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Experiments

Computation

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].
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Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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Chromosome Conformation Capture 
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Hierarchical genome organisation 
Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289—293.  

Rao, S. S. P., et al. (2014). Cell, 1—29.
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.
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(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].
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Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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TADs are functional units 
Lupiáñez, et al. (2015). Cell, 1—15.
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Restraint-based Modeling 
Baù, D. & Marti-Renom, M. A. Methods 58, 300—306 (2012).

Biomolecular structure determination 
2D-NOESY data

Chromosome structure determination 
3C-based data
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http://3DGenomes.org

Serra, F., Baù, D. et al. PLOS CB (2017)
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Model representation and scoring
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Parameter optimization



Optimization of the scoring function
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Model analysis: clustering and structural features
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Fly Chromatin COLORs  
Filion et al. (2010). Cell, 143(2), 212—224.

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.

2 Cell 143, 1–13, October 15, 2010 ª2010 Elsevier Inc.

Please cite this article in press as: Filion et al., Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila
Cells, Cell (2010), doi:10.1016/j.cell.2010.09.009

drawing by Guillaume Filion



Figure 1. Partition of the Drosophila Genome into Physical Domains
(A) Genome-wide interaction heatmap at 100 kb resolution for the Drosophila genome in Kc167 cells. Black circles and squares show interactions between

centromeres and telomeres, respectively. Red rectangles show interactions between chromosome arms 2L-2R and 3L-3R, respectively.

(B) Hi-C interaction frequencies displayed as a two-dimensional heat map at single fragment resolution for a 2 Mb region of chromosome 3R alongside with

selected epigenetic marks and chromatin types defined by the presence of various proteins and histone modifications. The white grid on the heat map shows

where the domains are partitioned.

Molecular Cell

3D Organization of the Drosophila Genome

Molecular Cell 48, 471–484, November 9, 2012 ª2012 Elsevier Inc. 473

All fly genome
@2Kb resolution

Fly Chromatin COLORs  
Hou et al. (2012). Molecular Cell, 48(3), 471—484.



Structural properties
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a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.

2 Cell 143, 1–13, October 15, 2010 ª2010 Elsevier Inc.
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a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.

2 Cell 143, 1–13, October 15, 2010 ª2010 Elsevier Inc.

Please cite this article in press as: Filion et al., Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila
Cells, Cell (2010), doi:10.1016/j.cell.2010.09.009
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iPS cells

C/EBPa

Transcription factors dictate cell fate 
Graf & Enver (2009) Nature

Transcription factors (TFs) determine cell identity through gene regulation 
Normal ‘forward’ differentiation 

Cell fates can be converted by enforced TF expression  
Transdifferentiation or reprogramming



Interplay: topology, gene expression & chromatin 
Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics



Reprogramming from B to PSC 
Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics
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Hi-C maps of reprogramming from B to PSC 
The SOX2 locus

Bα PSCD2B cell D4 D6 D8
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Hi-C maps of reprogramming from B to PSC 
The SOX2 locus

How does these structural rearrangements interplay with the 
transcription activity? 

What are the main drivers of structural transitions? 

Bα PSCD2B cell D4 D6 D8



TADbit modeling of SOX2 from B cells Hi-C

Optimal IMP parameters 
lowfreq=0 , upfreq=1 , maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)

SOX2
SE



Models of reprogramming from B to PSC 
The SOX2 locus

Bα PSCD2B cell D4 D6 D8



Marco Di Stefano

Chain-connectivity interaction
Bending

Lennard-Jones  Potential

TADdyn. Dynamics of chromatin

Missatge	dels	de	la	casa	de	com	artibar-hi	desde	l'aeroport.	
Good	morning	Montse,	
thank	you	for	the	address;	
for	arriving	at	our	house	(all	in	all	about	one	hour):	
on	foot	(400m)	to	the	train	station	in	front	of	the	airport		
(here	can	you	buy	in	the	underground	the	tickets	for	the	train;	you	will	find	a	ticket	
machine	-	the	cheapest	solution	is	to	buy	one	"4	Fahrten-Karte	ABC"	for	13,20	for	the	
four	adults	and	one	"4	Fahrten-Karte	ermäßigt	ABC"	for	9,60	for	the	four	children;	
attention:	these	8	tickets	you	have	to	stamp	in	the	little	machines	before	you	are	
taking	the	train):	
S45,	direction	"Südkreuz",	you	have	to	go	out	at	Südkreuz	(11	stops)	
and	take	here	the	bus	in	front	of	the	station:	
M46,	direction	"Zoologischer	Garten",	you	have	to	go	out	at	Barbarossa	Straße	(7	
stops).	
You	have	to	make	120m	on	foot	in	direction	where	the	bus	runs(you	will	across	the	
Barbarossa	Straße);	here	you	will	find	at	the	right	side	our	house	"Martin-Luther-
Str.45".	
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TADdyn: from time-series Hi-C maps to dynamic restraints 
The SOX2 locus

Bα PSCD2B cell D4 D6 D8



Bα PSCD2B cell D4 D6 D8

Harmonic HarmonicLowerBound

TADdyn: from time-series Hi-C maps to dynamic restraints 
The SOX2 locus



Bα PSCD2B cell D4 D6 D8

Harmonic HarmonicLowerBound

Transition Stable Vanishing Raising
B -> B𝛼 18,612 6,984 7,290
B𝛼 -> D2 18,512 7,390 6,687
D2 -> D4 18,369 6,830 6,893
D4 -> D6 18,971 6,291 7,289
D6 -> D8 20,167 6,093 6,250
D8 -> ES 20,679 5,738 6,173

TADdyn: from time-series Hi-C maps to dynamic restraints 
The SOX2 locus



SOX2 locus structural changes from B to PSC 
Contacts

SOX2
SE



SOX2 locus structural changes from B to PSC 
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SOX2 locus dynamics changes from B to PSC 
SOX2 displacement



SOX2 locus dynamics changes from B to PSC 
SOX2 displacement



FIGURE 1 Real-time visualization of a single Cyclin D1 gene locus in human cells. (a) Schematic representation of a stably inserted construct (ANCH3-
CCND1-MS2) comprising the Cyclin D1 (CCND1) gene under its endogenous promoter, adjacent to a unique ANCH3 sequence, 24 ! MS2 repeats within
the 30UTR, and a hygromycin selection gene (HYG). The construct is flanked by FRT sites for integration into MCF-7 FRT cells. Transient transfection with
OR3 and MCP-tagged fluorescent proteins results in their accumulation at the ANCH3 and MS2 sequences (after estradiol (E2) stimulation), respectively
(raw 3D images in Movie S1). (b) Fluorescent spots are easily detectable in transfected cells. A representative cell with an OR3-EGFP spot is shown. Region
imaged during fluorescence recovery after photobleaching (FRAP) is indicated in orange. At time t ¼ 0 s, a circular region enclosing the ANCHOR spot
was bleached and fluorescence recovery of the spot was followed over time. Relative fluorescence intensity (RFI) was calculated as described in the Materials
and Methods and Fig. S1 (right panel; solid line: mean, shadowed region: lower and upper quartile; n ¼ 44 cells, four experiments with n R 6 cells per
experiment). Data were fitted to a single exponential. The 95% confidence interval is indicated in brackets. Scale bars, 2 mm. (c) Representative images
of transiently transfected ANCH3-CCND1-MS2 cells expressing OR3-Santaka and MCP-EGFP (raw images in Movies S1 and S2). CCND1 DNA (red
spot) colocalizes with transcribed mRNA (green spot) as MCP-EGFP associates with MS2 stem loops 45 min after adding 100 nM estradiol (E2). The
same cell is shown before and after addition of E2. Scale bars, 5 and 2 mm (for cropped images). (d) Example of two-dimensional trajectories and area
explored over 50 s (250 ms acquisition, 200 steps) of the OR3-Santaka-labeled CCND1 locus recorded before (#E2) and after (þE2) transcription activation.
To see this figure in color, go online.

Real-Time Single Gene Tracking

Biophysical Journal 113, 1383–1394, October 3, 2017 1385

SOX2 locus dynamics changes from B to PSC 
SOX2 displacement

Two dimensional trajectories and area 
explored over 50s of the CCND1 locus 
recored before -E2 and after +E2 activation.  

Germier ,T., et al,  BIophys J. 113, 1383—1394 (2017).



A “cage” model for transcriptional activation
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Can we walk the chromatin path in the nucleus? 

by 

Integrating imaging and Hi-C maps with modeling. 

by developing a method for 

Oligopaint-based modeling of genomes



High-resolution imaging 
Tracing chromosomes with OligoSTROM & fluidics cycles in PGP1 cells

chr19:7,335,095-15,449,189  
~8Mb

Beliveau et al. Nat. Comm. 2015

homologous 32-42bp

backstreetmainstreet



High-resolution imaging 
Tracing chromosomes with OligoSTROM & fluidics cycles in PGP1 cells

chr19:7,335,095-15,449,189  
~8Mb

Guy Nir Harvard Med School 
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360Kb520Kb

987654321
840Kb520Kb520Kb1,040Kb1,800Kb1,240Kb1,280Kb



High-resolution imaging 
Tracing chr19:7,335,095-15,449,189 ~8Mb

Cell-02 

360Kb520Kb

987654321
840Kb520Kb520Kb1,040Kb1,800Kb1,240Kb1,280Kb



Representation  

Blur the atomic structure to the correct resolution by convoluting it with a Gaussian 
function that approximates the point spread function.  

 

ρ x, y, z( ) = ZN
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−
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2σ 2

Farabella et al, J Appl Crystallogr. 2015

High-resolution imaging 
XYZ points convolution into a density map

Cell-02 · Segment 1 



360Kb520Kb

987654321
840Kb520Kb520Kb1,040Kb1,800Kb1,240Kb1,280Kb

Area (nm2) 
Volume (nm3) 
Sphericity 
Overlap (%) 
Distance (nm)

Density maps 
Cell-02 · Density map @ 50nm 

Farabella et al, J Appl Crystallogr. 2015



Structural features 
Area, Volume and Sphericity of 19 cells each with 2 homologous resolved
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Spatial arrangement 
Distance and overlap of 19 cells each with 2 homologous resolved
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Structural clustering 
19 cells each with 2 homologous and 9 segments each (342)
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987654321

Cluster properties 
A/B compartments?

987654321

PGP1 ChIP-seq and Hi-C data from ENCODE and Lieberman-Aiden Lab, respectively
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Cluster properties 
A/B compartment properties
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Can we walk the chromatin path in the nucleus? 

YES! 

Can we increase the resolution of our data? 

by fitting 3D models based on Hi-C interaction maps



Increasing resolution 
Rigid body fitting 3D structures based on Hi-C data

Serra, Baù, et al. PLOS CB 2017 
http://www.3DGenomes.org

Farabella et al, J Appl Crystallogr. 2015 
Roseman, 2000; Wriggers & Chacon, Structure 2001

Segment 1 3D models 

CCC
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- Masking the surrounding density:

• Fitting other components and masking.

• Normalised Local Cross-Correlation function (LCCF)

Improved scoring functions

Programs: 

DOCKEM, EMfit, NMFF, Mod-EM
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Increasing resolution 
Flexible fitting 3D structures based on Hi-C data

Simulated Annealing 
Molecular Dynamics

Conjugate Gradient
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Increasing resolution 
Flexible fitting 3D structures based on Hi-C data
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Chromosome walking path @10Kb resolution
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