

Structure determination of genomes and genomic domains by satisfaction of spatial restraints

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

	IDM		$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	
			DNA length	
1	0 ⁶		10 ⁹	nt
			Volume	
0 ⁻³	10 ⁰		10 ³	μm³
			Time	
10 ⁻²	10 ⁰	10 ²	10 ³	S
			Resolution	
		10 ⁻¹		μ

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

DNA length	
10 ⁶ 10 ⁹ nt	
Volume	
) ⁻³ 10 ⁰ 10 ³ μm	۱ ³
Time	
10^{-2} 10^{0} 10^{2} 10^{3} s	
Resolution	
μ 10 ⁻¹	

Hybrid Method Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 3C-based data

FastQ files to Maps

Map analysis

Model building

Model analysis

http://3DGenomes.org

Serra, Baù, et al. (2017). PLOS CompBio

ADbit

	 Baù, D. et al. Nat Struct Mol Biol (2011)
dels	 Umbarger, M. A. et al. Mol Cell (2011)
	 Le Dily, F. et al. Genes & Dev (2014)
	 Belton, J.M. et al. Cell Reports (2015)
cessing	 Trussart M. et al. Nature Communication (2017)
core	 Cattoni, D. et al. Nature Communication (2017)
	 Stadhouders R. et al. Nature Genetics (2018)
timization	 Kojic, A., Cuadrado, A. et al. Nat Struct Mol Biol (2018)
eling	 Beekman R. et al. Nature Medicine (2018)
	 Mas, G. et al. Nature Genetics (2018)
ring	 Pascual-Reguant, L. et al. Nature Communication (2018)
analysis	 Nir, Farabella, Perez-Estrada, et al. PLOS Genetics (2018)
	 Cuadrado, Giménez-Llorente et al. (2019)
	 Miguel-Escalada et al. (2019)
	 Morf et al. (2019)
el	Nature Structural & Molecular Biology, 25(9), 766-777, 2018 Cell, 173(7), 1796-1809.e17, 2018
sis	Structure, 26(6), 894-904.e2, 2018 Genome Research, 29(1), 29-39, 2019
	Genome Research, 29(1), gr.238527.118, 2019

Can we walk the chromatin path in the nucleus?

by

Integrating imaging and Hi-C maps with modeling.

by developing a method for

Oligopaint-based modeling of genomes

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

Beliveau et al. Nat. Comm. 2015

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

Carl Ebeling Bruker

High-resolution imaging Tracing chr19:7,335,095-15,449,189 ~8Mb 3 9

1,280Kb

1,240Kb

1,800Kb

1,040Kb

520Kb 520Kb 840Kb

٩.

520Kb 360Kb

.

Cell-02

High-resolution imaging XYZ points convolution into a density map

Cell-02 · Segment 1

$$\frac{Z_{N}}{(\sqrt{2\pi})^{3}}e^{-\frac{(x-x_{n})^{2}+(y-y_{n})^{2}+(z-z_{n})^{2}}{2\sigma^{2}}}$$

Farabella et al, J Appl Crystallogr. 2015

Density maps Cell-02 · Density map @ 50nm

Area (nm^2) Volume (nm³) Sphericity Overlap (%) Distance (nm)

Farabella et al, J Appl Crystallogr. 2015

Structural features Area, Volume and Sphericity of 19 cells each with 2 homologous resolved

Area

Spatial arrangement Distance and overlap of 19 cells each with 2 homologous resolved

Diff. distance

Diff. overlap

Structural clustering 19 cells each with 2 homologous and 9 segments each (342)

PGP1 ChIP-seq and Hi-C data from ENCODE and Lieberman-Aiden Lab, respectively

89

Cluster properties A/B compartment properties

Can we walk the chromatin path in the nucleus?

Can we increase the resolution of our data?

by fitting 3D models based on Hi-C interaction maps

YES!

Increasing resolution Rigid body fitting 3D structures based on Hi-C data

Farabella et al, J Appl Crystallogr. 2015 Roseman, 2000; Wriggers & Chacon, Structure 2001

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Chromosome walking path @10Kb resolution

Jeffrey M. Perkel *Nature* **569**, 293-294 (2019)

TECHNOLOGY FEATURE CHROMOSOMAL DNA COMES INTO FOCUS

Imaging techniques to probe the shape of chromatin are revealing the dynamism of the DNA-protein complex.

BY JEFFREY M. PERKEL

nucleosomes, which fold into 30-nanometre *Persistence of Memory*. until they reach their most tightly coiled some assumed a different shape — each one almost certainly like snowflakes."

Under the high-resolution microscopes calculation. "There is very strong cell-to-cell **A DEEPER LOOK** of biophysicist Xiaowei Zhuang, these chro-heterogeneity," Zhuang says.

In biology, function derives from form. It is mosomes resemble something from the mind Ting Wu, a geneticist at Harvard Medi- shape, as a result of amino-acid sequence, of surrealist painter Salvador Dalí. Zhuang, cal School in Boston, Massachusetts, who that determines whether a given protein acts who is at Harvard University in Cambridge, combined a similar super-resolution FISH as a structural scaffold, signalling molecule Massachusetts, is one of a growing number approach with sequencing analysis to map a or enzyme. The same is probably true of the of researchers charting the topology of the chunk of human chromosome 19 to 10 kilo- genome. But until recently, there was no easy genome to decode the relationship between base resolution in late 2018, observed simiway for researchers to determine that structure. Using a sequencing-based method called chromatin structure and function. Using a lar heterogeneity². The chromosomes in highly multiplexed form of fluorescence that study look more like space-filling pro- Hi-C, which calculates the frequencies at *in situ* hybridization (FISH) in combination tein models, and when the team overlaid which different chromosomal segments >

This multicoloured image of chromatin was created using multiplexed fluorescence in situ hybridization and super-resolution microscopy.

form — the characteristic X-shaped bodies. a different solution to some ineffable cellular

with super-resolution microscopy, Zhuang's markers of inactive and active chromatin, team mapped several million bases of human they observed distinct patterns. "We have Molecular models suggest that chro-mosomes assemble in an ordered, hierarchical way: DNA wraps chromosome 21 at 30 kilobase resolution, tracing their shape like a dot-to-dot puzzle¹. The resulting multicoloured image resembles chromosome 21 at 30 kilobase resolution, tracing their shape like a dot-to-dot puzzle¹. around proteins called histones to form one of the melting clocks in Dalí's 1931 The there are hints of, is truly astounding." Brian Beliveau, a genomic scientist at the Univerfibres, then 120-nanometre 'chromonema', But that was in just one cell. In each cell sity of Washington, Seattle, and a co-author and further into larger chromatin structures that Zhuang's team looked at, the chromo- of the paper, says bluntly: "Chromosomes are

9 MAY 2019 | VOL 569 | NATURE | 293

© 2019 Springer Nature Limited. All rights reserved.

Is there a dynamic coupling between structure and gene activity? data published in Nat Genetics January 2018 and method preprinted (BioRxived)

What next?

The End...

3D structural dynamics of the SOX2 locus activation

Marco di Stefano Ralph Stadhouders

with Graf Lab (CRG, Barcelona)

Nature Genetics (2018) 50 238–249 & BioRxived

Transcription factors dictate cell fate

Graf & Enver (2009) Nature

Transcription factors (TFs) determine cell identity through gene regulation Normal 'forward' differentiation

Transdifferentiation or reprogramming

Cell fates can be converted by enforced TF expression

Interplay: topology, gene expression & chromatin

Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Reprogramming from B to PSC Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Hi-C maps of reprogramming from B to PSC The SOX2 locus

50 100 150 200 250

B cell

50 100 150 200 250

Hi-C maps of reprogramming from B to PSC The SOX2 locus

How does these structural rearrangements interplay with the transcription activity?

What are the main drivers of structural transitions?

Optimal IMP parameters lowfreq=0, upfreq=1, maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)

TADbit modeling of SOX2 from B cells Hi-C

Models of reprogramming from B to PSC The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

Transition	Stable	Vanishing	Raising
Β -> Β α	18,612	6,984	7,290
Β α -> D2	18,512	7,390	6,687
D2 -> D4	18,369	6,830	6,893
D4 -> D6	18,971	6,291	7,289
D6 -> D8	20,167	6,093	6,250
D8 -> ES	20,679	5,738	6,173

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

Two dimensional trajectories and area explored over 50s of the CCND1 locus recored before -E2 and after +E2 activation.

Germier ,T., et al, (2017) Blophys J.

Transcription affects the 3D topology of the enhancer-promoted enhancing its temporal stability and is associated with further spatial compaction.

Chen ,T., et al, (2018) Nat. Genetics

Structural changes from B to PSC Other 10 loci

Switch

Always active

Dynamics of gene activation Trends in all 11 loci

Active loci Switching loci

A "hit-and-stick" model for transcriptional activation

free to move

Time and expression levels

http://marciuslab.org http://3DGenomes.org

David Castillo Yasmina Cuartero Marco Di Stefano Irene Farabella Silvia Galan Mike Goodstadt Maria Marti-Marimon Francesca Mugianesi Julen Mendieta Juan Rodriguez Paula Soler Aleksandra Sparavier

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

.: Our current sponsors :.

