Structure determination of genomes and genomic domains by satisfaction of spatial restraints.

Marc A. Marti-Renom Structural Genomics Group (ICREA, CNAG-CRG)

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

Resolution Gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Know	edge								
to the second					IDM			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
								DNA length	
10 ⁰		10 ³			10 ⁶			10 ⁹	nt
								Volume	
10 ⁻⁹		10 ⁻⁶	10 ⁻¹	3		10 [°]		10 ³	μm³
								Time	
10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10 ⁻⁴	10 ⁻²		10 ⁰	10 ²	10 ³	S
								Resolution	
10 ⁻³			10 ⁻²				10 ⁻¹		μ

Hybrid Method Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Chromosome Conformation Capture

Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306–1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293.

Chromosome Conformation Capture

Hakim, O., & Misteli, T. (2012). Cell, 148(5), 1068–1068.e2

CROSSLINK											
CUTTING	Sonication										
LIGATION	->-		Biotin dCTP fill in	Immunoprecipitation	Immunoprecipitation biotinilated linkers						
REVERSE CROSSLINKS			B B		B B						
DETECTION PCR with specific primers	Multiplexed amplification	Digestion with four base cutter Ligation	Sonicate Pull down	PCR with specific primers	Mmel digestion						
Contact library		Inverse PCR	B B B	<u> </u>	B						
COMPUTATIONAL ANALYSIS											
3C	5C	4C	Hi-C	ChIP-loop	ChIA-PET						

Restraint-based Modeling

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Chromosome structure determination 3C-based data

Biomolecular structure determination 2D-NOESY data

http://3DGenomes.org

Serra, F., Baù, D. et al. PLOS CB (2017)

Baù, D. et al. Nat Struct Mol Biol (2011) Umbarger, M. A. et al. Mol Cell (2011) Le Dily, F. et al. Genes & Dev (2014) Belton, J.M. et al. Cell Reports (2015) Trussart M. et al. Nature Communication (2017) Cattoni et al. Nature Communication (2017) Stadhouders R. et al. Nature Genetics (2017) in press

Progesterone-regulated transcription in breast cancer

Vicent et al 2011, Wright et al 2012, Ballare et al 2012

> 2,000 genes Up-regulated
> 2,000 genes Down-

Regulation in 3D?

Le Dily, F. et al. Genes & Dev (2014)

Experimental design

Are there TADs? how robust?

Are TADs homogeneous?

Do TADs respond differently to Pg treatment?

Do TADs respond differently to Pg treatment?

Modeling 3D TADs

61 genomic regions containing 209 TADs covering 267Mb

How TADs respond structurally to Pg?

How TADs respond structurally to Pg?

Model for TAD regulation

David Castillo Yasmina Cuartero Irene Farabella Silvia Galan Mike Goodstadt Francesca Mugianesi Julen Mendieta Juan Rodriguez François Serra Paula Soler Aleksandra Sparavier Yannick Spill Marco di Stefano

In collaboration with François Le Dily and Miguel Beato

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

