

Chromosome walking with super-resolution imaging and modeling

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

Can we walk the chromatin path in the nucleus?

by

Integrating imaging and Hi-C maps with modeling.

by developing a method for

Oligopaint-based modeling of genomes

Irene Farabella CNAG-CRG

Guy Nir Harvard Med School

Ting Wu Harvard Med School

High-resolution imaging Tracing chromosomes with OligoSTROM & fluidics cycles in PGP1 cells

Beliveau et al. Nat. Comm. 2015

chr19:7,335,095-15,449,189 ~8Mb

homologous 32-42bp

High-resolution imaging Tracing chromosomes with OligoSTROM & fluidics cycles in PGP1 cells

Carl Ebeling Bruker

High-resolution imaging Tracing chr19:7,335,095-15,449,189 ~8Mb 3 9

280Kb	

1,240Kb

1,800Kb

1,040Kb

520Kb 520Kb 840Kb

٩.

520Kb 360Kb

.

Cell-02

High-resolution imaging XYZ points convolution into a density map

Cell-02 · Segment 1

$$\frac{Z_{N}}{\sqrt{2\pi}^{3}}e^{-\frac{(x-x_{n})^{2}+(y-y_{n})^{2}+(z-z_{n})^{2}}{2\sigma^{2}}}$$

Farabella et al, J Appl Crystallogr. 2015

Density maps Cell-02 · Density map @ 50nm

Area (nm^2) Volume (nm³) Sphericity Overlap (%) Distance (nm)

Farabella et al, J Appl Crystallogr. 2015

Structural features Area, Volume and Sphericity of 19 cells each with 2 homologous resolved

Area

Spatial arrangement Distance and overlap of 19 cells each with 2 homologous resolved

Diff. distance

Diff. overlap

Structural clustering 19 cells each with 2 homologous and 9 segments each (342)

PGP1 ChIP-seq and Hi-C data from ENCODE and Lieberman-Aiden Lab, respectively

89

Cluster properties A/B compartment properties

Can we walk the chromatin path in the nucleus?

Can we increase the resolution of our data?

by fitting 3D models based on Hi-C interaction maps

YES!

Increasing resolution Rigid body fitting 3D structures based on Hi-C data

Farabella et al, J Appl Crystallogr. 2015 Roseman, 2000; Wriggers & Chacon, Structure 2001

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Chromosome walking path @10Kb resolution

http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu

> David Castillo Yasmina Cuartero Marco Di Stefano Irene Farabella Silvia Galan Mike Goodstadt Francesca Mugianesi Julen Mendieta Juan Rodriguez François Serra Paula Soler Aleksandra Sparavier

Together with the Wu and the Lieberman-Aiden Labs

.: Our current sponsors :.

