Genome structure dynamics using sparse interaction datasets

Marc A. Marti-Renom Structural Genomics Group (ICREA, CNAG-CRG)

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

Resolution Gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Know	edge								
to the second					IDM			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
								DNA length	
10 ⁰		10 ³			10 ⁶			10 ⁹	nt
								Volume	
10 ⁻⁹		10 ⁻⁶	10 ⁻¹	3		10 [°]		10 ³	μm³
								Time	
10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10 ⁻⁴	10 ⁻²		10 ⁰	10 ²	10 ³	S
								Resolution	
10 ⁻³			10 ⁻²				10 ⁻¹		μ

Hybrid Method Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Chromosome Conformation Capture

Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306–1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293.

Restraint-based Modeling

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Chromosome structure determination 3C-based data

Biomolecular structure determination 2D-NOESY data

http://3DGenomes.org

Serra, F., Baù, D. et al. PLOS CB (2017)

Baù, D. et al. Nat Struct Mol Biol (2011) Umbarger, M. A. et al. Mol Cell (2011) Le Dily, F. et al. Genes & Dev (2014) Trussart M. et al. Nature Communication (2017) Cattoni et al. Nature Communication (2017)

TADdyn. Dynamics of chromatin

Marco Di Stefano

Chain-connectivity interaction Bending **Lennard-Jones Potential**

Exploring the time dependent structural rearrangements of SOX2 locus during transdifferentiation

Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Marco di Stefano

Transcription factors dictate cell fate

Graf & Enver (2009) Nature

Transcription factors (TFs) determine cell identity through gene regulation Normal 'forward' differentiation

Cell fates can be converted by enforced TF expression

Transdifferentiation or reprogramming

Interplay: topology, gene expression & chromatin

Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Reprogramming from B to PSC

Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Birth of a TAD border upstream of Sox2

Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Sox2 overall topological changes Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

TADbit modeling of SOX2 from B cells Hi-C

Optimal IMP parameters lowfreq=0 , upfreq=1 , maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)

Hi-C maps of reprogramming from B to PSC The SOX2 locus

How does these structural rearrangements interplay with the transcription activity?

What are the main drivers of structural transitions?

Models of reprogramming from B to PSC The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus B cell PSC Βα D2 D4 D6 D8 Harmonic HarmonicLowerBound з Vanishing Raising **Transition** Stable Energy penalty 7,290 **Β -> Β**α 6,984 18,612 2 **Β**α -> **D2** 18,512 6,687 7,390 6,830 D2 -> D4 18,369 6,893 6,291 D4 -> D6 18,971 7,289 D6 -> D8 20,167 6,250 6,093 0 D8 -> ES 6,173 20,679 5,738

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

Two dimensional trajectories and area explored over 50s of the CCND1 locus recored before -E2 and after +E2 activation.

Germier ,T., et al, Blophys J. 113, 1383–1394 (2017).

Other regions...

Sox2 chr3:34649995-34652460

Nanog chr6:122707565-122714633

CEBPa chr7:35119293-35121931

Distance to enhancers

Active - Inactive - Random

Accessibility

Active - Inactive - Random

Displacement

Active - Inactive - Random

A "cage" model for transcriptional activation

stpRNAs, a new type of structural RNAs?

Irene Farabella

Marco di Stefano

RNA, nuclear organisation dynamics and architecture

Rinn and Guttman, Science; 345(6202):1240–1241 (2014)

RNA, nuclear organisation dynamics and architecture

Chromatin-interlinking IncRNAs

Adapted from: Caudron-Herger et al., Nucleus ;2(5):410-24 (2011)

Mitotic chromosome-associated RNAs

Adapted from: Meng et al., Nucleic Acids Res. ;44(10):4934-46 (2016)

RNA-DNA triplex in vivo and in vitro

Adapted from: Mondal et al. Nat Commun. 6:7743 (2015)

Are there IncRNAs that act as global architectural factor for chromatin organisation?

Hypothesis: such IncRNA may interact with DNA through triplex formation.

IncRNA selection

TFO/PARSE IncRNA profiles

127 triplex forming IncRNA

with Secondary Structure information based on PARSE

TTS profile on Chromosome

3D Co-localisation of loci

Enriched Co-localised TTS site

ENST00000434346.1

ENST0000541775.1

TADdyn modeling

Benchmark measures

Eigen vector correlation & Diagonal cross correlation

Model

ENST0000434346.1 TTS in Chr19

total of 3,039 restraints over 620,899 possible (0.5%)

Other stpRNA TTS in Chr19

HiC experiment

ENST0000434346.1

ENST0000541775.1

1.0

RNA & nuclear architecture

CTCF

TTS and repetitive elements

Staple RNA to hold DNA?

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

<u>Marco Di Stefano</u> <u>Irene Farabella</u>

David Castillo Yasmina Cuartero Silvia Galan Mike Goodstadt Francesca Mugianesi Julen Mendieta Juan Rodriguez François Serra Paula Soler Aleksandra Sparavier

In collaboration with Ralph Stadhouders (Erasmus MC) and Thomas Graf (CRG)

