3DGenomics

Marc A. Marti-Renom Structural Genomics Group CNAG-CRG

Structural Genomics Group

http://www.marciuslab.org

Integrative Modeling Platform

http://www.integrativemodeling.org

From: Russel, D. et al. PLOS Biology 10, e1001244 (2012).

Data Integration

Data Integration

A

Data Integration

Resolution Gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Level I: Radial genome organization

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9–13 (2008).

Level II: Euchromatin vs heterochromatin

Electron microscopy

Level III: Lamina-genome interactions

- **___** nuclear membrane
- 🗕 nuclear lamina
- internal chromatin (mostly active)
 lamina-associated domains (repressed)
- Genes

Adapted from Molecular Cell 38, 603-613, 2010

Level IV: Higher-order organization

Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14, 390–403 (2013).

Level V: Chromatin loops

Level V: Loop-extrusion as a driving force

Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., & Mirny, L. A. (2015). Formation of Chromosomal Domains by Loop Extrusion. bioRxiv.

Level VI: Nucleosome

Adapted from Richard E. Ballermann, 2012

Complex genome organization

Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290–299 (2013).

Modeling Genomes

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Experiments

Computation

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 5C data

Chromosome Conformation Capture

Hakim, O., & Misteli, T. (2012). SnapShot: Chromosome Confirmation Capture. Cell, 148(5), 1068–1068.e2.

Modeling 3D Genomes

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Example of 3D Genome

