, NL interactions are
tightly linked to gene repression, and the reorganization of these
interactions during differentiation involves many genes that
are important for cellular identity. Finally, we demonstrate that
a substantial number of genes are not immediately activated
upon detachment from the NL but rather become unlocked for
activation at a later stage (Figure 7).

Cell Identity and Gene Repression at the NL
As a rule, NL-associated genes in all four mouse cell types have
low transcriptional activity, similar to what has been observed in
human and Drosophila cells (Guelen et al., 2008; Pickersgill et al.,
2006). Recent evidence indicates that the NL can play a causal
role in gene repression. Tethering of genes to the NL can, at least
in certain genomic contexts, lead to reduced gene expression
(Finlan et al., 2008; Kumaran and Spector, 2008; Reddy et al.,
2008), and depletion of Lamin B in Drosophila causes activation
of a gene cluster that is normally silent and located at the NL
(Shevelyov et al., 2009).

While the NL may contribute to the repressed state of interact-
ing genes, it cannot be ruled out that the NL interactions of some
genomic regions are altered as a consequence rather than as
a cause of changes in transcriptional activity. In fact, both direc-
tions of causality may be true: the NL may enhance the repres-
sion of genes, while lack of transcriptional activity in turn may
strengthen NL interactions. Such a positive feedback loop may
help to stably repress specific genes, thereby securing the
cellular transcription program. In this context it is interesting to
note that many ‘‘stemness’’ genes interact more strongly with
the NL in non-ESC cell types. This could help to lock these genes
in a permanently repressed state once ESCs differentiate.

We provide evidence that silent genes that detach from the NL
are more likely to become active in a subsequent differentiation
step than are genes with unaltered NL interactions. This obser-
vation of ‘‘unlocking’’ underscores the notion that the NL may
help to secure the repression of specific genes. NL interactions
may thus help to constrain the repertoire of genes that can be
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Figure 7. Model of Dynamic Reshaping of NL-Genome Interactions
during Differentiation
Overview of the changes in NL interactions for major gene classes during

ESC/NPC and NPC/AC differentiaton steps.

Molecular Cell

Genome-Nuclear Lamina Interactions

Molecular Cell 38, 603–613, May 28, 2010 ª2010 Elsevier Inc. 611

Most genes in Lamina Associated Domains are transcriptionally silent, 
suggesting that lamina-genome interactions are widely involved in the 
control of gene expression

Adapted from Molecular Cell 38, 603-613, 2010



Level IV: Higher-order organization

Nature Reviews | Genetics
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Box 2 | Genome compartments

Inter- and intrachromosomal interaction maps for mammalian genomes28,64,111 have revealed a pattern of interactions that 
can be approximated by two compartments — A and B — that alternate along chromosomes and have a characteristic 
size of ~5 Mb each (as shown by the compartment graph below top heat map in the figure). A compartments (shown in 
orange) preferentially interact with other A compartments throughout the genome. Similarly, B compartments (shown  
in blue) associate with other B compartments. Compartment signal can be quantified by eigenvector expansion of the 
interaction map64,111,112. The A or B compartment signal is not simply biphasic (representing just two states) but is 
continuous112 and correlates with indicators of transcriptional activity, such as DNA accessibility, gene density, replication 
timing, GC content and several histone marks. These indicators suggest that A compartments are largely euchromatic, 
transcriptionally active regions.

Topologically associating domains (TADs) are distinct from the larger A and B compartments. First, analysis of embryonic 
stem cells, brain tissue and fibroblasts suggests that most, but not all, TADs are tissue-invariant58,59, whereas A and B 
compartments are tissue-specific domains of active and inactive chromatin that are correlated with cell-type-specific gene 
expression patterns64. Second, A and B compartments are large (often several megabases) and form an alternating pattern 
of active and inactive domains along chromosomes. By contrast, TADs are smaller (median size around 400–500 kb; see 
zoomed in section of heat map in the figure) and can be active or inactive, and adjacent TADs are not necessarily of 
opposite chromatin status. Thus, it seems that TADs are hard-wired features of chromosomes, and groups of adjacent TADs 
can organize in A and B compartments (see REF. 50 for a more extensive discussion). 

Shown in the figure are data for human chromosome 14 for IMR90 cells (data taken from REF. 59). In the top panel, Hi-C 
data were binned at 200 kb resolution, corrected using iterative correction and eigenvector decomposition (ICE), and 
the compartment graph was computed as described in REF. 112. The lower panel shows a blow up of a 4 Mb fragment of 
chromosome 14 (specifically, 74.4 Mb to 78.4 Mb) binned at 40 kb.

REVIEWS

8 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/genetics

Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.  
Nat Rev Genet 14, 390–403 (2013).



Level V: Chromatin loops

Loops bring distal genomic regions in close proximity to one another

This in turn can have profound effects on gene transcription 

Enhancers can be thousands of kilobases away from their target genes in any 
direction (or even on a separate chromosome)

Gene
Gene 
enhancers

Gene
activity



Level V: Loop-extrusion as a driving force
Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., & Mirny, L. A. (2015).  

Formation of Chromosomal Domains by Loop Extrusion. bioRxiv.
FIGURE 1 
 
 

 
 
Fig 1. Loop extrusion as a mechanism domain formation. 
a. Examples of Hi-C contact maps at 5kb resolution showing domains from four chromosomal 
regions (GM12878 in-situ MboI (3)), highlighting domains (purple lines) and interaction peaks (blue 
circles).  
b. Model of LEF dynamics, LEFs shown as linked pairs of yellow circles, chromatin fiber in grey.  
From left to right: extrusion, dissociation, association, stalling upon encountering a neighboring 
LEF, stalling at a BE (red hexagon). 
c. Schematic of LEF dynamics (Movie-M1, Movie-M2). 
d. Conformations of a polymer subject to LEF dynamics, with processivity 120kb, separation 120kb. 
Left: shows LEFs (yellow), and chromatin (grey), for one conformation, where darker grey highlights 
the combined extent of three regions of sizes (180kb, 360kb, 720kb) separated by BEs. Right: 
shows the progressive extrusion of a loop (black) within a 180kb region. 
e. Simulated contact map for processivity 120kb, separation 120kb. 
 
 
 
 
 
 
 

. CC-BY-NC 4.0 International licensethis preprint is the author/funder. It is made available under a 
The copyright holder for; http://dx.doi.org/10.1101/024620doi: bioRxiv preprint first posted online August 14, 2015; 



Level VI: Nucleosome
Chromosome Chromatin fibre Nucleosome

Adapted from Richard E. Ballermann, 2012



Complex genome organization
Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290–299 (2013).
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R E V I E W

From chromatin to chromatin domains. The high degree of struc-
tural and functional organization of genomic chromatin extends to 
the subchromosomal level. Recent years have seen the generation of 
detailed maps of the distribution of various chromatin-binding pro-
teins, histone marks and DNA methylation in different species and 
cell types. Perhaps one of the most interesting observations from these 
efforts is that chromosome territories are not generated by homo-
geneous folding of the underlying chromatin but instead comprise 
discrete chromatin domains (Fig. 1). The domain size depends on 
the chromosomal region, the cell type and the species, spanning few 
tens of kilobases to several megabases (averaging ~100 kb in flies and 
~1 Mb in humans)10–16.

Various studies report somewhat different classifications of chro-
matin types, mostly depending on the parameters used in the compu-
tational analysis, but the general consensus is that there are only a few 
types of repressive chromatin. The repressive domains are Polycomb-
bound euchromatin, heterochromatin and a chromatin state that has 
no strong enrichment for any of the specific factors or marks used 
for mapping11,12,14. In contrast, there are various types of active or 
open chromatin, and it has proven more difficult to rigorously classify 
them, probably because the classification depends on the number of 
factors that are used for mapping. However, at least four types of open 

chromatin can be distinguished with some certainty, encompassing 
‘enhancers’, ‘promoters’, ‘transcribed regions’ and ‘regions bound by 
chromatin insulator proteins’15.

An important feature of chromatin domains is that not all genes 
within the domain have the same transcriptional response. Some open 
chromatin domains may contain nontranscribed genes and some 
repressive domains may encompass transcribed regions, suggesting 
that chromatin domains can accommodate a certain degree of indi-
vidual gene regulatory freedom16,17. Nevertheless, the overall gestalt 
of a given chromatin domain exerts its influence, as demonstrated by 
the fact that insertion of transgenes in different chromatin domains 
affects expression of a reporter gene. Therefore, domains build more 
or less favorable chromatin environments for gene expression but do 
not fully determine gene activity17.

Topologically associated domains. Recent investigations of the  
3D folding of the fly, mouse and human genomes generalized the 
concept of chromatin domains and revealed that domains, as 
mapped by epigenome profiling, correspond to physical genome 
domains18–21. These topologically associated domains are character-
ized by sharp boundaries that correspond to binding sites for CTCF 
and other chromatin insulator–binding proteins as well as to active 

Figure 1 A global view of the cell nucleus. 
Chromatin domain folding is determined by 
transcriptional activity of genome regions. 
Boundaries form at the interface of active and 
inactive parts of the genome. Higher-order domains 
of similar activity status cluster to form chromatin 
domains, which assemble into chromosome 
territories. Repressive regions of chromosomes 
tend to contact other repressive regions on the 
same chromosome arm, whereas active domains 
are more exposed on the outside of chromosome 
territories and have a higher chance of contacting 
active domains on the other chromosome arm 
and on other chromosomes19,20, giving rise to 
topological ‘superdomains’ composed of multiple, 
functionally similar genome domains. The location 
of territories is constrained by their association with 
the nuclear periphery, transcription hubs, nuclear 
bodies and centromere clusters.

Genome organization undergoes dramatic changes during differentiation and development. Effects of genome organization are particularly prominent in embryonic 
stem (ES) cells. The genome landscape of ES cells is unique in that it is characterized by an abundance of active chromatin marks and reduced levels of repres-
sive ones117,118. ES cells have less compacted heterochromatin domains, and their centromeric regions are decondensed117,119,120. DNase hypersensitivity 
analysis suggests globally more accessible and open chromatin. The altered chromatin architecture is accompanied by a loss of binding of several architectural 
chromatin proteins, including heterochromatin protein HP1 and high-mobility group (HMG) proteins117, and increased amounts of chromatin remodelers and 
modifiers121,122. As ES cells differentiate, many of ES cell–specific chromatin hallmarks rapidly disappear. Roughly the reverse processes occur during reprogram-
ming of differentiated cells into induced pluripotent stem cells123. These observations point to a model in which chromatin structure is essential in establishing 
pluripotency by maintaining the genome in an open, readily accessible state, allowing for maximum plasticity.

In mouse embryogenesis, the maternal and paternal pronuclei are not symmetric: the paternal pronucleus lacks typical heterochromatin marks but contains 
Polycomb proteins that are absent from the maternal heterochromatin124. In Drosophila melanogaster, the cell cycle slows down as differentiation processes 
unfold during developmental progression. This is accompanied by a general decrease in nuclear volume, a progressive condensation of chromatin and a decrease 
in chromatin motion33. A strong reduction of Polycomb-dependent chromatin motion, concomitant with an increase in the residence time of Polycomb proteins on 
their target chromatin, parallels developmental progression, suggesting that a decrease in chromatin dynamics is required to stabilize gene silencing33, a process 
reminiscent of what happens during ES cell differentiation. More direct evidence for a role of three-dimensional chromosome organization in the developmental 
regulation of gene expression comes from studies in Caenorhabditis elegans, where movement of tissue-specific genes in the nuclear interior that is developmen-
tally programmed and is dependent on histone methyltransferases MET-2 and SET-35 has been described82,125.

DNA Chromatin
domains

Superdomains

Chromosome
territories

Lamina

Transcription hub

Centromere
cluster

Nuclear
pore

Inactive

Active

Non-
coding

Nucleus

M
ar

in
a 

C
or

ra
l

BOX 1 Three-dimensional genome organization during differentiation and development 



locus as a function of time [7] or upon gene activation [8,30]).
Finding an appropriate model involves representing chromatin as
a polymer and simulating its dynamics subject of physical
interactions (e.g., spatial and topological constraints, confinement,
and supercoiling) as well as biological interactions (e.g., specific
and non-specific interactions between chromosomal loci, and
nuclear lamina/matrix, among others).

Recent studies provide many examples of successful use of
polymer physics in describing chromosome architecture. A recent
study of the human chromatin using the Hi-C technique has shown
that statistics of long-range interactions are consistent with a long-
lived non-equilibrium state of a homopolymer emerging due to
rapid condensation, rather than with any particular equilibrium
state [13]. Approaching this problem using polymer physics can also
reveal the roles of excluded volume, chain entropy, confinement,
DNA supercoiling, and topological constraints in shaping the
conformational ensemble of chromatin. For example, recent studies
of short polymer rings suggested that topological constraints may be
sufficient for the maintenance of chromosomal territories in
eukaryotes [31,32]. Similarly, the entropy of the DNA chain was
suggested to be sufficient for segregation of chromosomes during

E. coli division [33]. A final example is that a quasi-linear organi-
zation of the circular E. coli chromosome was shown to be consistent
with a model where DNA supercoiling plays a central role [5]. Since
several alternative physical models may fit even the most data-rich
experiments equally well, follow-up experiments are required to
dissect alternative models.

What Can We Learn from Data Integration?

Data integration using computational approaches has already
proven useful in the determination of structures of large complexes
of proteins. In a landmark study addressing this problem, the Sali
Lab (University of California San Francisco) used the Integrative
Modeling Platform (IMP, http://www.integrativemodeling.org/),
a multi-scale and flexible computational framework based on the
satisfaction of spatial restraints [34]. In IMP, the problem of
determining a probabilistic map of all proteins in the nuclear pore
complex (NPC) was expressed as an optimization problem, where
all available experimental information was integrated and
represented as spatial restraints. The systematic integration of
the input information provided a more complete and detailed

Figure 3. Two computational approaches for determining the 3D structure of genomic domains and genomes. (A) The first approach
uses polymer models to simulate relevant interactions (both physical and biological) that explain experimental observations. (B) The second
approach integrates diverse experimental observations to model a conformational ensemble that satisfies the experimental observations.
doi:10.1371/journal.pcbi.1002125.g003
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Lab (University of California San Francisco) used the Integrative
Modeling Platform (IMP, http://www.integrativemodeling.org/),
a multi-scale and flexible computational framework based on the
satisfaction of spatial restraints [34]. In IMP, the problem of
determining a probabilistic map of all proteins in the nuclear pore
complex (NPC) was expressed as an optimization problem, where
all available experimental information was integrated and
represented as spatial restraints. The systematic integration of
the input information provided a more complete and detailed

Figure 3. Two computational approaches for determining the 3D structure of genomic domains and genomes. (A) The first approach
uses polymer models to simulate relevant interactions (both physical and biological) that explain experimental observations. (B) The second
approach integrates diverse experimental observations to model a conformational ensemble that satisfies the experimental observations.
doi:10.1371/journal.pcbi.1002125.g003

PLoS Computational Biology | www.ploscompbiol.org 4 July 2011 | Volume 7 | Issue 7 | e1002125
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we chose to use only a third of the Hi-C reads 
available for this cell type in the data set. We 
first quantified the CTR pattern by partition-
ing the human genome into 100-kb bins, each 
representing a large virtual contig, and cal-
culated for each placed contig its average interaction frequency with 
each chromosome. To simulate a more difficult scenario and evaluate 
localization over long ranges, we omitted from this statistic the inter-
action data of the contig with its flanking 1 mb on each side, where 
the strongest Hi-C interaction signals are present. Then, we asked 
how well this statistic separates interchromosomal interactions from 
intrachromsomal interactions (Fig. 1a). We found that the average 
interaction frequency strongly separates inter- from intrachromo-
somal interactions, with an average area under the curve (AUC) of 
0.9998, suggesting this statistic is highly predictive of which chro-
mosome a contig belongs to. Next, we trained a simple multiclass 
model, a naive Bayes classifier, to predict the chromosome of each 
contig based on its average interaction frequency with each chromo-
some (Online Methods). To test the classifier, for each contig in the 
genome, we removed the interaction data for the contig and a flank-
ing region of 1, 2, 5 or 10 Mb on each side, and used the classifier to 
predict the position of the contig solely from Hi-C data (Fig. 1b,c), 
achieving a genome-wide accuracy of 0.998 when leaving out 1 Mb on 
each side. By thresholding the associated posterior probabilities for 
each prediction output by the classifier to identify high-confidence 
predictions, we find that at a threshold of P > 0.2 the classifier can 
achieve a near-constant error rate of <0.005 even when leaving 10-Mb  

gaps on each side of the contig (100 times the size of the contig).  
We conclude that the CTR interaction pattern can be used to accu-
rately predict to which chromosome an unplaced contig belongs, even 
if it is flanked by large gaps.

Next we sought to predict the genomic locus along a chromosome of 
an unplaced contig, given its chromosome and interaction pattern with 
placed contigs on the chromosome. We used the assembled portion of 
the genome to fit a probabilistic single-parameter exponential decay 
model describing the relationship between Hi-C interaction frequency 
and genomic distance (the DDD pattern). We removed in turn each 
contig from the chromosome, along with a flanking region of 1 Mb on 
each side, for the reasons mentioned previously, and estimated its most 
likely position by given its interaction profile and the decay model 
(Fig. 1d). We quantified the prediction error as the absolute value of 
the distance between the predicted position and the actual position. 
Our results show a cross-validated, genome-wide median error of  
1.1 Mb. Additionally, 89.5% of the contigs are placed within 2 Mb of 
their actual position and 24.0% are within 0.5 Mb of their actual posi-
tion (Fig. 1d, inset). We conclude that the DDD interaction pattern can 
be used to accurately predict the position of an unlocalized contig.

To show the utility of our approach for improving finished genomes, 
we collected two sets of contigs from hg19 (ref. 22) and HuRef7,  
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Figure 1 Interaction frequency accurately 
predicts chromosome and locus for scaffold 
augmentation. (a) Average interaction frequency 
strongly separates interchromosomal from 
intrachromosomal interactions. For each 100-kb 
contig in chromosome 1, we calculate its average  
interaction frequency with each chromosome. 
We exclude interaction data from the contig’s 
1-Mb regions on each side, where the strongest 
interaction frequencies are typically found. 
The box plot shows the distribution of average 
interaction frequencies of all contigs over 
all chromosomes and demonstrates that the 
distribution of interchromosomal interaction 
frequencies is separated from intrachromosomal 
interaction frequencies. Whiskers represent 
minimal and maximal points within 1.5 of the 
interquartile range. (b) Naive Bayes predictive 
performance at various gap sizes. We trained 
a naive Bayes classifier and predicted the 
chromosome of each contig, leaving out a 1-, 2-, 
5- or 10-Mb flanking region on each side of the 
contig. Confident predictions are predictions  
with a posterior probability of at least 0.2.  
(c) Genome-wide view of naive Bayes predictive 
performance. The prediction for each contig is 
marked by a short vertical line, colored according 
to its true chromosome. Predictions showed were 
performed leaving out a 1-Mb flanking region 
on each side of the contig. Predictions that did 
not pass the confidence threshold are marked 
as “NC”. (d) Interaction frequencies accurately 
predict chromosomal locus. For every contig,  
we exclude interaction data from the contig’s 
1-Mb flanking regions on each side and then 
predict its location in cross-validation. The inset 
shows the cumulative distribution of the absolute 
prediction error. All statistics are genome-wide.
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(Running head) Deconvolution of a synthetic metagenome with Hi-C 
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P1 P2

P1 P2

these regions (Gruber and Errington, 2009; Sullivan et al., 2009).
Thus, the data presented here, which demonstrate that the
centromeric region of a bacterial chromosome is particularly
compact in vivo, connect SMC’s previously noted effects upon
chromosome segregation and compaction.

Our models also elucidate the detailed arrangement of the
arms of the chromosome and demonstrate that the chromo-
somal arms are arranged in a periodic fashion. Interestingly, a
helical arrangement of newly replicated DNA has been observed
in B. subtilis (Berlatzky et al., 2008). While the mechanism behind
such a periodic arrangement in Caulobacter and/or B. subtilis is
yet to be unraveled, such arrangements could represent an
energetic minimum (Maritan et al., 2000). Alternatively, these
highly regular folding patterns could be the consequence of
interactions between the genome and helically arranged cyto-
skeletal proteins such as MreB (Gitai and Shapiro, 2003).

We find that opposite-arm loci equidistant from the parS
elements are aligned at similar positions along the long axis of
the wild-type swarmer cell chromosome structure. However, the
inversions in strains ET163 and ET166 yield regions of the struc-
ture in which opposite-arm loci are no longer well aligned. These
misalignments suggest that there are additional constraints on
the positioning of loci along the long axis of the structure/cell. In
keeping with the segregation-based model posed above, the
inversions in strains ET163 and ET166 could affect the timing of
segregation of opposite arm loci and thereby influence the align-
ment and positioning of the arms of the chromosome.
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Figure 7. The Caulobacter Chromosome Is Free to
Rotate around the Long Cell Axis
(A) Left: Schematic of a Caulobacter swarmer cell indi-

cating the positions of the new and old poles as well as the

dorsal and ventral sides of the cell. Negative and positive

signs refer to the convention used by our image analysis

software. Center: Example micrographs of double-labeled

Caulobacter swarmer cells showing configurations of the

chromosome in which the labeled loci reside on opposite

sides of the cell. Right: Relative positions of the left- and

right-arm markers in three strains marked at different

positions in the chromosome. Circles denote the means of

three experiments, each of which included at least 400

cells. Bars represent 95% confidence intervals of the

mean. The dotted line indicates the expected value for a

distribution in which loci have no preferential localization

along the short axis.

(B) Virtual cell showing the distribution of !200,000 LacI-

CFP foci along the short and long axes of the cell. Left:

Markers on the right arm. Center: Markers on the left arm.

Right: Merge of the two arms. Note that the two arms are

equally distributed along the short cell axis.

Our microscopy studies indicate that loci
have no preferential locations about the short
axis of the cell and therefore that the chromo-
some has no preferential orientation about this
axis. Therefore, the parS sites represent the
only sequence elements that stably anchor the
chromosome to the cell. Such a finding is con-
sistent with recent simulations, which have
illustrated that anchoring near the origin alone

is sufficient to yield the overall linear arrangement of loci
observed in swarmer cells (Buenemann and Lenz, 2010).
However, it remains possible that events such as transertion
(Woldringh, 2002), the simultaneous transcription, translation,
and insertion of membrane proteins into the cellular envelope,
may transiently couple the genome to the membrane.

In eukaryotes the subnuclear localization of genes is some-
times correlated with their expression (Andrulis et al., 1998;
Kosak et al., 2002). In most cases cause-and-effect relationships
for these correlations are unclear. In cases where the subnuclear
position of a gene could be experimentally altered, the resulting
gene expression changes were small (Finlan et al., 2008; Ku-
maran and Spector, 2008). Our observation that genome-wide
rotation resulting from relocalization of the parS sites did not
dramatically alter gene expression is in line with these eukaryotic
studies. Although a number of genes were affected, the effect
was typically less than 2-fold. Thus, the precise position of a
gene along the long axis of the cell does not strongly influence
its expression. Additionally, it is unlikely that the perturbed ge-
nome conformations observed in our inversion strains are the
result of large-scale transcriptional changes. Instead, the struc-
tural changes observed in the strains are likely the result of
changes in the order of loci segregation caused by the move-
ment of the parS sites.

The work presented here illustrates how a comprehensive
study of genome 3D architecture can provide insight into the roles
of sequence elements and fundamental DNA-based processes

Molecular Cell

The 3D Architecture of a Bacterial Genome

262 Molecular Cell 44, 252–264, October 21, 2011 ª2011 Elsevier Inc.
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Human α-globin domain



Human α-globin domain 
ENm008 genomic structure and environment

ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816

The ENCODE data for ENm008 region was obtained from the UCSC Genome Browser tracks for: RefSeq annotated genes, 
Affymetrix/CSHL expression data (Gingeras Group at Cold Spring Harbor), Duke/NHGRI DNaseI Hypersensitivity data (Crawford 

Group at Duke University), and Histone Modifications by Broad Institute ChIP-seq (Bernstein Group at Broad Institute of Harvard and 
MIT).
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The “Chromatin Globule” model
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of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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PolII

HBB

Eraf

Factory

in-out position of active genes, relative to factories, was related to
differential positioning relative to the chromosome territory. To test
this, we assessed the position of the infrequently transcribed gene Uros
relative to the chromosome 7 territory (Supplementary Fig. 2 online).
Although Uros is actively transcribed only 29% of the time, it was
found outside its chromosome territory in 79% of cases. In contrast,
the inactive gene Fgfr2 was outside the chromosome territory in only
19% of cases (Supplementary Fig. 2 online). These results confirm
that expressed genes are often located outside chromosome territories
and inactive genes are more often inside chromosome territories. But
these data do not show a correlation between positioning relative to
the chromosome territory and the on-off transcriptional behavior of
active genes. Instead, our data suggest that genes with transcriptional
potential are preferentially located outside chromosome territories,
but this alone is not sufficient for transcription.

RNAP II factories are limiting in vivo
We noticed that the number of RNAP II foci in erythroid cells was
markedly lower than that reported for fibroblast-like cell lines. Figure 6
shows deconvoluted, projected images derived from 3D image stacks
showing all the RNAP II transcription factories in single cell nuclei

from various tissues. We found that erythroid cells had, on average,
only 100–300 RNAP II foci per nucleus. Many other tissue types
have equivalent numbers of RNAP II foci, suggesting that erythroid
cells do not have abnormally low numbers of RNAP II foci.
In contrast, limited-passage mouse embryonic fibroblasts (MEFs)
have a much greater number and higher density of RNAP II foci,
similar to previous reports for HeLa and fibroblast cell lines. We
conclude that the number of transcription factories in tissues is far
more restricted than indicated by previous estimates from cultured
cells. It is, perhaps, not surprising that colocalization of transcribed
genes was not observed in a recent study using cultured fibroblast-like
cells27. Our data indicate that erythroid and other differentiated or
committed tissue types have a limited number of available transcription
sites. Coupled with estimates from expressed-sequence tag databases,
which show that erythroid cells express at least 4,000 genes (data not
shown), we conclude that many genes are obliged to seek out and
share the same factory.

3C analysis
Finally, we corroborated the colocalization of transcribed alleles by a
completely independent method. 3C generates a population-average
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Figure 6 Comparison of RNAP II foci in several tissue types and MEFs. (a) Deconvoluted maximum-intensity projections of image stacks of nuclei
immunostained for RNAP II. E10, embryonic blood; E14, fetal liver erythroid; AS, adult anemic spleen erythroid; Sp, normal adult spleen; Th, adult thymus;
Br, fetal brain. Scale bar, 10 mm. (b) Numbers of RNAP II foci counted for each nucleus shown in a.

Figure 5 Actively transcribed genes colocalize to
shared transcription factories. (a) Single optical
section of a triple-label DNA immuno-FISH on
erythroid cell, showing Hbb (green), Eraf (red)
and RNAP II foci (blue). The merged and
separate channels of the signals are shown in the
side panels. On the left of the main panel, an
Hbb signal alone associates with an RNAP II
focus. On the right, two colocalizing signals
associate with the same RNAP II focus. Scale
bar, 5 mm. (b) A separate optical section of the
same cell showing the second Eraf allele, which
does not associate with an RNAP II focus.
(c) Box and whiskers plot of the distributions of
3D measurements of the separation distance
between Hbb and Eraf loci (n ¼ 84), divided into
RNAP II–associated versus nonassociated.
(d) Triple-label RNA immuno-FISH on erythroid
cell showing Hbb-b1 (red), Eraf (green) and
RNAP II (blue). Left panels, colocalized trans-
cription signals associating with the same RNAP
II focus. Right panels, separate transcription
signals associating with distant RNAP II foci.
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Caulobacter crescentus genome



 169 5C primers on + strand 
 170 5C primers on – strand 

 28,730 chromatin interactions
~13Kb

The 3D architecture of Caulobacter Crescentus 
4,016,942  bp & 3,767 genes 
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5C interaction matrix 
ELLIPSOID for Caulobacter cresentus 
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3D model building with the 5C + IMP approach 
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Genome organization in Caulobacter crescentus
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Moving the parS sites 400 Kb away from Ori
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Moving the parS sites results in whole genome rotation!
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Genome architecture in Caulobacter 
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On TADs and hormones



Progesterone-regulated transcription in breast cancer

>	2,000	genes	Up-regulated	
>	2,000	genes	Down-regulated	

Regulation in 3D?
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Remodelling
complexes
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Vicent)et#al#2011,))Wright)et#al#2012,)Ballare)et#al#2012)

Eukaryotic DNA is packaged into chromatin through
its association with histone proteins. The nucleosome
core particle consists of 146 bp wrapped around a histone
octamer consisting of two copies each of the core histone
proteins H2A, H2B, H3, and H4. Concomitant with the
recruitment of the ternary complex of phospho (p) PR/
pErk/pMsk1 to the MMTV promoter, histone H3 be-
comes phosphorylated at serine 10 and acetylated at ly-
sine 14, only on the nucleosome containing the HREs and
not on adjacent nucleosomes (Fig. 2, middle panel) (53).
Phosphoacetylation of histone H3 can be blocked by in-
hibiting Erk or Msk1 activation resulting in a marked
reduction of MMTV promoter activation by hormone.
Blocking H3 phosphoacetylation precludes displacement
of a repressive complex containing HP1!, as well as the
recruitment of the Brg1-containing chromatin remodel-
ing complex, thus preventing displacement of histone H2A/
H2B dimers and subsequent promoter activation.

Most reports on the rapid action of PR have focused in
the cell signaling pathways activated by progestins (17,
18, 55), but how these pathways are integrated with the

transcriptional function of PR has remained elusive. We
have shown that some of the kinases activated by proges-
tins in the cytoplasm phosphorylate PR and form a com-
plex with the activated PR. The complex of activated PR
and accompanying kinases is recruited to the target sites
in chromatin where the kinases modify chromatin pro-
teins locally as a prerequisite for chromatin remodeling
and gene regulation. Thus, we propose that the “non-
genomic” and “genomic” pathways of progestin action
converge on chromatin to enable gene regulation.

Hormone-Induced ATP-Dependent
Chromatin Remodeling Needs
Cooperation of Various Enzymatic
Activities

Modulation of the structure and dynamics of nucleo-
somes is an important regulatory mechanism in all DNA-
based processes and is primarily catalyzed by chromatin
remodeling complexes. Such complexes can either modify

FIG. 1. Initial steps of PR activation. Progestins bind to cytoplasmic PR/ER complexes, anchored in the cell membrane by palmitoyl residues, and
activate the Src/Ras/Erk pathway, leading to nuclear accumulation of activated pErk. The majority of PR is nuclear and associated with chaperones
(Hsps). Upon binding of progestins, PR homodimers dissociate from chaperones, and a fraction of PR is phosphorylated by pErk, which also
phosphorylates Msk1. A “PR-activated complex” composed of pPR/pErk/pMsk1 is formed. Progesterone induction also activates other kinase
signaling pathways as Janus kinase (JAK)/Stat, phosphatidylinositol kinase (PI3K)/serine-threonine kinase (Akt), and Cdk2 (red asterisk).

Mol Endocrinol, November 2010, 24(11):2088–2098 mend.endojournals.org 2091
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Are there TADs? how robust?
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Do TADs respond differently to Pg treatment?

O
b

s
e

rv
e

d
/e

x
p

e
c
te

d
 r

a
ti
o

 (
L

o
g

2
)

F
re

q
u

e
n

c
ie

s

E
x
p

re
s
s
io

n
 l
e

v
e

ls
 (

L
o

g
2
 R

P
K

M
)

30

20

10

0

0

-1

-2

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

4

3

2

1

0

-1

-2

-3

L
o

g
2
 f

o
ld

 c
h

a
n

g
e

Z
B

T
B

2

R
M

N
D

1

C
6

o
rf

2
1
1

C
C

D
C

1
7

0

E
S

R
1

S
Y

N
E

1

-Pg

+Pg

E
x
p

re
s
s
io

n
 l
e

v
e

ls
 (

L
o

g
2
 R

P
K

M
)

4

3

2

1

0

8

7

6

5

4

3

2

1

0

-1

-2

L
o

g
2
 f

o
ld

 c
h

a
n

g
e

M
R

F
A

P
1

S
1

0
0

P

M
R

F
A

P
1

L
1

B
L

O
C

1
S

4

K
IA

A
0

2
3

2

T
B

C
1

D
1

4

C
C

D
C

9
6

T
A

D
A

2
B

G
R

P
E

L
1

-Pg

+Pg

Observed
Expected

100-90

100-90

0-10

0-10%

% of genes per TAD with

positive or negative fold change

TAD 469 TAD 821



Do TADs respond differently to Pg treatment?

O
b

s
e

rv
e

d
/e

x
p

e
c
te

d
 r

a
ti
o

 (
L

o
g

2
)

F
re

q
u

e
n

c
ie

s

E
x
p

re
s
s
io

n
 l
e

v
e

ls
 (

L
o

g
2
 R

P
K

M
)

30

20

10

0

0

-1

-2

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

4

3

2

1

0

-1

-2

-3

L
o

g
2
 f
o

ld
 c

h
a

n
g

e

Z
B

T
B

2

R
M

N
D

1

C
6

o
rf

2
1
1

C
C

D
C

1
7

0

E
S

R
1

S
Y

N
E

1

-Pg

+Pg

E
x
p

re
s
s
io

n
 l
e

v
e

ls
 (

L
o

g
2
 R

P
K

M
)

4

3

2

1

0

8

7

6

5

4

3

2

1

0

-1

-2

L
o

g
2
 f
o

ld
 c

h
a

n
g

e

M
R

F
A

P
1

S
1

0
0

P

M
R

F
A

P
1

L
1

B
L

O
C

1
S

4

K
IA

A
0

2
3

2

T
B

C
1

D
1

4

C
C

D
C

9
6

T
A

D
A

2
B

G
R

P
E

L
1

-Pg

+Pg

Observed
Expected

100-90

100-90

0-10

0-10%

% of genes per TAD with

positive or negative fold change

Repressed
TADs

Activated
TADs

Other
TADs

Mean

Replicate 1

Replicate 2

Pg induced fold change per TAD (6h)

Fold change 6h Pg

-1.0

-0.5

0.0

0.5

1.0

1.5

Fo
ld

 c
ha

ng
e 

pe
r T

AD
 (L

og
2)

***
******

Fold change 1h Pg

Repressed
TADs

Activated
TADs

Other
TADs

Repressed
TADs

Activated
TADs

Other
TADs

***
******

-2.0

-1.0

0.0

1.0

2.0

3.0

Pg
 in

du
ce

d 
fo

ld
 c

ha
ng

e 
(lo

g2
) p

er
 g

en
e

Repressed
TADs

Activated
TADs

Other
TADs

***
******

Repressed
TADs

Activated
TADs

Other
TADs

-2.0

-1.0

0.0

1.0

2.0

Pg
 in

du
ce

d 
fo

ld
 c

ha
ng

e 
(lo

g2
) p

er
 T

AD
no

n-
co

di
ng

***
*****

Repressed
TADs

Activated
TADs

Other
TADs

-2.0

-1.0

0.0

1.0

2.0

3.0

Pg
 in

du
ce

d 
ch

an
ge

s 
in

 
in

tra
-T

AD
 in

te
ra

ct
io

ns
 (z

-s
co

re
)



Chr1:26,800,000-28,700,000

43
2

5

432

1
2.2

0.60.9
pool 1
pool 2

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

models (micra)

F
IS

H
 (

m
ic

ra
)

r= 0.94

1-5
2-4
2-3
3-4

Modeling 3D TADs

61 genomic regions containing 209 TADs covering 267Mb



How TADs respond structurally to Pg?
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How TADs respond structurally to Pg?
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Model for TAD regulation
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Structuring the COLORs of chromatin



Fly Chromatin COLORs  
Filion et al. (2010). Cell, 143(2), 212–224.

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonic Drosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.

2 Cell 143, 1–13, October 15, 2010 ª2010 Elsevier Inc.

Please cite this article in press as: Filion et al., Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila
Cells, Cell (2010), doi:10.1016/j.cell.2010.09.009

drawing by Guillaume Filion



Figure 1. Partition of the Drosophila Genome into Physical Domains
(A) Genome-wide interaction heatmap at 100 kb resolution for the Drosophila genome in Kc167 cells. Black circles and squares show interactions between

centromeres and telomeres, respectively. Red rectangles show interactions between chromosome arms 2L-2R and 3L-3R, respectively.

(B) Hi-C interaction frequencies displayed as a two-dimensional heat map at single fragment resolution for a 2 Mb region of chromosome 3R alongside with

selected epigenetic marks and chromatin types defined by the presence of various proteins and histone modifications. The white grid on the heat map shows

where the domains are partitioned.

Molecular Cell

3D Organization of the Drosophila Genome

Molecular Cell 48, 471–484, November 9, 2012 ª2012 Elsevier Inc. 473

50 ~1Mb regions
10 for each color

Fly Chromatin COLORs  
Hou et al. (2012). Molecular Cell, 48(3), 471–484.



Structural properties 
50 1Mb regions. 10 enriched for each color. 
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a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonic Drosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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ABSTRACT

Restraint-based modeling of genomes has been re-
cently explored with the advent of Chromosome Con-
formation Capture (3C-based) experiments. We pre-
viously developed a reconstruction method to re-
solve the 3D architecture of both prokaryotic and eu-
karyotic genomes using 3C-based data. These mod-
els were congruent with fluorescent imaging valida-
tion. However, the limits of such methods have not
systematically been assessed. Here we propose the
first evaluation of a mean-field restraint-based recon-
struction of genomes by considering diverse chro-
mosome architectures and different levels of data
noise and structural variability. The results show
that: first, current scoring functions for 3D recon-
struction correlate with the accuracy of the models;
second, reconstructed models are robust to noise
but sensitive to structural variability; third, the local
structure organization of genomes, such as Topo-
logically Associating Domains, results in more accu-
rate models; fourth, to a certain extent, the models
capture the intrinsic structural variability in the input
matrices and fifth, the accuracy of the models can be
a priori predicted by analyzing the properties of the
interaction matrices. In summary, our work provides
a systematic analysis of the limitations of a mean-
field restrain-based method, which could be taken
into consideration in further development of meth-
ods as well as their applications.

INTRODUCTION

Recent studies of the three-dimensional (3D) conforma-
tion of genomes are revealing insights into the organiza-
tion and the regulation of biological processes, such as gene

expression regulation and replication (1–6). The advent of
the so-called Chromosome Conformation Capture (3C) as-
says (7), which allowed identifying chromatin-looping inter-
actions between pairs of loci, helped deciphering some of
the key elements organizing the genomes. High-throughput
derivations of genome-wide 3C-based assays were estab-
lished with Hi-C technologies (8) for an unbiased identifi-
cation of chromatin interactions. The resulting genome in-
teraction matrices from Hi-C experiments have been exten-
sively used for computationally analyzing the organization
of genomes and genomic domains (5). In particular, a sig-
nificant number of new approaches for modeling the 3D or-
ganization of genomes have recently flourished (9–14). The
main goal of such approaches is to provide an accurate 3D
representation of the bi-dimensional interaction matrices,
which can then be more easily explored to extract biolog-
ical insights. One type of methods for building 3D models
from interaction matrices relies on the existence of a limited
number of conformational states in the cell. Such methods
are regarded as mean-field approaches and are able to cap-
ture, to a certain degree, the structural variability around
these mean structures (15).

We recently developed a mean-field method for model-
ing 3D structures of genomes and genomic domains based
on 3C interaction data (9). Our approach, called TADbit,
was developed around the Integrative Modeling Platform
(IMP, http://integrativemodeing.org), a general framework
for restraint-based modeling of 3D bio-molecular struc-
tures (16). Briefly, our method uses chromatin interaction
frequencies derived from experiments as a proxy of spatial
proximity between the ligation products of the 3C libraries.
Two fragments of DNA that interact with high frequency
are dynamically placed close in space in our models while
two fragments that do not interact as often will be kept
apart. Our method has been successfully applied to model
the structures of genomes and genomic domains in eukary-
ote and prokaryote organisms (17–19). In all of our studies,
the final models were partially validated by assessing their
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blue; note that the blue line is less smooth since LCR-Gg
interactions only occur during a subset of all time steps
represented by the red and black curves). Extending this
analysis to Ag and b indicates that all globin genes, but
particularly g-globin genes, tend to be located more per-
ipherally to the globule regardless of LCR contact
(Figure 4C). In contrast, in 293T cells, where the globule
is less compact, no preferential location is observed for
any of the locus sites of interest (Figure 4D). These
findings suggest that, in addition to favoring contacts
with the LCR, the CTCF-driven globule in K562
cells tends to displace the genes to be activated, i.e. the
g-globin genes here, away from the surrounding
chromatin.

Dominant CTCF interactions and stiff chromatin prevent
contacts between the LCR and globin genes in 293T cells

The interaction potentials observed in 293T cells can be
divided into two categories based on strength (Sup-
plementary Table S1). The strongest potentials are
between C-08 and C-20 and between C-20 and C-21.

A polymer model where these interactions alone are
present leads to a reduction of the tendency for globin
genes to be spatially close to the LCR when the chromatin
fiber is stiff (Supplementary Figure S5). To investigate the
influence of these interactions, in particular whether the
strongest interactions found in 293T cells are sufficient to
decrease LCR–gene interactions compared to K562 cells,
we used two additional models: one where only the two
strongly interacting sites are present (ignoring all other
interactions measured by 3C in 293T cells) and another
using chromatin with no interacting sites. Since the inter-
action events we defined earlier (40 nm between chromatin
fiber centers) do not always occur in 293T cells as they do
in K562 cells, we used the minimal distance obtained in
100 simulations as an alternative metric to represent
LCR–target proximities.
The model with no interacting sites serves as a baseline

(red lines, Figure 5). One might hypothesize that
introducing any interacting sites in this locus would
bring the LCR closer to targets on average. However,
interestingly, the model with just two pairs of strongly

Figure 4. Chromatin conformations favoring contacts between the b-globin genes and LCR in K562 cells. (A) Typical conformation of the 1Mbp
regions around the b-globin locus during a contact between LCR (green+star) and Gg (green). Blue sites: CTCF sites that form a connected network
of interaction (Supplementary Figure S1). Darkest blue sites: CTCF sites that surround the b-globin locus. Red sites: the isolated interaction between
C-08 and C-10. The conformation can be divided into a loop (stabilized by the red sites) and a compact globule (dashed orange ellipse) encompassing
the region from C-03 to C-10. (B) Spatial location of the contact: using 1000 equilibrium simulations of the same best-fit polymer as in A, we report
(i) the radial mass distribution of the compact globule, i.e. the average probability density for the location of the C-03 to C-10 region with respect to
the globule center of mass; (ii) the radial distribution of Gg and LCR during contacts and (iii) the radial distribution of the LCR (no matter the
position of Gg). One can see that the Gg/LCR contacts tend to occur away from the globule center. (C) Spatial location of the globin genes in K562
(obtained from 100 simulations of the best-fit polymer). Genes tend to be located away from the center regardless of LCR contact. Large distances
are particularly enhanced in the case of the g genes. (D) Same as in C but for 293T cells. No particular location can be observed for any of the genes.
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Junier (2012) Nucleic Acids Research

Figure 3. Spatial organization of genomic and epigenetic features. We used the 3D chromosomal structure BACH predicted for chromosome
2 in the HindIII sample as an illustrative example. In Figure 3A,Figure 3L, each sphere represent a topological domain. The volume of each sphere is
proportional to the genomic size of the corresponding topological domain. In Figure 3A, the red, white and blue colors represent topological
domains belonging to compartment A, straddle region and compartment B, respectively. Topological domains with the same compartment label
tend to locate on the same side of the structure. In Figure 3B,Figure 3L, the red, white and blue colors represent topological domains with high
value of features, median value of features and low value of features, respectively. The color scheme is proportional to the magnitude of the
continuous measurement of genetic and epigenetic features. We also report the odds ratio (OR) of the two by two contingency table and the p-value
of Fisher’s exact test. (A) Spatial organization of compartment label. OR = 39.20, p-value = 4.4e-16. (B) Spatial organization of gene density. OR = 13.21,
p-value = 2.2e-8. (C) Spatial organization of gene expression. OR = 4.00, p-value = 0.0012. (D) Spatial organization of chromatin accessibility.
OR = 26.88, p-value = 5.9e-12. (E) Spatial organization of genome-nuclear lamina interaction. OR = 40.00, p-value = 4.9e-13. (F) Spatial organization of
DNA replication time. OR = 32.00, p-value = 1.1e-10. (G) Spatial organization of H3K36me3. OR = 10.91, p-value = 1.0e-7. (H) Spatial organization of
H3K27me3. OR = 2.17, p-value = 0.0706. (I) Spatial organization of H3K4me3. OR = 24.43, p-value = 2.1e-11. (J) Spatial organization of H3K9me3.
OR = 15.71, p-value = 6.7e-8. (K) Spatial organization of H4K20me3. OR = 45.10, p-value = 1.0e-13. (L) Spatial organization of RNA polymerase II.
OR = 5.47, p-value = 0.0001.
doi:10.1371/journal.pcbi.1002893.g003

Spatial Organizations of Chromosomes

PLOS Computational Biology | www.ploscompbiol.org 9 January 2013 | Volume 9 | Issue 1 | e1002893

Hu (2013) PLoS Computational Biology

Kalhor (2011) Nature Biotechnology
Tjong (2012) Genome Research
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TCC frequency (Supplementary Methods). 
If a contact is not enforced, no assumptions 
are made about the relative positions of the corresponding spheres. 
Therefore, in contrast to other approaches12,30, our method does not 
correlate contact frequencies with average distances; it relies purely 
on the TCC data by incorporating only the presence or absence of 
chromatin contacts.

In a diploid cell, most loci are present in two copies. Because the 
TCC data do not distinguish between these copies, the optimal assign-
ment of each sphere to a specific contact is determined as a part of our 
optimization process31 using the integrative modeling platform28,29.

Finally, starting from random positions, we simultaneously opti-
mized the positions of all the spheres in a population of 10,000 genome 
structures to a score of zero, indicating that no restraint violations 
remained (Supplementary Methods).

To test how consistent this structure population is with the experi-
ment, we calculated the block contact frequency map from the popu-
lation of structures and compared it with the original data. The two 
were strongly correlated with an average Pearson’s correlation of 0.94, 
confirming the excellent agreement between contact frequencies in 
the structure population and experiment (Supplementary Fig. 7b–d). 
Furthermore, three independently calculated populations showed that 
our structure population was highly reproducible (Pearson’s r > 0.999), 
which also indicates that, at this resolution, the size of the model 
population was sufficiently large (Supplementary Methods).

Structural features of the genome population
Because chromatin contacts in the TCC data are observed over a 
wide range of frequencies, the resulting population shows a fairly 
large degree of structural variation (Supplementary Fig. 8a,b).  
For instance, on average only 21% of contacts are shared between 
any two structures in the population (Supplementary Fig. 8c). 

Despite this large heterogeneity, the structure population reveals 
a distinct and nonrandom chromosome organization. Specifically, 
the population clearly identifies the preferred radial positions of  
chromosomes (Fig. 6a,b and Supplementary Fig. 9b). These posi-
tions strongly agree with independent FISH studies in lymphoblasts4,5. 
The Pearson’s correlation between the FISH- and population-based 
average positions was 0.71 (P < 10−3) for the 22 chromosomes 
whose radial positions were previously determined4. Instead, radial 
positions in a control population generated without TCC data did 
not agree with the FISH data (Pearson’s r = –0.2, Supplementary  
Fig. 9a), indicating that TCC data are sufficient for generating the 
correct radial distributions seen in the imaging experiments4. In 
general, the radial chromosome positions tend to increase with their 
size, with some noticeable exceptions (Fig. 6b). One of these cases is 
the radial positions of chromosomes 18 and 19 which, despite their 
similar size, we observed at different positions5. Chromosome 19 
is located closer to the center of the nucleus, whereas chromosome 
18 is preferentially located closer to the nuclear envelope (Fig. 6a). 
Furthermore, the homologous copies of chromosome 18 are often 
distant from each other whereas those of chromosome 19 are often 
closely associated (Fig. 6a and Supplementary Fig. 9b), in agreement 
with independent experimental evidence5.

Structure-based analysis of territory colocalizations
When chromosome territories are clustered based on their average 
distances, two main groups can be identified (Fig. 6c). The first 
group (chromosomes 1, 11, 14–17 and 19–22) tends to occupy  
the central region of the nucleus as is evident from their population-
based joint localization probabilities (Fig. 6d). These chromosomes 
also tend to have relatively high gene densities32. The second group 

a b

c dCluster 2

15
11

14

16

19

17

6

3

5

8

12

9

1

20

21

22

2

X

10

7

18

13

4
15

11141619176358129
12021222X10718134

Cluster 1
Cluster 1

Cluster 2

Nuclear envelope0 Max.
1 µm

Chr18

D
en

si
ty

Chr19

3.0

2.5

2.0

1.5

1.0

0.5

0

0 0.2 0.4 0.6 0.8 1.0

Relative distance
from nuclear center

Chromosome size (Mb)

50 100 150 200 250

21 19

20

18

1716

14

15 13
10

12

11
9
8 7

X 6
5 3

2

1

4

22

R
el

at
iv

e 
ra

di
al

 p
os

iti
on

1.0

0.8

0.6

0.4

0.2

Figure 6 Population-based analysis of 
chromosome territory localizations in the nucleus. 
(a) The distribution of the radial positions for 
chromosomes 18 (red dashed line) and 19 (blue 
solid line), calculated from the genome structure 
population. Radial positions are calculated for 
the center of mass of each chromosome and are 
given as a fraction of the nuclear radius. (b) The 
average radial position of all chromosomes plotted 
against their size. Error bars, s.d. (c) Clustering of 
chromosomes with respect to the average distance 
between the center of mass of each chromosome 
pair in the genome structure population. The 
clustering dendrogram, which identifies two 
dominant clusters is shown on top. The matrix of 
average distances between pairs of chromosomes 
is shown at the bottom. The intensity of blue 
color increases with decreasing distance. (d) (Left 
panels) The density contour plot of the combined 
localization probability for all the chromosomes in 
cluster 1 (top panel) and cluster 2 (bottom panel) 
calculated from all the structures in the genome 
structure population. The rainbow color-coding 
on the central nuclear plane ranges from blue 
(minimum value) to red (maximum value).  
(Right panels) A representative genome 
structure from the genome structure population. 
Chromosome territories are shown for all the 
chromosomes in cluster 1 (top) and all the 
chromosomes in clusters 2 (bottom). The 
localization probabilities are calculated following 
a previously described procedure28.

(e.g., chromosome 4, whose size is 1.5 Mb), the LPD is highest in the
central region of the nucleus again along the central axis.

We then ask what factors are responsible for the chromo-
somes’ preferred locations. For each chromosome, we calculate a new
structure population for a nucleus containing only a single chro-
mosome but otherwise constrained in a manner identical to the
full simulation (i.e., the single chromosome population) (Fig. 2C).
Comparing the two structure populations reveals great differences
for each chromosome location (Fig. 2D). For example, in the full
simulation, large chromosomes reside substantially farther from
the SPB region toward the nucleolus than would be expected based
on chromosome tethering alone. The differences are caused by a vol-
ume exclusion effect: Because of tethering, the chromosomes must
compete for the limited space around the SPB. Smaller chromosomes
are naturally more restricted to regions closer to the SPB, which in turn
tends to exclude parts of larger chromosomes from these regions. For
smaller chromosomes, the opposite effect is observed; in the full
simulation, they exhibit an increased probability density around the
SPB (Supplemental Fig. 1). Importantly, due to the volume exclusion
effect, the preferred location of a chromosome is not defined by
tethering alone but also depends on the total number and lengths of
all other chromosomes in the nucleus.

Genome-wide chromosome contact patterns

Next, we measure how often any two chromosome chains come
into contact with each other over the entire structure population.
Interestingly, most chromosomes show distinct preferences for

interacting with certain others. For instance, chromosome 1 has
a significantly higher chance of interacting with chromosomes 3
and 6 than with any other chromosome. Its interactions with the
large chromosomes 4, 7, and 12 are substantially depleted (Fig. 3A).
Strikingly, almost identical chromosome interaction preferences
are observed in an independent genome-wide chromosome con-
formation capture experiment (Fig. 3A; Supplemental Fig. 2A; Duan
et al. 2010). Pearson’s correlation between the chromosome-pair
contact frequencies in our structure population and those
detected in the experiment is 0.94 (P < 10!15). In the random control,
the contact frequencies do not display any significant chromosome-
pair contact preferences (Pearson’s correlation between experimen-
tal data and the random control is !0.57) (Supplemental Fig. 2B).

Next, we compare contact frequencies for all possible pairings
of the 32 chromosome arms (Fig. 3B,C). It is evident that some
pairs of chromosome arms have a greater propensity to interact
than others. In particular, chromosome arms with <500 kb (chro-
mosomes 1, 3, 5, 6, 8, and 9) are more likely to interact with each
other than longer arms. For instance, the short arm of chromo-
some 1R is almost eight times more likely to interact with the short
arm of chromosome 3L than with the long arm of 4R. Also these
observations are in almost complete agreement with the confor-
mation capture experiments (Pearson’s correlation coefficient of
0.93, P < 10!15) (Fig. 3C,D; Duan et al. 2010).

Finally, when chromatin contacts are analyzed at a resolution
of 32 kb, the contact frequency heat map of the structure pop-
ulation shows highly organized cross-shaped patterns (Fig. 3E).

Figure 1. Population-based analysis of the S. cerevisiae genome organization. To analyze structural features of the genome, we defined an optimization
problem with three main components. (Top panels) A structural representation of chromosomes as flexible chromatin fibers (center), a structural rep-
resentation of the nuclear architecture (left), and the scoring function quantifying the genome structure’s accordance with nuclear landmark constraints
(right). (Middle panels) An optimization and sampling method, which minimizes the scoring function to generate a population of genome structures that
entirely satisfies all landmark constraints. (Bottom panels) The statistical analysis and comparison of structural features from the population of 3D genome
structures with all the experimental data.

Principles of 3D genome organization in yeast

Genome Research 3
www.genome.org
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A prominent feature emerges from all four clusters: the arms
are wound sinusoidally through space with roughly 1.5 period
repeats per arm. The partial mirroring between clusters 1 and 2
and clusters 3 and 4 has the effect of causing the arms to be either
intertwined (clusters 3 and 4) or separated (clusters 1 and 2). We
favor the intertwined conformation, as the corresponding model
clusters have lower variability (Figure S2C) and lower IMP objec-
tive function scores (Table S2). However, it is possible that both
conformations exist within a population of swarmer cells.

The parS Region Dictates the Orientation of the Entire
Caulobacter Chromosome
Our models suggest that the parS sites play a direct role in orga-
nizing the swarmer cell chromosome. Such a finding is con-
sistent with recent analyses that have suggested that these
sequence elements are specifically anchored to the Caulobacter
old cell pole through interactions with the ParB and PopZ
proteins (Bowman et al., 2008; Ebersbach et al., 2008; Toro
et al., 2008). Thus, we hypothesized that the orientation of the
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Figure 2. Modeling Reveals the 3D Architecture of the Swarmer Genome
(A) Outline of our modeling methodology. Restriction fragments were modeled as points connected by springs. The distance derived from the contact frequency

between pairs of fragments was used (i) to define the equilibrium length of the spring (see Supplemental Experimental Procedures) that connected these

fragments (ii). The 3D coordinates of all points were randomly initialized (iii), and optimization was performed to derive a structure that minimally violates these

equilibrium lengths (iv, a). This initialization and optimization procedure was repeated thousands of times to generate an ensemble of structures. These structures

were superimposed and grouped based upon their coordinates, yielding clusters of models in which the 3D coordinates of restriction fragments are structurally

very similar (iv, b).

(B) 3D density map representations of the four clusters from a wild-type swarmer modeling run. Each queried fragment is represented by a 3D Gaussian that has

a correlation coefficient >0.8 with the space this fragment occupies across all models within the cluster. The positioning of the maximally polar fragment (located

!7 kb from the parS) elements is indicated in orange.

(C) The centroid model of swarmer clusters 1–4. For more information regarding these clusters, see Figure S2 and Table S2.

Molecular Cell

The 3D Architecture of a Bacterial Genome

256 Molecular Cell 44, 252–264, October 21, 2011 ª2011 Elsevier Inc.
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cluster. GM12878 models were locally consistent; only one fragment  
(reverse 21) of these models did not have a consistent local conforma-
tion (that is, not superimposable within 150 nm for more than 75% 
of the models). In K562 cells, as many as 82% of the fragments were 
consistent across the models. This analysis shows that even in the 
more variable K562 models most of the region contains conserved 
local features, and that the diversity is the result of variable position-
ing of only a small minority of fragments (18%).

Models reproduce known long-range interactions
We determined whether the 3D models reflected the known long-
range interactions involving the -globin genes (Fig. 4). We used the 
selected cluster of models to calculate the average distance between 
the restriction fragment containing the -globin genes and other 
restriction fragments in ENm008 in both GM12878 and K562 cells. 
Restriction fragments containing the enhancer (HS40) and -globin 
genes were closely juxtaposed in K562 cells (159.1  13.3 nm). In 
contrast, HS40 was the only fragment that was located farther from 
the -globin genes in the inactive GM12878 cells (228.2  17.3 nm)  
than in K562 cells; all other fragments in GM12878 cells were 
located closer to the -globin genes (Fig. 4c). These observations 
are consistent with previous 3C experiments showing that strong inter-
action between HS40 and the -globin genes is evident only when 
the genes are expressed.

Validation by fluorescence in situ hybridization
We used an independent method, fluorescence in situ hybridization 
(FISH), to validate a particular aspect of our 3D models for the ENm008 
region. For small genomic domains such as the one studied here, deter-
mining the spatial positions of individual restriction fragments within 
the domain by FISH is not straightforward given the resolution of 
light microscopy, which is limited to ~200 nm. However, the models 
of the ENm008 domain predict that the locus is in a more extended 
conformation in K562 cells than in GM12878 cells, which would lead 
to a greater average 2D interphase distance between the ends of the 
500-kb locus. Prior work has demonstrated that this distance is large 
enough to be measured by interphase mapping with FISH41.

We found that in GM12878 these loci were on average 318.8  17.0 nm  
apart, whereas in K562 cells they were 391.9  23.4 nm apart.  
These differences, which are statistically significant (P < 0.011), 
show that in K562 cells the locus is in a more extended conforma-
tion, consistent with the models generated by IMP, in which the 2D 
distances (that is, without considering the orientation of the model) 
were 198.9  0.7 nm and 434.6  1.4 nm for GM12878 and K562 
models, respectively (Fig. 4d,e).

Formation of chromatin globules
A noteworthy feature observed in both cell lines was the formation 
of compact chromatin clusters, which we termed chromatin globules. 
In GM12878 cells, the ENm008 region forms a single chromatin 
 globule, whereas in K562 cells, the locus forms two chromatin globules 
(Fig. 4a,b and Supplementary Videos 1 and 2). This large-scale 
 difference in conformation between the two cell lines is also evidenced 
by the contact-map differences between GM12878 and K562 models 
(Fig. 5a). The heat map shows that most distances in GM12878 are 
smaller than in K562 cells, consistent with the formation of a single 
compact chromatin globule. However, also consistent with the 5C data, 
the -globin genes and the distant regulatory elements are closer in 
space in K562 cells than in GM12878 cells (red areas in Fig. 5a).

To explore whether these globules have some degree of internal 
organization, we determined the locations of genes and putative regu-
latory elements within the chromatin globules. We measured the radial 
positions of active genes, gene promoters, HSs, sites bound by CTCF 
and sites marked with trimethylated histone H3 Lys4 (H3K4me3) by 
calculating the average distance between each corresponding restric-
tion fragment and the geometrical center of the globules. Notably, we 
found that in the IMP models from both cell types, active genes and 
gene promoters are enriched near the center of the globule, whereas 
inactive genes and restriction fragments that do not contain genes are 
more peripheral (Fig. 5b). In contrast, HSs, CTCF-bound sites and 
sites marked by H3K4me3 are not preferentially located in the center, 
but are found throughout the globules.

In GM12878 cells, we visually identified nine loops ranging from 
about 20 to 70 kb long, with an average length of ~50 kb, an average 
distance between anchors of 102.8  5.1 nm and an average path 
length of 547.9  96.9 nm (Fig. 5c). In K562 cells, the locus forms two 
chromatin globules (five loops and two loops, respectively) ranging 
from about 30 to 70 kb, with an average length of ~60 kb, an average 
distance between anchors of 231.2  129.2 nm (190.6  43.5 nm not 
considering loop 6 connecting the two globular domains) and an aver-
age path length of 600.1  90.2 nm. Because our experiments covered 
only the ENm008 region, we were not able to determine whether the 
second chromatin globule observed in K562 cells contained additional 
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FISH Models (2D)

Fragment

Figure 4 3D models of the ENm008 ENCODE region containing the 
-globin locus. (a) 3D structure of the GM12878 models represented 

by the centroid of cluster 1. The 3D model is colored as in its linear 
representation (Fig. 1a). Regulatory elements are represented as spheres 
colored red (HS40), orange (other HSs) and green (CTCF). (b) 3D 
structure of the K562 models represented by the centroid of cluster 2. 
Data are represented as in panel a. (c) Distances between the -globin 
genes (restriction fragments 31 and 32) and other restriction fragments 
in ENm008. The plot shows the distribution and s.d. of the mean of 
distances for GM12878 models in cluster 1 (blue) and K562 models in 
cluster 2 (red). (d) Average distances (and their s.e.m.) between a pair 
of loci located on either end of the ENm008 domain, as determined 
by FISH with two fosmid probes (see Online Methods) and from a 2D 
representation of the IMP-generated models in both cell lines.  
(e) Example images obtained with FISH of GM12878 and K562 cell lines. 
The images show smaller distances between the probes in GM12878 than 
in K562 cell lines.

Umbarger (2011) Molecular Cell

from the spatial distance measurements directly to the cumula-
tive frequency distributions as predicted by a 3D random walk
(see Experimental Procedures for details). Interestingly, the the-
oretical distance distribution for a 3D random walk approached
the distance distribution observed for the DH cluster (Figure 7;
h4-h5). These data indicate that the probabilities for DH elements
to be in close proximity to the JH elements approach those ob-
served for a random walk. In contrast, for larger genomic sepa-
rations, the theoretical distance distributions did not compare
well with the observed spatial distance distribution, consistent
with the presence of chromatin territories and spatial confine-
ment (Figure 7; h4-h7, h4-h10 and h4-h11). Consequently, we

conclude that it is the Igh topology that mechanistically permits
long-range genomic interactions to occur in pro-B cells with
relatively high frequency.

DISCUSSION

Immunoglobulin Heavy-Chain Locus Topology
How chromosomes are structured in 3D space is largely un-
known and only recently data have emerged that have provided
insight into the organization of the chromatin fiber in eukaryotic
nuclei. Such studies have described the yeast chromatin fiber,
in large part, as a worm-like chain (Bystricky et al., 2004). The

Figure 5. 3D Topology of the Immunoglobulin Heavy-Chain Locus
The 3D topology of the Igh locus in pre-pro-B and pro-B cells was resolved using trilateration. The relative positions of 12 genomic markers spanning the entire

immunoglobulin heavy-chain locus were computed. Two different views are shown for both cell types.

(A) 3D Topology of the Igh locus in pre-pro-B cells.

(B) 3D Topology of the Igh locus in pro-B cells. Grey objects indicate CH regions and the 30 flanking region of the Igh locus. Blue objects indicate proximal VH

regions. Green objects indicate distal VH regions. Red line indicates the linker connecting the proximal VH and JH regions. Linkers are indicated only to show

connectivity.
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Figure 5. Three-dimensional modeling of the silent HoxA cluster identifies CTCF as a likely candidate mediating chromatin loops. (A) Example of a
5C3D output model of the transcriptionally silent HoxA cluster. Green lines represent genomic DNA, and vertices define boundaries between
consecutive restriction fragments. Colored spheres as indicated in the legend below identify the transcription start site of corresponding paralog
group. (B) Three-dimensional local base density scan of the transcriptionally silent HoxA cluster. Local base densities at consecutive 10 bp was
estimated in 100 possible 5C3D outputs models with Microcosm 1.0 (y-axis) and represented graphically along the corresponding genomic region
(ENCODE hg18 Chr7:27079118 to 27236536) (x-axis). The weight of the trace is proportional to the standard deviation with sharper areas indicating
smaller deviations. (C) CTCF binds to multiple discrete sites conserved in various cell lines at the 50-end of the HoxA cluster. Conserved CTCF sites
are highlighted by yellow vertical lines. (D) Conserved CTCF binding sites are clustered three-dimensionally at the 50-end of the HoxA cluster. The
position CTCF binding sites numbered in (C) are illustrated in the example 5C3D output model presented in (A). CTCF binding sites are represented
by colored spheres as indicated in the legend below. (E) CTCF binding sites are significantly close to each other in three-dimensional models.
Distances between pairs of CTCF binding sites were measured with Microcosm 2.0. and expressed as P-values summarized in a heatmap. Numbers at
the top and on the left of heatmap identify CTCF binding sites. Intersecting column and row number identifies the CTCF pair. P-values are
color-coded based on the scale presented on the right. P-values were calculated as described in ‘Materials and Methods’ section.
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Three-dimensional models of the human HoxA cluster during cellular differentiationFigure 8
Three-dimensional models of the human HoxA cluster during cellular differentiation. 5C array datasets from (a) undifferentiated and (b) differentiated 
samples were used to predict models of the HoxA cluster with the 5C3D program. Green lines represent genomic DNA and vertices define boundaries 
between consecutive restriction fragments. Colored spheres represent transcription start sites of HoxA genes as described in the legend. (c) Increased 
local genomic density surrounding 5' HoxA transcription start sites accompanies cellular differentiation. The y-axis indicates local genomic density and HoxA 
paralogue groups are identified on the x-axis. A linear schematic representation of the HoxA cluster is shown at the top, and green shading highlights the 
region of greatest density change. Error bars represent standard deviations.
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chromosomal pairings, except for pairing between the two smallest
arms (1R and 9R) (Supplementary Fig. 16a). However, the preference
for intra-chromosomal arm pairing versus inter-chromosomal arm
pairing decreased with increasing distance from centromeres
(Supplementary Fig. 16 b–d). These observations indicate that yeast
chromosome arms are highly flexible.

Combining our set of 4,097,539 total and 306,312 distinct inter-
actions with known spatial distances that separate sub-nuclear land-
marks12, we derived a three-dimensionalmap of the yeast genome. To

depict intra-chromosomal folding, we incorporated a metric that
converts interaction probabilities into nuclear distances (assigning
130 bp of packed chromatin a length of 1 nm, ref. 30) (Supplemen-
tary Figs 17 and 18 and Supplementary Methods). Using this ruler,
we calculated the spatial distances between all possible pairings of the
16 centromeres (Supplementary Tables 14 and 15) The results are
consistent with previous observations12.

The resulting map resembles a water lily, with 32 chromosome
arms jutting out from a base of clustered centromeres (Fig. 5).
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Figure 4 | Inter-chromosomal interactions. a, Circos diagram showing
interactions between chromosome I and the remaining chromosomes. All 16
yeast chromosomes are aligned circumferentially, and arcs depict distinct
inter-chromosomal interactions. Bold red hatch marks correspond to
centromeres. To aid visualization of centromere clustering, these
representations were created using the overlap set of inter-chromosomal
interactions identified from both HindIII and EcoRI libraries at an FDR
threshold of 1%. Additional heat maps and Circos diagrams are provided in
Supplementary Fig. 9. b, Circos diagram, generated using the inter-
chromosomal interactions identified from the HindIII libraries at an FDR
threshold of 1%, depicting the distinct interactions between a small and a
large chromosome (I and XIV, respectively). Most of the interactions
between these two chromosomes primarily involve the entirety of

chromosome I, and a distinct region of corresponding size on chromosome
XIV. c, Inter-chromosomal interactions between all pairs of the 32 yeast
chromosomal arms (the 10 kb region starting from the midpoint of the
centromere in each arm is excluded). For each chromosome, the shorter arm
is always placed before the longer arm. Note that the arms of small
chromosomes tend to interact with one another. The colour scale
corresponds to the natural log of the ratio of the observed versus expected
number of interactions (see Supplementary Materials). d, Enrichment of
interactions between centromeres, telomeres, early origins of replication,
and chromosomal breakpoints. To measure enrichment of strong
interactions with respect to a given class of genomic loci, we use receiver
operating curve (ROC) analysis.
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Figure 5 | Three-dimensional model of the yeast
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Can we predict the accuracy of the models?
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Can we predict the accuracy of the models?
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distance Spearman correlation coefficient (dSCC) between
all pairwise distances of particles in the best-reconstructed
model and the corresponding ones in each of the 100 origi-
nal toy structures was calculated. The dSCC measure varies
between −1.0 and 1.0 for comparisons where the distances
perfectly anti-correlate or correlate, respectively. Therefore,
a model with a dSCC of 1.0 indicates good accuracy regard-
less of the scale of the compared structure.

MMP

With the aim of identifying a priori whether an interaction
matrix has the potential of being use for modeling, we cal-
culated from each of the 168 simulated Hi-C matrices three
different measures: (i) the contribution of the significant
eigenvectors (SEV) from the matrix, (ii) the skewness and
(iii) the kurtosis of the distribution of Z-scores in the ma-
trix.

The contribution of the SEV score was obtained by first
calculating the eigenvectors of the interaction matrix and
the percentage of contribution of their corresponding eigen-
values. Next, we randomized 100 times the interaction ma-
trix by shuffling the cells in the matrix that are equidistant
from the diagonal. This shuffling strategy preserved the ex-
pected exponential decay of interactions as we go from the
diagonal to the anti-diagonal corners of the matrix. From
the 100 randomized matrices, we also calculated their eigen-
vectors and the percentage of contribution of their cor-
responding eigenvalues. We then set as ‘SEV’ those with
eigenvalues above the mean eigenvalue plus two standard
deviations of the equivalent eigenvectors in the random set
of matrices. The final SEV score was the sum of the differ-
ences of the contribution of eigenvalues of all SEV:

SEV =
∑

i

evi − revi

where evi corresponds to the contribution of the eigenvalue
of the SEV i in the interaction matrix and revi is the aver-
age contribution of the eigenvalue of the same eigenvector
in the randomized 100 interaction matrices. Overall, large
SEV scores are indicative of good potential for modeling.
Intuitively, they indicate the presence of specific contacts
that are not just the results of a random conformation of
the chromosome.

The other two descriptive statistics were calculated di-
rectly from the distribution of Z-scores in the Hi-C matrices.
First, the skewness statistic (SK) assesses in a single measure
whether a score is skewed toward the right or left tails of its
distribution. The kurtosis statistic (KT) complements the
interpretation of the skewness. For example, matrices with
skewness close to zero may result from multi-modal distri-
butions of Z-scores. In such cases, the distribution will re-
sult in large KT scores. Therefore, the SK score will indicate
skewness of the matrix toward positive or negative Z-scores
and the KT score will indicate whether a matrix results or
not in single-peaked distribution of Z-scores. For optimal
modeling in TADbit, we expect no skewness and a single
peak in the Z-score distribution. Both the skewness and the
KT statistic were estimated using the SciPy python library

(http://www.scipy.org). The SK and KT are calculated as:

SK =
∑N

i=1 (xi − x̄)3

∑N
i=1 (xi − x̄)2

3
/2

KT =
∑N

i=1 (xi − x̄)4

∑N
i=1 (xi − x̄)22

where N is the number of bins in the Z-score distribution
and xi corresponds to the frequency of a given bin i.

Finally, to calculate the MMP score, we used the size
(number of bins in the matrix), SEV, SK and KT for all 168
simulated Hi-C matrices as input to train a classifier with a
linear regression kernel using Weka (28). During the train-
ing of the classifier, we used the actual accuracy of the pro-
duced 3D models (that is, the dSCC measure) as a target
goal. We decided to use the dSCC measure instead of the
dRMSD accuracy measure because it is independent of the
scale and size of the objects to compare. The classifier, thus,
aims at identifying a linear combination of the four matrix
measures to produce a final score that best correlates with
the dSCC of the models. We trained the classifier with a 10-
fold cross-validation procedure, which resulted in a corre-
lation coefficient of 0.84 between the MMP score and the
dSCC measure. The MMP score is calculated as:

MMP = −0.0002 ∗ Size + 0.0335 ∗ SK − 0.0229∗
KU + 0.0069 ∗ SEV + 0.8126

RESULTS

Toy genome structures and derived matrices

We investigated the reconstruction efficiency of six types
of toy genomes hereafter labeled by ch40, ch75, ch150,
ch40 TAD, ch75 TAD and ch150 TAD depending on the
bp density along the chromosome and on the presence, or
not, of TAD-like organization. To this end, for each toy
genome, we generated seven sets of 100 different conforma-
tions, corresponding to seven different structural variability
levels. More precisely, the nth set was generated by extract-
ing 100 conformations separated by a time step of !t = 10n

iterations in the corresponding WLC simulation (Figure 2).
Altogether, for each toy genome we generated 700 different
chromosome conformations that were distributed among
seven different sets, with set 0 having the lowest structural
variability (!t = 1) and set 6 the highest (!t = 106). Such
structural sets were then used to derive four contact maps
with varying levels of experimental noise (that is, with ! =
50, 100, 150 and 200), which simulate the results of a hy-
pothetical Hi-C experiment. Finally, the contact maps were
input to TADbit to build 3D models using a previously im-
plemented protocol (9). The initial structural sets for the
six tested toy genome architectures, their derived interac-
tion matrices and the reconstructed 3D models are available
at http://www.3DGenomes.org/datasets. Specific details on
the construction of the toy genomes and the derived models
are given in the Materials and Methods.

Overall accuracy of the generated models

To assess the accuracy of the genomic 3D models built by
TADbit, we calculated two different accuracy measures be-
tween the reconstructed models and the toy genomic struc-
tures (that is, the dRMSD and the dSCC). Both measures
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…but we can differentiate between noise and structural variability 

and we can a priori predict the accuracy of the models
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