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Restraintbased Modeling
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TECHNICAL REPORTS

The three-dimensional folding of the o.-globin gene
domain reveals formation of chromatin globules

Davide Bait'+%, Amartya Sanyal>*, Bryan R Lajoie?*, Emidio Capriotti', Meg Byron®, Jeanne B Lawrence®,

Job Dekker? & Marc A Marti-Renom!

‘We developed a general approach that combines chromosome
conformation capture carbon copy (5C) with the Integrated
Modeling Platform (IMP) to generate high-resolution three-

e

ligation to study chromatin looping interactions’ 12, 3C-based assays
have been used to show that specific elements such as promoters,
Jved

nsional models of chromatin at )

loops
folding™1"

taining the a-globin locus, which
expressed in K562 cells and silenced in lymphoblastoid cells
(GM12678). The models accurately reproduce the known
Tooping interactions between the a-globin genes and their
distal regulatory elements. Further, we find using our approach

sets
can help rescarchers build spatial modelsof chromatin

Previously, chromatin conformation has been modeled using
polymer models®!* and molecular-dynamics simulations'?, which

202 However,such methods

that the domain folds into a sing|
GM12878 cells, whereas two globules are formed in K562
iched for

tin folding Recentl combi-
nation del i

cells The central cores of
transcribed genes, whereas nontranscribed chromatin is more
peripheral. We propose that globule formation represents a
higher-order folding state related to clustering of transcribed
ate erin Tibe

models for the topological conformation of the immunoglobulin
heavy chain®, the HoxA® loci and the yeast genome®!. However,
the

‘observed by microscopy.

Currently, eff directed at producing high

ing and optimization®, or by limited analysis of the 3D models®.
To overcome such limitations, we developed a new approach that
couples high-throughput 5C experiments? with the IMP. We applied

specific

chromatin states are mapped onto the linear genome sequence!.

However, these lincar representations do not indicate functional or
F

this approach higher-order spatial organization of
a 500 Kilobase (kb) gene-dense domain located near the left telo-

mere of human chromosome 16 (Fig. 1a). Embedded in this cluster
of ubiquitously expressed housckeeping genes is the tissue-specific

that widely spaced functional

a-globin l in erythroid cells. This 500-kb

I I

NCODE

somes is thought to faciltate compartmentalization®*, chromatin

ig. 1b)’
“The a-globin locus has been used widely as a model to study the
hy y ety

o 5
elements™”, all of which may modulate the output and functional
state of the genome. A general approach for determining the spatial

The ot-globin genes are upregulated by a set of functional elements
haracterized by the p DNase I-hyp

located HS40,

in higher-
in general.

e
as an enhancer in reporter constructs and its deletion greatly affects

transcription factors including GATA factors and NF-E2 (ref, 34)
Notably, previous 3C studies have demonstrted direct long-range
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SUMMARY

We have determined the three-dimensional (3D)
architecture of the Caulobacter crescentus genome.

by combining genome-wide chromatin interaction
detection, live-cell imaging, and

(Tolhuis st al., 2002; Vernimmen et al, 2007). Such examples.
Jgest that studies of the high-resolution folding of genomes

the spatial positioning of many loci, have represented major
technical challenges.

eling. Using
bon copy (5C), we derive ~13 kb resolution 3D
models of the Caulobacter genome. The resultin
models illustrate that the genome is ellipsoidal
with periodically arranged arms. The parS sites,
apair K
tobe nvolved in chromosome segregation, are posi-
tioned at one pole, where they anchor the chromo-
some to the cell and contribute to the formation of
a compact chromatin conformation. Repositioning
these elements resulted in rotations of the chromo-
‘some that changed the subcellular positions of most
genes. Such rotations did not lead to large-scale
changes in gene expression, indicating that genome
folding does not strongly affect gene regulation.
Collectively, our data suggest that genome folding
is globally dictated by the parS sites and chromo-
‘some segregation.

INTRODUCTION

The three-dimensional (3D) architecture of the genome both
reflects and reguiates its functional state (Dekker, 2008; Tha-
bichler and Shapiro, 2006z). For example, chromosome segre-
gation impacts bacterial locus subcellular positioning (Jun and
Mulder, 2006; White et a., 2008), and chromatin loops that place
promoters and distant enhancers within close spatial proximity
play important roles in evkaryotic transcriptional regulation

ges, including automated fluorescent imaging (Violler et al.,

hromosome conformation capture (3C)-based ap-

proaches (Dekker ot al., 2002; Doste ot al, 2006; Duan et al.,

2010; Fulwood et al. 2009; Lieberman-Aiden et al., 2009; Simo-
al., 2006; Zhao ot al., 2006)

jenome-wide chromosome folding. Fluorescent microscopy-

based approaches allow the accurate determination of the

o
‘somal loci, while high-throughput 3C-based approaches enable
quantification of interloci nteraction frequencies that can sub-
sequently be used to infer the average 3D distances between
these loci. Studies utiizing one or both of these approaches.
have highlighted the potential of genome-wide studies of chro-
‘mosome structure and have begun o reveal specific features.
of "

2009; Simonis et a., 2006) and the correlation between a locus’
genomic and subcelluar positioning In bacteria (Nielsen et al.,
2006; Teleman et al, 1998; Wang et al., 2006b). However, the
detailed structures of genomes are only beginning 1o be re-
vealed, and many dstails, including the identities of the se-
quence elements that define such structures, await further
elucidation.

sequence elements that define its architecture. Toward this
goal, we studied the synchronizable bacterium, Caulobacter
crescentus (nereafter Caulobacter), whose single Gircular chro-
‘mosome s organized such that the origin and terminus of repli-
cation reside near opposite poles of the cel and other loci e

252 Molecular Cell 44, 252-264, October 21, 2011 ©2011 Elsevier Inc.
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Distinct structural transitions

of chromatin topological domains
correlate with coordinated
hormone-induced gene regulation
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‘The human genome is segmented into topologically associating domains (TADs), but the role of this conserved

organization during transient changes

ssion s no

own. Here we deseribe the distribution of

cancer cells. Using ChIP-seq (chromatin i

and changes in iptional activity over TADS in Ta7D breast

Hi-C

combined with
" "

y ques,

we found that the borders of the ~2000 TADs in these cells are largely maintained aiter hormone treatment and

that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are
. oo " " e where the.

ed fashion. the TADs are

a coor
ly modified by hormones in correlation wi

ivity and chromatin remodeling are accompanicd by differential structural changes for activated and

repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within
responsive TAD:s. Indeed, 3D modeling of the Hi-C data suggested that the structure of TAD: f

treatment erential

Ds to progestins and estr

TADS was modified upon
uggest that TADs could function as

ntial responses of TAI ogens s
“regulons” to enable spatially proximal genes to be coordinately transcribed in response to hormones.

[Keywords: three-dimensional structure of the genome; gene expression; Hi-C; TADs; transcriptional regulation;

epigenctic landscape; progesterone receptor]

Supplemental material is available for this article.

Received March 12, 2014, revised version accepeed August 29, 2014,

The three-dimensional (3D) organization of the genome
within the cell nucleus is nonrandom and might contrib-
ute to cell-specific gene expression. High-throughput
chromosome conformation capture (3C|-derived [Dekker

partments—one open and one closed—that tend to be

close in space to be transcribed in
a correlated fashion during cell differentiation. These
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sgenes, which can be located on different chromosomes,

transient modifications of the transcription rate in differ-
entiated cells responding to external cues is still unclear
{Fullwood ct al. 2009; Kocanova et al. 2010; Hakim et a.
2011, Transient regulation of gene expression at the tran-
scription level depends on the establishment of regulatory
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ABSTRACT

Restraint-based modeling of genomes has been re-
cently explored with the advent of Chromosome Con-
formation Capture (3C-based) experiments. We pre-
viously developed a reconstruction method to re-
solve the 3D architecture of both prokaryotic and eu-
karyotic genomes using 3C-based data. These mod-
els were congruent with fluorescent imaging valida-
tion. However, the limits of such methods have not
systematically been assessed. Here we propose the
first evaluation of a mean-field restraint-based recon-
struction of genomes by considering diverse chro-
mosome architectures and different levels of data
noise and structural variability. The results show
that: first, current scoring functions for 3D recon-
struction correlate with the accuracy of the models;
second, reconstructed models are robust to noise
but sensitive to structural variability; third, the local
structure organization of genomes, such as Topo-
logically Associating Domains, results in more accu-
rate models; fourth, to a certain extent, the models
capture the intrinsic structural variability in the input
matrices and fifth, the accuracy of the models can be
a priori predicted by analyzing the properties of the
interaction matrices. In summary, our work provides
a systematic analysis of the limitations of a mean-
field restrain-based method, which could be taken
into consideration in further development of meth-
ods as well as their applications.

INTRODUCTION

Recent studies of the three-dimensional (3D) conforma-
tion of genomes are revealing insights into the organiza-
tion and the regulation of biological processes, such as gene

expression regulation and replication (1-6). The advent of
the so-called Chromosome Conformation Capture (3C) as-
says (7), which allowed identifying chromatin-looping inter-
actions between pairs of loci, helped deciphering some of
the key elements organizing the genomes. High-throughput
derivations of genome-wide 3C-based assays were estab-
lished with Hi-C technologies (8) for an unbiased identifi-
cation of chromatin interactions. The resulting genome in-
teraction matrices from Hi-C experiments have been exten-
sively used for computationally analyzing the organization
of genomes and genomic domains (5). In particular, a sig-
nificant number of new approaches for modeling the 3D or-
ganization of genomes have recently flourished (9-14). The
main goal of such approaches is to provide an accurate 3D
representation of the bi-dimensional interaction matrices,
which can then be more easily explored to extract biolog-
ical insights. One type of methods for building 3D models
from interaction matrices relies on the existence of a limited
number of conformational states in the cell. Such methods
are regarded as mean-field approaches and are able to cap-
ture, to a certain degree, the structural variability around
these mean structures (15).

We recently developed a mean-field method for model-
ing 3D structures of genomes and genomic domains based
on 3C interaction data (9). Our approach, called TADbit,
was developed around the Integrative Modeling Platform
(IMP, http://integrativemodeing.org), a general framework
for restraint-based modeling of 3D bio-molecular struc-
tures (16). Briefly, our method uses chromatin interaction
frequencies derived from experiments as a proxy of spatial
proximity between the ligation products of the 3C libraries.
Two fragments of DNA that interact with high frequency
are dynamically placed close in space in our models while
two fragments that do not interact as often will be kept
apart. Our method has been successfully applied to model
the structures of genomes and genomic domains in eukary-
ote and prokaryote organisms (17-19). In all of our studies,
the final models were partially validated by assessing their

*To whom correspondence should be addressed. Tel: +34 934 020 542; Fax: +34 934 037 279; Email: mmarti@pcb.ub.cat

© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Detined chromosome structure in the genome-reduced
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Defined chromosome structure in the genome-
reduced bacterium Mycoplasma pneumoniae

Marie Trussart’2, Eva Yus'?2, Sira Martinez!, Davide Bau3#4, Yuhei O. Tahara>®, Thomas Pengo”,
Michael Widjaja8, Simon Kretschmer?, Jim Swoger"2, Steven Djordjevic®, Lynne Turnbull8, Cynthia Whitchurch8,
Makoto Miyatas'é, Marc A. Marti-Renom23410 Maria Lluch-Senar"2 & Luis Serrano"210

DNA-binding proteins are central regulators of chromosome organization; however, in
genome-reduced bacteria their diversity is largely diminished. Whether the chromosomes of
such bacteria adopt defined three-dimensional structures remains unexplored. Here
we combine Hi-C and super-resolution microscopy to determine the structure of the
Mycoplasma pneumoniae chromosome at a 10kb resolution. We find a defined structure,
with a global symmetry between two arms that connect opposite poles, one bearing the
chromosomal Ori and the other the midpoint. Analysis of local structures at a 3kb resolution
indicates that the chromosome is organized into domains ranging from 15 to 33kb. We
provide evidence that genes within the same domain tend to be co-regulated, suggesting
that chromosome organization influences transcriptional regulation, and that supercoiling
regulates local organization. This study extends the current understanding of bacterial
genome organization and demonstrates that a defined chromosomal structure is a universal
feature of living systems.
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Mycoplasma is a small genome with tew structural tactors
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Table 1 | List of assigned transcription factors, sigma factors

categories: essential (E), non -essential (NE) and fitness (F).

Gene number

Gene name Protein name

and structural proteins and essentiality with three distinct

Essentiality 4

MPNO002
MPNOO3
MPNOO0O4
MPN122
MPN123
MPN124
MPN229
MPN239
MPN241
MPN266
MPN275
MPN294
MPN332
MPN352
MPN424
MPN426
MPN478
MPN529
MPN554
MPN572
MPN608
MPN626
MPN686

cbpA
gyrB

gyrA
parB

parC
hrcA
ssbA
gntR
whiA
SpxA
ybaB
araC
lon
SigA
yIxM
smc
yrbC
ihf
ssbB
pepA
phoU
mpn626
dnaA

Curved DNA-binding protein CbpA

DNA gyrase subunit B

DNA gyrase subunit A

DNA topoisomerase 4 subunit B

DNA topoisomerase 4 subunit A
Heat-inducible transcription repressor hrcA

SSB-binding ssDNA

Probable HTH-type transcriptional regulator gntR
Transcription factor with W hiA C-terminal domain

Transcriptional regulator Spx
DNA-binding protein, YbaB/EbfC family
AraC-like transcriptional regulator
ATP-dependent protease La (EC 3.4.21.53)

RNA polymerase sigma factor rpoD (Sigma-A) (EC 2.7.7.6)
Putative helix-turn-helix protein, YIxM/ p13-like protein

SMC family, chromosome/ DNA binding/ protecting functions
YebC family protein (transcription factor of the tetR family)

Histone-like bacterial DNA-binding protein

Putative single-stranded DNA-binding protein

Probable cytosol aminopeptidase (EC 3.4.11.1) (leucine aminopeptidase) (LAP) (leucyl aminopeptidase)
Transcriptional regulator involved in phosphate transport system

Alternative sigma factor

Chromosomal replication initiator protein dnaA
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E, essential; F, fitness; LAP, leucine aminopeptidase; NE, non-essential; ssDNA, single-stranded DN
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Can we build 3D models of Mycoplasma?
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Can we build 3D models of Mycoplasma?
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s the overall 3D model accurate®
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Distance (nm)

Are the details of the 3D model accurate?
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Mycoplasma genome is partitioned into coregulated CIDs
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Hi-C matrix Hi-C relative

3 kb res.

Inhibiting supercoiling decreases the sharpness ot domain borders
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Mycoplasma reduced-genome has a “3D structure”

Similar to Caulobacter, Mycoplasma has a double diagonal intersecting near the centre of the genome

Mycoplasma has CIDs (TADs)
C

Ds contain coregulated genes.

Inhibition of supercoiling by novobiocin signiticantly reduced the sharpness of CID borders.

Very few factors may be necessary to define a 3D structure

Other elements like supercoiling could regulate these domain boundaries.



http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

"t H
- o
.Q--

Marie Trussart

Davide Bad

Gireesh K. Bogu
David Castillo

Yasmina Cuartero
rene Farabella
Silvia Galan
Mike Goodstadt
Julen Mendieta
Francois Serra
Paula Soler
Yannick Spill
Marco di Stefano

chag

CRG® U+,

for Qenomic
Regulatian



