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Drug blending as a mechanism to overcome drug 
resistance in cancer therapy.
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Drug resistance is a major problem  
in cancer treatment 

Holohan, C.et al.  Cancer drug resistance: an evolving paradigm. Nature Reviews. Cancer. 



Mutations in drug targets is a high-frequent 
mechanism resistance



Predict of the cancer-associated likelihood of a mutation? 

Predict the resistance-impact of the mutation?.

Propose alternative treatment to the resistance?

So… can we…



Low-frequency mutations can drive drug resistance

Schmitt, M., et al. (2015). The influence of subclonal resistance mutations on targeted cancer therapy. Nature Reviews. Clinical Oncology. 



Cancer mutational landscape is complex and heterogeneous 

Alexandrov, L. B.et al. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415—21



Mutational signatures of ~30 types of cancer 

Alexandrov et al, Nature 500, 415-421 (22 August 2013) doi:10:1038/nature12477

Alexandrov, L. B.et al. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415—21
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Drug Blending concept
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Mutational probability  
in melanoma and colorectal cancer



ERK1/2 are promising targets for the 
treatment of melanoma and colon cancer

Schmitt, M., et al. (2015). The influence of subclonal resistance mutations on targeted cancer therapy. Nature Reviews. Clinical Oncology. 



PDB: 4QTE

Probability of spontaneous mutation of ERK2 
VTX-11e binding-site



Probability of spontaneous mutation of ERK2 
VTX-11e binding-site

melanoma colorectal cancer



ERK2 melanoma mutational landscape reveals 
a long-tailed distribution enriched in C>T 



Colorectal cancer distribution results in  
higher likelihood median values



1.Prediction of the cancer-associated likelihood. 

2.Prediction of the resistance-impact.

3. Proposal of alternative non-resistant mutants

what do we propose to overcome resistance?



Predicting resistance using structural features 
and a Random Forest Classifier 

Structural 
features of 

wild type and 
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model  
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Residue structural features 
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Platinum database 
http://bleoberis.bioc.cam.ac.uk/platinum/

Increased sensitivity Strong resistanceResistanceNeutral

Fold change 
<= -5.0

180 entries

Fold change 
<= -1.2 and >-5.0

180 entries

Fold change 
<= 1.2 and > -1.2

71 entries

Fold change 
> 1.2

180 entries

Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). Nucleic Acids Research, 43(D1), D387—D391.



10-fold cross validation
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Residue structural features 
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Resistance-like mutations in ERK2 
for melanoma and colorectal cancer

Normalized resistance score
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Validating some predictions 
In-vitro identification of ERK2 VTX-11e mutants in A375 melanoma cell line

P58S - Strong resistance - 0.39
Y64N - Resistance - 0.35
C65Y - Strong resistance - 0.29
G37S - Resistance - 0.42
P58L - Strong resistance - 0.40

Y36N - Strong resistance - 0.33

Y36H - Strong resistance - 0.32

P58T - Resistance - 0.34



1.Prediction of the cancer-associated likelihood. 

2.Prediction of the resistance-impact.

3. Proposal of alternative non-resistant mutants

what do we propose to overcome resistance?



Predicted sensitivity map of ERK2 inhibitors to 
likely-and-resistant mutations
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The control case, VTX11e, is predicted as 
sensitive to most of the screened mutations
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del22379 seems to be unaffected by all of the 
screened mutations!



The e75 compound shows a low resistant profile 
against most of the VTX11e resistant mutations

e75



E7X series does not occupy the  
“resistant region”
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1.Prediction of the cancer-associated likelihood. 

2.Prediction of the resistance-impact.

3. Proposal of alternative non-resistant mutants

what do we propose to overcome resistance?
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Resistant mutants per tumor size  
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All possible mutations will occur if a tumour is 
large enough 

Ling, S., et al. (2015). Proc Natl Acad Sci U S A, 112(47), E6496—505.

A tumor comprising many cells can be compared to a natural
population with many individuals. The amount of genetic di-
versity reflects how it has evolved and can influence its fu-
ture evolution. We evaluated a single tumor by sequencing or
genotyping nearly 300 regions from the tumor. When the data
were analyzed by modern population genetic theory, we esti-
mated more than 100 million coding region mutations in this un-
exceptional tumor. The extreme genetic diversity implies evo-
lution under the non-Darwinian mode. In contrast, under the
prevailing view of Darwinian selection, the genetic diversity
would be orders of magnitude lower. Because genetic diversity
accrues rapidly, a high probability of drug resistance should be
heeded, even in the treatment of microscopic tumors.



Take home messages

We can use cancer signatures to predict the most likely mutations.  
However, we need to move towards “personalized” signatures.

We can predict which of the likely mutations, are more prone to generate resistance to treatment.

We can propose alternative/parallel treatments to overcome future resistance.

All possible mutations will occur if a tumour is large enough 
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