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Higher-order organization
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Restraintbased Modeling
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TECHNICAL REPORTS

The three-dimensional folding of the o.-globin gene
domain reveals formation of chromatin globules

Davide Bait'+%, Amartya Sanyal>*, Bryan R Lajoie?*, Emidio Capriotti', Meg Byron®, Jeanne B Lawrence®,

Job Dekker? & Marc A Marti-Renom!

‘We developed a general approach that combines chromosome
conformation capture carbon copy (5C) with the Integrated
Modeling Platform (IMP) to generate high-resolution three-

e

ligation to study chromatin looping interactions’ 12, 3C-based assays
have been used to show that specific elements such as promoters,
Jved

nsional models of hromatn at

loops
folding™1"

e a-globin locus, which
expresed in K562 cels and slnced n lymphoblastid cells
(GM12678). The models accurately reproduce the known
Tooping interactions between the a-globin genes and their
distal regulatory elements. Further, we find using our approach
that the domain folds into a

sets
can help rescarchers build spatial modelsof chromatin

Previously, chromatin conformation has been modeled using
polymer models®!* and molecular-dynamics simulations'?, which

202 However,such methods

GM12678 cells whereas two globales are formed in| sz

tin folding Recentl combi-
nation del i

cells The central cores of
lram(nbed genes, whereas nontranscribed o' more
pheral. We propose that globule formation represents
igher-orde olding satc related o clustering of (vanscnbed

models for the topological conformation of the immunoglobulin
heavy chain®, the HoxA® loci and the yeast genome®!. However,
the

‘observed by microscopy.

Currently, eff directed at producing high

ing od ptiniston’, b linsed syt the 2D modl'
o overcome suchlimitations,we deeloped a new approuch that
permencs i the INE e apled

specific

chromatin states are mapped onto the linear genome sequence!.

However, these lincar representations do not indicate functional or
F

this appwa:h higher-order spatial organization of
a 500 Kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster
of ubiquitously expressed housckeeping genes is the tissue-specific

that widely spaced functional
I I

a-globin l in erythroid cells. This 500-kb

NCODE

somes is thought to faciltate compartmentalization®*, chromatin

)
e - lobin locus hs been used widely s el 1 tudy the

o 5
elements™”, all of which may modulate the output and functional
state of the genome. A general approach for determining the spatial

Ihe ccplbingenes are upsgulted b st of nctoal clmens
P P

Py Hs 0,

in higher-
in general.

e
as an enhancer in reporter constructs and its deletion greatly affects

transcription factors including GATA factors and NF-E2 (ref, 34)
Notably, previous 3C studies have demonstrted direct long-range
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SUMMARY

We have determined the three-dimensional (3D)
itecture of the Caulobacter crescentus genome

by Gombining genome-wide chromatin interaction
detection, live-cell imaging,

(Tolhuis st al., 2002; Vernimmen et al, 2007). Such examples.
jest that studies of the high-resolution folding of genomes

the spatial positioning of many loci, have represented major
technical challenges.

eling. Using
bon copy (5C), we derive ~13 kb resolution 3D
models of the Caulobacter genome. The resultin
models illustrate that the genome is ellipsoidal
with periodically arranged arms. The parS sites,
to bo involved in dhvomosome segregation, are posh
tioned at one pole, where they anchor the chromo-
some to the cell and contribute to the formation of
a compact chromatin conformation. Repositioning
these elements resulted in rotat f the chromo-
‘some that changed the subcellular positions of most
genes. Such rotations did not lead to large-scale
chnngas in gene expression, indicating that genome
fol es not strongly affect gene regulation.
Goleciely, ou data suggest that genome fodng
is globally dictated by the parS sites and chromo-
‘some segregation.

INTRODUCTION

The three-dimensional (3D) architecture of the genome both
reflects and reguiates its functional state (Dekker, 2008; Tha-
bichler and Shapiro, 2006z). For example, chromosome segre-
gation impacts bacterial locus subcellular positioning (Jun and
Mulder, 2006; White et a., 2008), and chromatin loops that place
promoters and distant enhancers within close spatial proximity

ges, including automated fluorescent imaging (Violler et al.,

hromosome conformation capture (3C)-based ap-

‘s (Dekker et al, 2002; Dostio et al, 2006; Duan ot al.

zmu Fooderst, 2009;Lisbaman-Alden ot 2003 Simo-
I

eoome.uide cvomotome mmng Fluorescent microscopy-

based approaches allow the accurate determination of the

o
‘somal loci, while high-throughput 3C-based approaches enable
quantification of interloci nteraction frequencies that can sub-
sequently be used to infer the average 3D distances between
these loci. Studies utiizing one or both of these approaches.
have highlighted the potential of genome-wide studies of chro-
‘mosome structure and have begun o reveal specific features.
of "

2009; Simonis et a., 2006) and the correlation between a locus’
genomic and subcelluar positioning In bacteria (Nielsen et al.,
2006; Teleman et al, 1998; Wang et al., 2006b). However, the
detailed structures of genomes are only beginning 1o be re-
vealed, and many dstails, including the identities of the se-
quence elements that define such structures, await further
elucidation.

sequence elements that define its architecture. Toward this
goal, we studied the synchronizable bacterium, Caulobacter
crescentus (nereafter Caulobacter), whose single Gircular chro-
‘mosome s organized such that the origin and terminus of repli-

play important roles in eukaryotic. transcriptional regulation  cation reside near opposite poles of the cell and other loci ie

252 Molecular Cell 44, 252-264, October 21, 2011 ©2011 Elsevier Inc.
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ABSTRACT

Restraint-based modeling of genomes has been re-
cently explored with the advent of Chromosome Con-
formation Capture (3C-based) experiments. We pre-
viously developed a reconstruction method to re-
solve the 3D architecture of both prokaryotic and eu-
karyotic genomes using 3C-based data. These mod-
els were congruent with fluorescent imaging valida-
tion. However, the limits of such methods have not
systematically been assessed. Here we propose the
first evaluation of a mean-field restraint-based recon-
struction of genomes by considering diverse chro-
mosome architectures and different levels of data
noise and structural variability. The results show
that: first, current scoring functions for 3D recon-
struction correlate with the accuracy of the models;
second, reconstructed models are robust to noise
but sensitive to structural variability; third, the local
structure organization of genomes, such as Topo-
logically Associating Domains, results in more accu-
rate models; fourth, to a certain extent, the models
capture the intrinsic structural variability in the input
matrices and fifth, the accuracy of the models can be
a priori predicted by analyzing the properties of the
interaction matrices. In summary, our work provides
a systematic analysis of the limitations of a mean-
field restrain-based method, which could be taken
into consideration in further development of meth-
ods as well as their applications.

INTRODUCTION

Recent studies of the three-dimensional (3D) conforma-
tion of genomes are revealing insights into the organiza-
tion and the regulation of biological processes, such as gene

expression regulation and replication (1-6). The advent of
the so-called Chromosome Conformation Capture (3C) as-
says (7), which allowed identifying chromatin-looping inter-
actions between pairs of loci, helped deciphering some of
the key elements organizing the genomes. High-throughput
derivations of genome-wide 3C-based assays were estab-
lished with Hi-C technologies (8) for an unbiased identifi-
cation of chromatin interactions. The resulting genome in-
teraction matrices from Hi-C experiments have been exten-
sively used for computationally analyzing the organization
of genomes and genomic domains (5). In particular, a sig-
nificant number of new approaches for modeling the 3D or-
ganization of genomes have recently flourished (9-14). The
main goal of such approaches is to provide an accurate 3D
representation of the bi-dimensional interaction matrices,
which can then be more easily explored to extract biolog-
ical insights. One type of methods for building 3D models
from interaction matrices relies on the existence of a limited
number of conformational states in the cell. Such methods
are regarded as mean-field approaches and are able to cap-
ture, to a certain degree, the structural variability around
these mean structures (15).

We recently developed a mean-field method for model-
ing 3D structures of genomes and genomic domains based
on 3C interaction data (9). Our approach, called TADbit,
was developed around the Integrative Modeling Platform
(IMP, http://integrativemodeing.org), a general framework
for restraint-based modeling of 3D bio-molecular struc-
tures (16). Briefly, our method uses chromatin interaction
frequencies derived from experiments as a proxy of spatial
proximity between the ligation products of the 3C libraries.
Two fragments of DNA that interact with high frequency
are dynamically placed close in space in our models while
two fragments that do not interact as often will be kept
apart. Our method has been successfully applied to model
the structures of genomes and genomic domains in eukary-
ote and prokaryote organisms (17-19). In all of our studies,
the final models were partially validated by assessing their

*To whom correspondence should be addressed. Tel: +34 934 020 542; Fax: +34 934 037 279; Email: mmarti@pcb.ub.cat
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Reconstructing toy models
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Structural variability is “NOT OK”
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Progesteroneregulated franscription in breast cancer
le Dily, F. ef al. Genes & Dev (2014

hormone

PI3K/Akt pathway™ Cytoplasm
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JAK/STAT pathway™
v > 2,000 genes Up-regulated
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Cdk2 pathway*
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Regulation in 3D?

\\ PR activated
complex

Activated Erk A complex of p-PR, p-Erk and p-MSk
phosphorylates PR. is formed.

Vicent et al 2011, Wright et al 2012, Ballare et al 2012
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Are TADs homogeneous?
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Fold change per TAD (Logz)
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Modeling 3D TADs
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ow TADs respond structurally to Pge
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Model tor TAD regulation
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