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Level I: Radial genome organization 
Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9—13 (2008).
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Lack of Correlation 
between Gene Activity 
and Radial Position: The 
Cons
Despite this list of correla-
tions, we now know that the 
notion of localization of inac-
tive genes at the periphery 
and active ones in the nuclear 
interior is an oversimplification 
and is not a universal hallmark 
of gene activation. For most 
biallelically expressed genes 
the two alleles are often in 
vastly different radial posi-
tions in the same nucleus, yet 
their activity status appears 
similar based on the strength 
of fluorescence in situ hybrid-
ization signals (Figure 1A). 
Additionally, a recent study of 
the monoallelically expressed 
GFAP gene demonstrated that although 
the inactive locus is generally more 
peripheral than the active one, in a frac-
tion of nuclei the inactive allele was more 
internally localized than the active allele 
(Takizawa et al., 2008). Another general 
observation argues against a strong link 
between radial location and gene activ-
ity: if radial positioning were directly 
linked to expression, it would follow that 
transcription should occur predominantly 
in the interior of the nucleus. Yet, active 
sites of RNA polymerase II transcription 
are distributed uniformly throughout the 
nucleus (except for the nucleoli) with 
no apparent radial preference (Wan-
sink et al., 1993), although preferential 
internal transcription zones might exist 
in specialized cells (Kosak et al., 2007). 
Similarly, heterochromatin, which is 
largely transcriptionally silent, is not 
restricted to a specific radial position, 
and large blocks of heterochromatin 
can be found throughout the nucleus 
(Figure 1B).

A general link between gene activ-
ity and radial position is even more 
strongly challenged by observations 
on single genes. Many gene loci remain 
in the same radial positions when their 
expression changes (Hewitt et al., 
2004; Meaburn and Misteli, 2008; Zink 
et al., 2004). A lack of direct causality 
between gene expression and radial 
position is also highlighted by the fact 
that genes can become repositioned 

radially in the absence of detectable 
changes to their transcriptional output. 
For example, the Pah gene becomes 
more internally localized during differ-
entiation of mouse neurons, and VEGF 
becomes more peripherally localized 
during the induction of tumor formation 
in breast epithelia, despite no change 
in expression (Meaburn and Misteli, 
2008; Williams et al., 2006). In a recent 
study of 11 randomly selected genes 
analyzed under various growth and 
differentiation conditions, no general 
correlation between activity and radial 
position was found (Meaburn and Mis-
teli, 2008). Finally, even observations 
on a peripherally silenced gene under-
mine the notion of a close link between 
repression and radial positioning. The 
β-globin gene, which is peripheral in 
its inactive form, remains at the periph-
ery during early stages of activation 
and only then undergoes internaliza-
tion (Ragoczy et al., 2006). This lat-
ter observation suggests that internal 
positioning is not a requirement for 
activity and that transcription alone 
does not drive the position of a gene. 
Taken together, the fact that genes can 
alter radial position without changes in 
expression, and that many genes do 
not undergo positional changes when 
their expression levels are modulated, 
indicates that radial positioning is 
functionally not tightly linked to gene 
activity.

A Key Experiment
The pros and cons in the 
long-standing debate on 
the role of radial positioning 
in gene activity are entirely 
based on correlative obser-
vations, often in the absence 
of precise measurements of 
gene activity. A much needed 
key experiment was to arti-
ficially change the position 
of a gene and test the tran-
scriptional consequences. 
This has recently been done 
in three laboratories by arti-
ficially tethering reporter 
genes to the nuclear periph-
ery of mammalian cells using 
various nuclear envelope and 
lamina proteins. The results 
were more ambiguous than 
hoped for. In one system, 

transcription of a reporter gene was 
significantly repressed upon associa-
tion with the nuclear periphery via teth-
ering to the inner nuclear membrane 
protein emerin (Reddy et al., 2008). A 
second system looked at the expres-
sion of multiple endogenous genes in 
domains tethered to the periphery by 
the lamin-associated protein LAP2β. 
Although expression of some genes 
was negatively affected, that of others 
was not (Finlan et al., 2008). Finally, in 
a third approach, an inducible reporter 
was placed at the nuclear periphery by 
interaction with lamin B. Location of the 
reporter at the nuclear periphery did not 
prevent its activation upon stimulation 
and the locus retained its full transcrip-
tional competence (Kumaran and Spec-
tor, 2008). The apparent discrepancies in 
these results likely reflect experimental 
differences between the approaches. 
For example, it is not clear whether the 
induction of transcription after tether-
ing to the periphery involves the same 
regulatory mechanisms as ongoing 
transcription. Additionally, although the 
reporter gene in the study by Reddy et 
al. was repressed upon relocation to 
the periphery, the reduction in expres-
sion was ~2-fold but was not complete 
unlike the case for endogenous genes 
in the study by Finlan et al. This sug-
gests that despite the repressive effect 
of the nuclear periphery, association 
with the periphery alone does not totally 

Figure 1. Radial Positioning of Genes
(A) Active genes can be anywhere in the nucleus. The radial positions of bi-
allelically expressed genes often vary between the two homologous alleles 
in the same nucleus. Shown are the locations of the two alleles of the IGH 
(green) and MYC (red) genes in human lymphocytes.
(B) Functional significance of radial positioning. (Top) Active genes (green) 
exhibit a large range of radial positions; the precise radial position of a locus 
does not correlate with its activity level. (Middle) Inactive genes (red) may as-
sociate with heterochromatin blocks at various radial positions. (Bottom) In 
contrast to radial positioning, physical association with the nuclear periphery 
is often linked to silencing. Genes that are in close proximity to the nuclear 
envelope but do not physically interact with it may be active.
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Level II: Euchromatin vs heterochromatin

elements (SINEs and LINEs) (Caron et al. 2001). Recently, an
association study of a set of molecular marks lead to the
further discrimination of chromatin into five main types
(Filion et al. 2010) (Fig. 1, “colorful chromatin”).

In spite of all the recent progress in this area, the cyto-
logical and molecular definitions of (hetero)chromatin have
not yet been conclusively and comprehensively linked to-
gether. Furthermore, our understanding of the higher order
architecture of chromatin and its functional consequences is
far from satisfactory.

Heterochromatin: a transcriptional silencing
compartment?

One of the most important epigenetic roles of heterochromatin
was recognized very early on. In 1930, Muller (1930) discov-
ered that Drosophila flies treated with X-rays developed ran-
dom color patterns of white and brown patches in the eyes. He
could show that by random mutation, the white gene locus
was translocated adjacent to heterochromatic regions and,
thereafter, silenced. This effect was named position effect
variegation (PEV). Further studies (Demerec and Slizynska
1937) broadened the knowledge about PEV, showing that
genes in direct heterochromatic neighborhood were silenced

before more distal genes. Altogether, these experiments
showed that usually active genes get silenced just by being
in the vicinity of heterochromatin and lead to the development
of the concept of heterochromatin spreading. A similar effect
was reported in different organisms for genes translocated to
telomeric chromosomal regions and referred to as telomeric
position effect variegation (TPEV) (Gehring et al. 1984; Horn
and Cross 1995; Gottschling et al. 1990). (T)PEV is based on
cis chromosomal effects, i.e., genes are affected by hetero-
chromatin proximity within the same chromosome. Inter-
estingly, recent work in Caenorhabditis indicated that
large transgenic repeated arrays of tissue-specific gene
promoters become heterochromatinized and gene activa-
tion within these repeats lead to looping away from the
heterochromatic subnuclear domain (Meister et al. 2010).
A similar looping out of heterochromatin effect upon tran-
scription factor expression of a transgene integrated within
satellite repeat-rich heterochromatin was also observed in
mice (Lundgren et al. 2000). In both studies though, looping
away from the heterochromatin was not always accompanied
by gene activation.

In Drosophila, mouse, and plant cells, constitutive het-
erochromatin is clustered into chromocenters during inter-
phase as depicted exemplarily in a mouse interphase cell in
Fig. 2c. Chromocenters contain pericentric heterochromatin,

Fig. 2 Heterochromatin: in need of definition? Historically and from a
cytological point of view, Emil Heitz (see Fig. 1) distinguished hetero
and euchromatin. a Within an exemplary electron microscopy (EM)
picture (left) of a mouse liver cell nucleus (N nucleus, Nu nucleolus,
NE nuclear envelope), heterochromatin appears as electron dense in
contrast to the more open state of euchromatin. b With the recent
advent of high-throughput epigenomics, molecular features (histone
and DNA modifications) have been assigned to particular chromatin
states and are shown in the simplified graphic enlarged in the center. c
The cell cycle dynamics and cytological organization of the very

condensed chromatin structures around the centromeres can be appre-
ciated in the fluorescence light microscopy (LM) pictures (right) of M
phase and interphase cells. FISH-stained mouse metaphase chromo-
somes and interphase cell with probes against pericentric heterochro-
matin (black) and DNA counterstaining (gray) are shown. Condensed
pericentric heterochromatin regions from multiple chromosomes clus-
ter together in the interphase cell nucleus forming the so-called “chro-
mocenters.” Cytological and molecular definitions have not yet been
conclusively linked together. Scale bars EM 0.5 μm and LM 2 μm

Chromosoma



Level III: Lamina-genome interactions

the process of commitment of NPCs to the neural/glial lineage. In
this scenario the unlocked genes would have functions that are
specific for neurons or glia cells, and hence the activation of
unlocked genes should occur predominantly in neural tissues.
Alternatively, the unlocked genes may serve in a broader set of
cell types but may have been locked in ESCs because their
expression would be somehow detrimental to ESCs. To discrim-
inate between these two models, we studied the expression
status of these genes in 77 nonneural tissues (Figure 6F). While
nonneural tissues still exhibit a preference to activate DLamdown

genes compared to DLamneutr genes, this preference is sig-
nificanty less pronounced than in neural tissues (p = 3 3 10!4,
Wilcoxon test). Most unlocked genes are expressed in a minority
of tissues (Figure S5E), indicating that they tend to have special-
ized functions. Taken together, these results suggest an unlock-
ing mechanism, involving dissociation of silent genes from the
NL upon ESC/NPC differentiation, which primes these genes
for activation later in development. This unlocking appears to
be partially linked to the commitment of NPCs to the neural/glial
lineage and partially to the departure from ESC identity. The
unlocking mechanism is distinct from ‘‘polymerase poising’’
(Core et al., 2008; Muse et al., 2007; Zeitlinger et al., 2007),
because the silent genes that become detached from the NL in
NPCs lack detectable amounts of RNA Pol II at their promoters
(Figures S5A and S5B).

DISCUSSION

The high-resolution Lamin B1 interaction maps presented here
reveal that pluripotent ESCs, multipotent precursor cells, and
terminally differentiated cells share a common global architec-
ture of their chromosomes, characterized by substantially over-
lapping interactions with the NL through more than 1000 large
genomic domains. At a finer level, each differentiation step
involves the highly orchestrated reorganization of NL-chromatin
interactions of hundreds of genes. This reorganization is cumu-
lative over sequential differentiation steps and involves single
transcription units as well as extended DNA regions that encom-
pass multiple genes (Figure 7). Furthermore, NL interactions are
tightly linked to gene repression, and the reorganization of these
interactions during differentiation involves many genes that
are important for cellular identity. Finally, we demonstrate that
a substantial number of genes are not immediately activated
upon detachment from the NL but rather become unlocked for
activation at a later stage (Figure 7).

Cell Identity and Gene Repression at the NL
As a rule, NL-associated genes in all four mouse cell types have
low transcriptional activity, similar to what has been observed in
human and Drosophila cells (Guelen et al., 2008; Pickersgill et al.,
2006). Recent evidence indicates that the NL can play a causal
role in gene repression. Tethering of genes to the NL can, at least
in certain genomic contexts, lead to reduced gene expression
(Finlan et al., 2008; Kumaran and Spector, 2008; Reddy et al.,
2008), and depletion of Lamin B in Drosophila causes activation
of a gene cluster that is normally silent and located at the NL
(Shevelyov et al., 2009).

While the NL may contribute to the repressed state of interact-
ing genes, it cannot be ruled out that the NL interactions of some
genomic regions are altered as a consequence rather than as
a cause of changes in transcriptional activity. In fact, both direc-
tions of causality may be true: the NL may enhance the repres-
sion of genes, while lack of transcriptional activity in turn may
strengthen NL interactions. Such a positive feedback loop may
help to stably repress specific genes, thereby securing the
cellular transcription program. In this context it is interesting to
note that many ‘‘stemness’’ genes interact more strongly with
the NL in non-ESC cell types. This could help to lock these genes
in a permanently repressed state once ESCs differentiate.

We provide evidence that silent genes that detach from the NL
are more likely to become active in a subsequent differentiation
step than are genes with unaltered NL interactions. This obser-
vation of ‘‘unlocking’’ underscores the notion that the NL may
help to secure the repression of specific genes. NL interactions
may thus help to constrain the repertoire of genes that can be
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Figure 7. Model of Dynamic Reshaping of NL-Genome Interactions
during Differentiation
Overview of the changes in NL interactions for major gene classes during

ESC/NPC and NPC/AC differentiaton steps.
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Box 2 | Genome compartments

Inter- and intrachromosomal interaction maps for mammalian genomes28,64,111 have revealed a pattern of interactions that 
can be approximated by two compartments — A and B — that alternate along chromosomes and have a characteristic 
size of ~5 Mb each (as shown by the compartment graph below top heat map in the figure). A compartments (shown in 
orange) preferentially interact with other A compartments throughout the genome. Similarly, B compartments (shown  
in blue) associate with other B compartments. Compartment signal can be quantified by eigenvector expansion of the 
interaction map64,111,112. The A or B compartment signal is not simply biphasic (representing just two states) but is 
continuous112 and correlates with indicators of transcriptional activity, such as DNA accessibility, gene density, replication 
timing, GC content and several histone marks. These indicators suggest that A compartments are largely euchromatic, 
transcriptionally active regions.

Topologically associating domains (TADs) are distinct from the larger A and B compartments. First, analysis of embryonic 
stem cells, brain tissue and fibroblasts suggests that most, but not all, TADs are tissue-invariant58,59, whereas A and B 
compartments are tissue-specific domains of active and inactive chromatin that are correlated with cell-type-specific gene 
expression patterns64. Second, A and B compartments are large (often several megabases) and form an alternating pattern 
of active and inactive domains along chromosomes. By contrast, TADs are smaller (median size around 400–500 kb; see 
zoomed in section of heat map in the figure) and can be active or inactive, and adjacent TADs are not necessarily of 
opposite chromatin status. Thus, it seems that TADs are hard-wired features of chromosomes, and groups of adjacent TADs 
can organize in A and B compartments (see REF. 50 for a more extensive discussion). 

Shown in the figure are data for human chromosome 14 for IMR90 cells (data taken from REF. 59). In the top panel, Hi-C 
data were binned at 200 kb resolution, corrected using iterative correction and eigenvector decomposition (ICE), and 
the compartment graph was computed as described in REF. 112. The lower panel shows a blow up of a 4 Mb fragment of 
chromosome 14 (specifically, 74.4 Mb to 78.4 Mb) binned at 40 kb.

REVIEWS

8 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/genetics

Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Nat Rev Genet 14, 390—403 (2013).
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TADs are functional units 
Lupiáñez, et al. (2015). Cell, 1—15.
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TADs are functional units 
Hnisz, D., et al. (2016). Science, on line
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Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., & Mirny, L. A. (2015).  
Formation of Chromosomal Domains by Loop Extrusion. bioRxiv.

FIGURE 1 
 
 

 
 
Fig 1. Loop extrusion as a mechanism domain formation. 
a. Examples of Hi-C contact maps at 5kb resolution showing domains from four chromosomal 
regions (GM12878 in-situ MboI (3)), highlighting domains (purple lines) and interaction peaks (blue 
circles).  
b. Model of LEF dynamics, LEFs shown as linked pairs of yellow circles, chromatin fiber in grey.  
From left to right: extrusion, dissociation, association, stalling upon encountering a neighboring 
LEF, stalling at a BE (red hexagon). 
c. Schematic of LEF dynamics (Movie-M1, Movie-M2). 
d. Conformations of a polymer subject to LEF dynamics, with processivity 120kb, separation 120kb. 
Left: shows LEFs (yellow), and chromatin (grey), for one conformation, where darker grey highlights 
the combined extent of three regions of sizes (180kb, 360kb, 720kb) separated by BEs. Right: 
shows the progressive extrusion of a loop (black) within a 180kb region. 
e. Simulated contact map for processivity 120kb, separation 120kb. 
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From chromatin to chromatin domains. The high degree of struc-
tural and functional organization of genomic chromatin extends to 
the subchromosomal level. Recent years have seen the generation of 
detailed maps of the distribution of various chromatin-binding pro-
teins, histone marks and DNA methylation in different species and 
cell types. Perhaps one of the most interesting observations from these 
efforts is that chromosome territories are not generated by homo-
geneous folding of the underlying chromatin but instead comprise 
discrete chromatin domains (Fig. 1). The domain size depends on 
the chromosomal region, the cell type and the species, spanning few 
tens of kilobases to several megabases (averaging ~100 kb in flies and 
~1 Mb in humans)10–16 .

Various studies report somewhat different classifications of chro-
matin types, mostly depending on the parameters used in the compu-
tational analysis, but the general consensus is that there are only a few 
types of repressive chromatin. The repressive domains are Polycomb-
bound euchromatin, heterochromatin and a chromatin state that has 
no strong enrichment for any of the specific factors or marks used 
for mapping11,12 ,14 . In contrast, there are various types of active or 
open chromatin, and it has proven more difficult to rigorously classify 
them, probably because the classification depends on the number of 
factors that are used for mapping. However, at least four types of open 

chromatin can be distinguished with some certainty, encompassing 
‘enhancers’, ‘promoters’, ‘transcribed regions’ and ‘regions bound by 
chromatin insulator proteins’15 .

An important feature of chromatin domains is that not all genes 
within the domain have the same transcriptional response. Some open 
chromatin domains may contain nontranscribed genes and some 
repressive domains may encompass transcribed regions, suggesting 
that chromatin domains can accommodate a certain degree of indi-
vidual gene regulatory freedom16 ,17 . Nevertheless, the overall gestalt 
of a given chromatin domain exerts its influence, as demonstrated by 
the fact that insertion of transgenes in different chromatin domains 
affects expression of a reporter gene. Therefore, domains build more 
or less favorable chromatin environments for gene expression but do 
not fully determine gene activity17 .

Topologically associated domains. Recent investigations of the  
3D folding of the fly, mouse and human genomes generalized the 
concept of chromatin domains and revealed that domains, as 
mapped by epigenome profiling, correspond to physical genome 
domains18–2 1. These topologically associated domains are character-
ized by sharp boundaries that correspond to binding sites for CTCF 
and other chromatin insulator–binding proteins as well as to active 

Figure 1 A global view of the cell nucleus. 
Chromatin domain folding is determined by 
transcriptional activity of genome regions. 
Boundaries form at the interface of active and 
inactive parts of the genome. Higher-order domains 
of similar activity status cluster to form chromatin 
domains, which assemble into chromosome 
territories. Repressive regions of chromosomes 
tend to contact other repressive regions on the 
same chromosome arm, whereas active domains 
are more exposed on the outside of chromosome 
territories and have a higher chance of contacting 
active domains on the other chromosome arm 
and on other chromosomes19,20, giving rise to 
topological ‘superdomains’ composed of multiple, 
functionally similar genome domains. The location 
of territories is constrained by their association with 
the nuclear periphery, transcription hubs, nuclear 
bodies and centromere clusters.

Genome organization undergoes dramatic changes during differentiation and development. Effects of genome organization are particularly prominent in embryonic 
stem (ES) cells. The genome landscape of ES cells is unique in that it is characterized by an abundance of active chromatin marks and reduced levels of repres-
sive ones117,118. ES cells have less compacted heterochromatin domains, and their centromeric regions are decondensed117,119,120. DNase hypersensitivity 
analysis suggests globally more accessible and open chromatin. The altered chromatin architecture is accompanied by a loss of binding of several architectural 
chromatin proteins, including heterochromatin protein HP1 and high-mobility group (HMG) proteins117, and increased amounts of chromatin remodelers and 
modifiers121,122. As ES cells differentiate, many of ES cell–specific chromatin hallmarks rapidly disappear. Roughly the reverse processes occur during reprogram-
ming of differentiated cells into induced pluripotent stem cells123. These observations point to a model in which chromatin structure is essential in establishing 
pluripotency by maintaining the genome in an open, readily accessible state, allowing for maximum plasticity.

In mouse embryogenesis, the maternal and paternal pronuclei are not symmetric: the paternal pronucleus lacks typical heterochromatin marks but contains 
Polycomb proteins that are absent from the maternal heterochromatin124. In Drosophila melanogaster, the cell cycle slows down as differentiation processes 
unfold during developmental progression. This is accompanied by a general decrease in nuclear volume, a progressive condensation of chromatin and a decrease 
in chromatin motion33. A strong reduction of Polycomb-dependent chromatin motion, concomitant with an increase in the residence time of Polycomb proteins on 
their target chromatin, parallels developmental progression, suggesting that a decrease in chromatin dynamics is required to stabilize gene silencing33, a process 
reminiscent of what happens during ES cell differentiation. More direct evidence for a role of three-dimensional chromosome organization in the developmental 
regulation of gene expression comes from studies in Caenorhabditis elegans, where movement of tissue-specific genes in the nuclear interior that is developmen-
tally programmed and is dependent on histone methyltransferases MET-2 and SET-35 has been described82,125.
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BOX 1 Three-dimensional genome organization during differentiation and development 
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Hierarchical genome organisation

Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289—293.  
Rao, S. S. P., et al. (2014). Cell, 1—29.

A

C

D

B

Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1–16, December 18, 2014 ª2014 Elsevier Inc. 3
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Please cite this article in press as: Rao et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Loop-
ing, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.11.021

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].
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Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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Resolution Gap 
Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)
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(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].
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Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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Chromosome Conformation Capture 
Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306—1311. 

Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289—293.



Chromosome Conformation Capture 

1068 Cell 148, March 2, 2012 ©2012 Elsevier Inc. DOI 10.1016/j.cell.2012.02.019 See online version for legend and references.

SnapShot: Chromosome Confi rmation 
Capture
Ofi r Hakim and Tom Misteli
National Cancer Institute, NIH, Bethesda, MD 20892, USA
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Chromosome Conformation Capture 
for de-novo assembly

Kaplan, N., & Dekker, J. (2013). High-throughput genome scaffolding from in vivo DNA interaction frequency. Nature 
Biotechnology, 31(12), 1143—1147.
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we chose to use only a third of the Hi-C reads 
available for this cell type in the data set. We 
first quantified the CTR pattern by partition-
ing the human genome into 100-kb bins, each 
representing a large virtual contig, and cal-
culated for each placed contig its average interaction frequency with 
each chromosome. To simulate a more difficult scenario and evaluate 
localization over long ranges, we omitted from this statistic the inter-
action data of the contig with its flanking 1 mb on each side, where 
the strongest Hi-C interaction signals are present. Then, we asked 
how well this statistic separates interchromosomal interactions from 
intrachromsomal interactions (Fig. 1a). We found that the average 
interaction frequency strongly separates inter- from intrachromo-
somal interactions, with an average area under the curve (AUC) of 
0.9998, suggesting this statistic is highly predictive of which chro-
mosome a contig belongs to. Next, we trained a simple multiclass 
model, a naive Bayes classifier, to predict the chromosome of each 
contig based on its average interaction frequency with each chromo-
some (Online Methods). To test the classifier, for each contig in the 
genome, we removed the interaction data for the contig and a flank-
ing region of 1, 2, 5 or 10 Mb on each side, and used the classifier to 
predict the position of the contig solely from Hi-C data (Fig. 1b,c), 
achieving a genome-wide accuracy of 0.998 when leaving out 1 Mb on 
each side. By thresholding the associated posterior probabilities for 
each prediction output by the classifier to identify high-confidence 
predictions, we find that at a threshold of P > 0.2 the classifier can 
achieve a near-constant error rate of <0.005 even when leaving 10-Mb  

gaps on each side of the contig (100 times the size of the contig).  
We conclude that the CTR interaction pattern can be used to accu-
rately predict to which chromosome an unplaced contig belongs, even 
if it is flanked by large gaps.

Next we sought to predict the genomic locus along a chromosome of 
an unplaced contig, given its chromosome and interaction pattern with 
placed contigs on the chromosome. We used the assembled portion of 
the genome to fit a probabilistic single-parameter exponential decay 
model describing the relationship between Hi-C interaction frequency 
and genomic distance (the DDD pattern). We removed in turn each 
contig from the chromosome, along with a flanking region of 1 Mb on 
each side, for the reasons mentioned previously, and estimated its most 
likely position by given its interaction profile and the decay model 
(Fig. 1d). We quantified the prediction error as the absolute value of 
the distance between the predicted position and the actual position. 
Our results show a cross-validated, genome-wide median error of  
1.1 Mb. Additionally, 89.5% of the contigs are placed within 2 Mb of 
their actual position and 24.0% are within 0.5 Mb of their actual posi-
tion (Fig. 1d, inset). We conclude that the DDD interaction pattern can 
be used to accurately predict the position of an unlocalized contig.

To show the utility of our approach for improving finished genomes, 
we collected two sets of contigs from hg19 (ref. 22) and HuRef7,  
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Figure 1 Interaction frequency accurately 
predicts chromosome and locus for scaffold 
augmentation. (a) Average interaction frequency 
strongly separates interchromosomal from 
intrachromosomal interactions. For each 100-kb 
contig in chromosome 1, we calculate its average  
interaction frequency with each chromosome. 
We exclude interaction data from the contig’s 
1-Mb regions on each side, where the strongest 
interaction frequencies are typically found. 
The box plot shows the distribution of average 
interaction frequencies of all contigs over 
all chromosomes and demonstrates that the 
distribution of interchromosomal interaction 
frequencies is separated from intrachromosomal 
interaction frequencies. Whiskers represent 
minimal and maximal points within 1.5 of the 
interquartile range. (b) Naive Bayes predictive 
performance at various gap sizes. We trained 
a naive Bayes classifier and predicted the 
chromosome of each contig, leaving out a 1-, 2-, 
5- or 10-Mb flanking region on each side of the 
contig. Confident predictions are predictions  
with a posterior probability of at least 0.2.  
(c) Genome-wide view of naive Bayes predictive 
performance. The prediction for each contig is 
marked by a short vertical line, colored according 
to its true chromosome. Predictions showed were 
performed leaving out a 1-Mb flanking region 
on each side of the contig. Predictions that did 
not pass the confidence threshold are marked 
as “NC”. (d) Interaction frequencies accurately 
predict chromosomal locus. For every contig,  
we exclude interaction data from the contig’s 
1-Mb flanking regions on each side and then 
predict its location in cross-validation. The inset 
shows the cumulative distribution of the absolute 
prediction error. All statistics are genome-wide.
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Assembly error detection 
Chromosome 8 Gorilla

GGO8 has an inversion of the region corresponding to HSA8:30.0-86.9Mb 
Aylwyn Scally (Department of Genetics, University of Cambridge) 
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Chromosome Conformation Capture 
for meta genomics

Beitel, C. W., Froenicke, L., Lang, J. M., Korf, I. F., Michelmore, R. W., Eisen, J. A., & Darling, A. E. (2014). Strain- and 
plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. doi:10.7287/

peerj.preprints.260v1

(Running head) Deconvolution of a synthetic metagenome with Hi-C 
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Supplementary Figure 1. Illustration of the metagenome binning signal provided by Hi-741 
C. Two bacterial cells are illustrated, each containing a single circular chromosome. For 742 
one genomic region in each of the two species, examples of associations that are likely 743 
(green; red is “not likely”) to be derived from Hi-C are illustrated.  744 
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Experiments

Computation

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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Hybrid Method 
Baù, D. & Marti-Renom, M. A. Methods 58, 300—306 (2012).



Structure determination using Hi-C data

Biomolecular structure determination
2D-NOESY data

Chromosome structure determination
3C-based data
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Structuring the COLORs of chromatin
Serra, Baù et al. (2017) PLOS CompBio.



Fly Chromatin COLORs  
Filion et al. (2010). Cell, 143(2), 212—224.

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.

2 Cell 143, 1–13, October 15, 2010 ª2010 Elsevier Inc.

Please cite this article in press as: Filion et al., Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila
Cells, Cell (2010), doi:10.1016/j.cell.2010.09.009

drawing by Guillaume Filion



Figure 1. Partition of the Drosophila Genome into Physical Domains
(A) Genome-wide interaction heatmap at 100 kb resolution for the Drosophila genome in Kc167 cells. Black circles and squares show interactions between

centromeres and telomeres, respectively. Red rectangles show interactions between chromosome arms 2L-2R and 3L-3R, respectively.

(B) Hi-C interaction frequencies displayed as a two-dimensional heat map at single fragment resolution for a 2 Mb region of chromosome 3R alongside with

selected epigenetic marks and chromatin types defined by the presence of various proteins and histone modifications. The white grid on the heat map shows

where the domains are partitioned.

Molecular Cell

3D Organization of the Drosophila Genome

Molecular Cell 48, 471–484, November 9, 2012 ª2012 Elsevier Inc. 473

~200 regions of ~5Mb each
2Kb resolution

Fly Chromatin COLORs  
Hou et al. (2012). Molecular Cell, 48(3), 471—484.



Structural properties 
50 1Mb regions. 10 enriched for each color. 
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a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.
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cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.

A

C

B

Principal component analysis

Hidden Markov model

5
3
 
c
h
r
o
m

a
t
i
n
 
p
r
o
t
e
i
n
s

16000 16200 16400 16600 16800 17000

Position on chr2L (kb)

PC1
PC2
PC3

type

16000 16200 16400 16600 16800 17000

Position on chr2L (kb)

MRG15
SU(VAR)3−7
SU(VAR)3−9

HP6
HP1
LHR

CAF1
ASF1

MUS209
TOP1

RPII18
SIR2

RPD3
CDK7
DSP1
DF31
MAX

PCAF
ASH2
HP1c
CtBP
JRA

BRM
ECR
BCD

MED31
SU(VAR)2−10

LOLAL
GAF

CG31367
ACT5C

TIP60
MNT

SIN3A
TBP

DWG
PHOL
PROD

BEAF32b
SU(HW)

LAM
D1
H1

SUUR
EFF
IAL

GRO
PHO

CTCF
PC

E(Z)
PCL
SCE

Genes+
-

−
2
0

−
1
0

0
1

0
2
0

P
C

1

−15 −10 −5 0 5 10 15
PC2

−15 −10 −5 0 5 10 15

−
1
5

−
1
0

−
5

0
5

1
0

PC2

P
C

3

Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.

2 Cell 143, 1–13, October 15, 2010 ª2010 Elsevier Inc.

Please cite this article in press as: Filion et al., Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila
Cells, Cell (2010), doi:10.1016/j.cell.2010.09.009

Structural COLORs



Molecular Cell

Article

The Three-Dimensional Architecture of a Bacterial
Genome and Its Alteration by Genetic Perturbation
Mark A. Umbarger,1,8 ,* Esteban Toro,2,8 Matthew A. Wright,1 Gregory J. Porreca,1 Davide Baù,4 Sun-Hae Hong,2,3
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SUMMARY

We have determined the three-dimensional (3D)
architecture of the Caulobacter crescentus genome
by combining genome-wide chromatin interaction
detection, live-cell imaging, and computational mod-
eling. Using chromosome conformation capture car-
bon copy (5C), we derive !13 kb resolution 3D
models of the Caulobacter genome. The resulting
models illustrate that the genome is ellipsoidal
with periodically arranged arms. The parS sites,
a pair of short contiguous sequence elements known
to be involved in chromosome segregation, are posi-
tioned at one pole, where they anchor the chromo-
some to the cell and contribute to the formation of
a compact chromatin conformation. Repositioning
these elements resulted in rotations of the chromo-
some that changed the subcellular positions of most
genes. Such rotations did not lead to large-scale
changes in gene expression, indicating that genome
folding does not strongly affect gene regulation.
Collectively, our data suggest that genome folding
is globally dictated by the parS sites and chromo-
some segregation.

INTRODUCTION

The three-dimensional (3D) architecture of the genome both
reflects and regulates its functional state (Dekker, 2008; Than-
bichler and Shapiro, 2006a). For example, chromosome segre-
gation impacts bacterial locus subcellular positioning (Jun and
Mulder, 2006; White et al., 2008), and chromatin loops that place
promoters and distant enhancers within close spatial proximity
play important roles in eukaryotic transcriptional regulation

(Tolhuis et al., 2002; Vernimmen et al., 2007). Such examples
suggest that studies of the high-resolution folding of genomes
will yield insight into genome biology. However, until recently
such studies, which require comprehensive assessments of
the spatial positioning of many loci, have represented major
technical challenges.
The recent development of several high-throughput technolo-

gies, including automated fluorescent imaging (Viollier et al.,
2004) and chromosome conformation capture (3C)-based ap-
proaches (Dekker et al., 2002; Dostie et al., 2006; Duan et al.,
2010; Fullwood et al., 2009; Lieberman-Aiden et al., 2009; Simo-
nis et al., 2006; Zhao et al., 2006), has begun to enable studies of
genome-wide chromosome folding. Fluorescent microscopy-
based approaches allow the accurate determination of the
subcellular positions of increasing numbers of defined chromo-
somal loci, while high-throughput 3C-based approaches enable
quantification of interloci interaction frequencies that can sub-
sequently be used to infer the average 3D distances between
these loci. Studies utilizing one or both of these approaches
have highlighted the potential of genome-wide studies of chro-
mosome structure and have begun to reveal specific features
of chromosome folding, including the transcription-based com-
partmentalization of the human nucleus (Lieberman-Aiden et al.,
2009; Simonis et al., 2006) and the correlation between a locus’
genomic and subcellular positioning in bacteria (Nielsen et al.,
2006; Teleman et al., 1998; Wang et al., 2006b). However, the
detailed structures of genomes are only beginning to be re-
vealed, and many details, including the identities of the se-
quence elements that define such structures, await further
elucidation.
We sought to determine the high-resolution 3D structure of an

entire genome and to utilize the resulting structure to identify the
sequence elements that define its architecture. Toward this
goal, we studied the synchronizable bacterium, Caulobacter
crescentus (hereafter Caulobacter), whose single circular chro-
mosome is organized such that the origin and terminus of repli-
cation reside near opposite poles of the cell and other loci lie
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We developed a general approach that combines chromosome 
conformation capture carbon copy (5C) with the Integrated 
Modeling Platform (IMP) to generate high-resolution three-
dimensional models of chromatin at the megabase scale. 
We applied this approach to the ENm008 domain on human 
chromosome 1 6, containing the a-globin locus, which is 
expressed in K562 cells and silenced in lymphoblastoid cells 
(GM1 2878). The models accurately reproduce the known 
looping interactions between the a-globin genes and their 
distal regulatory elements. Further, we find using our approach 
that the domain folds into a single globular conformation in 
GM1 2878 cells, whereas two globules are formed in K562 
cells. The central cores of these globules are enriched for 
transcribed genes, whereas nontranscribed chromatin is more 
peripheral. We propose that globule formation represents a 
higher-order folding state related to clustering of transcribed 
genes around shared transcription machineries, as previously 
observed by microscopy.

Currently, efforts are directed at producing high-resolution genome 
annotations in which the positions of functional elements or specific 
chromatin states are mapped onto the linear genome sequence1. 
However, these linear representations do not indicate functional or 
structural relationships between distant elements. For instance, recent 
insights suggest that widely spaced functional elements cooperate to 
regulate gene expression by engaging in long-range chromatin loop-
ing interactions. The three-dimensional (3D) organization of chromo-
somes is thought to facilitate compartmentalization2,3, chromatin 
organization4 and spatial sequestration of genes and their regulatory 
elements5–7, all of which may modulate the output and functional 
state of the genome. A general approach for determining the spatial 
organization of chromatin can aid in the identification of long-range 
relationships between genes and distant regulatory elements as well as 
in the identification of higher-order folding principles of chromatin 
in general.

Chromosome conformation capture (3C)-based assays use formalde-
hyde cross-linking followed by restriction digestion and intramolecular  

ligation to study chromatin looping interactions7–12. 3C-based assays 
have been used to show that specific elements such as promoters, 
enhancers and insulators are involved in the formation of chromatin 
loops5,7,13–16. The frequencies at which loci interact reflect chromatin 
folding7,17, and thus comprehensive chromatin interaction data sets 
can help researchers build spatial models of chromatin.

Previously, chromatin conformation has been modeled using 
 polymer models8,18 and molecular-dynamics simulations19, which 
have proven valuable for understanding general features of chromatin  
fibers, including flexibility and compaction20,21. However, such methods 
only partially leverage the current wealth of experimental data on chro-
matin folding. Recently, experimentally driven approaches, in combi-
nation with computational modeling, have resulted in low-resolution  
models for the topological conformation of the immunoglobulin 
heavy chain22, the HoxA23 loci and the yeast genome24. However, 
those methods were limited by the resolution and completeness of the 
input experimental data22, by insufficient model representation, scor-
ing and optimization23, or by limited analysis of the 3D models24.

To overcome such limitations, we developed a new approach that 
couples high-throughput 5C experiments9 with the IMP25. We applied 
this approach to determine the higher-order spatial organization of 
a 500-kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster 
of ubiquitously expressed housekeeping genes is the tissue-specific  
A-globin locus that is expressed only in erythroid cells. This 500-kb 
domain corresponds to the ENm008 region extensively studied by the 
ENCODE pilot project (Fig. 1b)1.

The A-globin locus has been used widely as a model to study the 
mechanism of long-range and tissue-specific gene regulation15,26–30. 
The A-globin genes are upregulated by a set of functional elements 
characterized by the presence of DNase I–hypersensitive sites (HSs) 
located 33 to 48 kb upstream of the Z gene. One of these elements, HS40, 
is considered to be of particular importance31,32. This element can act 
as an enhancer in reporter constructs and its deletion greatly affects 
activation of the A-globin genes33. HS40 is bound by several erythroid  
transcription factors including GATA factors and NF-E2 (ref. 34). 
Notably, previous 3C studies have demonstrated direct long-range  
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Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 3Department of 
Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 4These authors contributed equally to this work. Correspondence should be 
addressed to J.D. (job.dekker@umassmed.edu) or M.A.M.-R. (mmarti@cipf.es).

Received 22 November 2009; accepted 20 September 2010; published online 5 December 2010; doi:10.1038/nsmb.1936

The three-dimensional folding of the A-globin gene 
domain reveals formation of chromatin globules
Davide Baù1,4, Amartya Sanyal2,4, Bryan R Lajoie2,4, Emidio Capriotti1, Meg Byron3, Jeanne B Lawrence3,  
Job Dekker2 & Marc A Marti-Renom1
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Distinct structural transitions
of chromatin topological domains
correlate with coordinated
hormone-induced gene regulation

François Le Dily,1,2,3 Davide Ba!u,1,3 Andy Pohl,1,2 Guillermo P. Vicent,1,2 François Serra,1,3

Daniel Soronellas,1,2 Giancarlo Castellano,1,2,4 Roni H.G. Wright,1,2 Cecilia Ballare,1,2

Guillaume Filion,1,2 Marc A. Marti-Renom,1,3,5 and Miguel Beato1,2

1Gene Regulacion, Stem Cells, and Cancer Program, Centre de Regulaci"o Gen!omica (CRG), 08003 Barcelona, Spain; 2Universitat
Pompeu Fabra (UPF), 08002 Barcelona, Spain; 3Genome Biology Group, Centre Nacional d’An!alisi Gen!omica (CNAG), 08028
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The human genome is segmented into topologically associating domains (TADs), but the role of this conserved
organization during transient changes in gene expression is not known. Here we describe the distribution of
progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast
cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C
(chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques,
we found that the borders of the ~2000 TADs in these cells are largely maintained after hormone treatment and
that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are
either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are
homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes
in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and
repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within
responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon
treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as
‘‘regulons’’ to enable spatially proximal genes to be coordinately transcribed in response to hormones.

[Keywords: three-dimensional structure of the genome; gene expression; Hi-C; TADs; transcriptional regulation;
epigenetic landscape; progesterone receptor]
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The three-dimensional (3D) organization of the genome
within the cell nucleus is nonrandom and might contrib-
ute to cell-specific gene expression. High-throughput
chromosome conformation capture (3C)-derived (Dekker
et al. 2002) methods have revealed that chromosome
territories are organized in at least two chromatin com-
partments—one open and one closed—that tend to be
spatially segregated depending on their transcriptional
activity (Lieberman-Aiden et al. 2009). At a finer level of
organization, some functionally related genes have been
shown to be brought close in space to be transcribed in
a correlated fashion during cell differentiation. These

genes, which can be located on different chromosomes,
are organized in spatial clusters and preferentially tran-
scribed in the same ‘‘factories’’ (Osborne et al. 2004, 2007;
Cavalli 2007). Whether such mechanisms participate in
transient modifications of the transcription rate in differ-
entiated cells responding to external cues is still unclear
(Fullwood et al. 2009; Kocanova et al. 2010; Hakim et al.
2011). Transient regulation of gene expression at the tran-
scription level depends on the establishment of regulatory

! 2014 Le Dily et al. This article is distributed exclusively by Cold
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Defined chromosome structure in the genome-
reduced bacterium Mycoplasma pneumoniae
Marie Trussart1,2, Eva Yus1,2, Sira Martinez1, Davide Baù3,4, Yuhei O. Tahara5,6, Thomas Pengo1,7,

Michael Widjaja8, Simon Kretschmer9, Jim Swoger1,2, Steven Djordjevic8, Lynne Turnbull8, Cynthia Whitchurch8,

Makoto Miyata5,6, Marc A. Marti-Renom2,3,4,10, Maria Lluch-Senar1,2 & Luı́s Serrano1,2,10

DNA-binding proteins are central regulators of chromosome organization; however, in

genome-reduced bacteria their diversity is largely diminished. Whether the chromosomes of

such bacteria adopt defined three-dimensional structures remains unexplored. Here

we combine Hi-C and super-resolution microscopy to determine the structure of the

Mycoplasma pneumoniae chromosome at a 10 kb resolution. We find a defined structure,

with a global symmetry between two arms that connect opposite poles, one bearing the

chromosomal Ori and the other the midpoint. Analysis of local structures at a 3 kb resolution

indicates that the chromosome is organized into domains ranging from 15 to 33 kb. We

provide evidence that genes within the same domain tend to be co-regulated, suggesting

that chromosome organization influences transcriptional regulation, and that supercoiling

regulates local organization. This study extends the current understanding of bacterial

genome organization and demonstrates that a defined chromosomal structure is a universal

feature of living systems.
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