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Do TADs respond ditterently to Pg treatmente
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Fold change per TAD (Log2)
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Modeling 3D TADs
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How TADs respond structurally to Pge
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How TADs respond structurally to Pge
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Model for TAD
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TADs are functional units
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TADs are functional units
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ABSTRACT

Restraint-based modeling of genomes has been re-
cently explored with the advent of Chromosome Con-
formation Capture (3C-based) experiments. We pre-
viously developed a reconstruction method to re-
solve the 3D architecture of both prokaryotic and eu-
karyotic genomes using 3C-based data. These mod-
els were congruent with fluorescent imaging valida-
tion. However, the limits of such methods have not
systematically been assessed. Here we propose the
first evaluation of a mean-field restraint-based recon-
struction of genomes by considering diverse chro-
mosome architectures and different levels of data
noise and structural variability. The results show
that: first, current scoring functions for 3D recon-
struction correlate with the accuracy of the models;
second, reconstructed models are robust to noise
but sensitive to structural variability; third, the local
structure organization of genomes, such as Topo-
logically Associating Domains, results in more accu-
rate models; fourth, to a certain extent, the models
capture the intrinsic structural variability in the input
matrices and fifth, the accuracy of the models can be
a priori predicted by analyzing the properties of the
interaction matrices. In summary, our work provides
a systematic analysis of the limitations of a mean-
field restrain-based method, which could be taken
into consideration in further development of meth-
ods as well as their applications.

INTRODUCTION

Recent studies of the three-dimensional (3D) conforma-
tion of genomes are revealing insights into the organiza-
tion and the regulation of biological processes, such as gene

expression regulation and replication (1-6). The advent of
the so-called Chromosome Conformation Capture (3C) as-
says (7), which allowed identifying chromatin-looping inter-
actions between pairs of loci, helped deciphering some of
the key elements organizing the genomes. High-throughput
derivations of genome-wide 3C-based assays were estab-
lished with Hi-C technologies (8) for an unbiased identifi-
cation of chromatin interactions. The resulting genome in-
teraction matrices from Hi-C experiments have been exten-
sively used for computationally analyzing the organization
of genomes and genomic domains (5). In particular, a sig-
nificant number of new approaches for modeling the 3D or-
ganization of genomes have recently flourished (9—14). The
main goal of such approaches is to provide an accurate 3D
representation of the bi-dimensional interaction matrices,
which can then be more easily explored to extract biolog-
ical insights. One type of methods for building 3D models
from interaction matrices relies on the existence of a limited
number of conformational states in the cell. Such methods
are regarded as mean-field approaches and are able to cap-
ture, to a certain degree, the structural variability around
these mean structures (15).

We recently developed a mean-field method for model-
ing 3D structures of genomes and genomic domains based
on 3C interaction data (9). Our approach, called TADDit,
was developed around the Integrative Modeling Platform
(IMP, http://integrativemodeing.org), a general framework
for restraint-based modeling of 3D bio-molecular struc-
tures (16). Briefly, our method uses chromatin interaction
frequencies derived from experiments as a proxy of spatial
proximity between the ligation products of the 3C libraries.
Two fragments of DNA that interact with high frequency
are dynamically placed close in space in our models while
two fragments that do not interact as often will be kept
apart. Our method has been successfully applied to model
the structures of genomes and genomic domains in eukary-
ote and prokaryote organisms (17-19). In all of our studies,
the final models were partially validated by assessing their
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SIMULATED Hi-C MATRICES
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] ]

DISTANCES

[ CONTACT TO ]

150 bp/nm 75 bp/nm 40 bp/nm

4
[ CREATE PARTICLES ]

& ADD RESTRAINTS

Y
[ SIMULATED ANEALING ]

MONTE-CARLO

set 0 (Ats = 10°) set 1 (Ats = 107) set 2 (Ats = 10?)

MODEL SELECTION
(lowest objective function)

Contact Map
Y

MODEL ANALYSIS

| Simulated
“Hi-C” matrix
with noise

Contact
(d <200 nm)

by Ivan Junier



loy interaction matrices

set 0 (Ats=10°)
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Reconstructing toy models

chr40_TAD

Original matrix
oo R EEERET M4 5 =100
200 [ ig Ats=10
200]; 215 TADbit-SCC: 0.91
so0 figt 7 B W28 <dRMSD>: 32.7 nm
Sesltien i
I chr150_TAD
O %Qfﬁ matr I' 6.0 a=50
el B4
3 3.0 Ats=1
100 i E—}][?S TADbIit-SCC: 0.82
150F ™ :i:g <dRMSD>: 45.4 nm
200 ki & -6.0 <dSCC>: 0.86




TADs & higherres are "good”

175

~l
&)
]

dRMSD (nm)

40 75 150
Resolution



<dRMSD> (nm)

0.4

Noise is “OK"

== + NOISEe level

05 06 07 08 09 1.0
TADDbIit-SCC



Structural vcrmbﬂﬁy is “"NOT OK”

=== + Structural variability

150

<dRMSD> (nm)
~
&)

50

25

04 05 06 07 08 09 1.0
TADDbIit-SCC



<dRMSD> (nm)

Can we predict the accuracy of the models@
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Toy genome: chrd40_TAD

Density: 40 bp/nm
TADs: Yes
Noise: 150

Ats:  10°

% Sig. Cont. EV:  32.3
Skewness: -0.32
Kurtosis: -0.69

eigenvalues (% contribution)

o bbon bbb bbb b

-8 6 -4 -2 0 2 4
Z-score
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— r=-0.53
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% Sig. Cont. eigenvalues (SEV)
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Skewness (SK)

2 i}
Kurtosis (KT)




Skewness “side effect”

150

100 —

<dRMSD> (m)

50—

- o0 OO + noise levels
== + Structural variability

l I l l l l l
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
Skewness (SK)

3.0



MMP score

Can we predict the accuracy of the models?

MMP = —0.0002 % Size 4+ 0.0335 x SK — 0.0229x
KU + 0.0069 x SEV + 0.8126

Human Chr1:120,640,000-128,040,000

Size: 186
SEV:

MMP score

0.4 | | | | |
0.4 0.5 0.6 0.7 0.8 0.9 1.0
dscc



Higherres is "good”

out your $$ in sequencing

Noise is “OK”

no need to worry much

Structural variability is "“NOT OK"

homogenize your cell population!

...but we can ditterentiate between noise and structural variability

and we can a priori predict the accuracy of the models
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