Structure determination of genomes and genomic domains by image tracing

Ų

Marc A. Martí-Renom, Structural Genomics Team Leader at Centro Nacional de Análisis Genómico (CNAG)

12th CNAG SYMPOSIUM ON GENOME RESEARCH: State-of-the-art genomic technologies

#CNAGSYMPOSIUM12

Number of cells

Targets per cell

Chromosome walking with super-resolution imaging and modeling

Guy Nir Irene Farabella Cynthia Perez-Estrada with Wu Lab (HMS, Boston) & Aiden Lab (UT, Texas)

PLOS Genetics (2018) 14(12) e1007872

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

homologous 32-42bp

Beliveau et al. Nat. Comm. 2015

chr19:7,335,095-15,449,189 ~8Mb

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

High-resolution imaging Tracing chr19:7,335,095-15,449,189 ~8Mb 1 2 3 4 5 6 7 8 9

1,800Kb

1,280Kb	1,240Kb

1,040Kb

520Kb 520Kb 840Kb

٩.

Kb 520Kb 360Kb

.

Farabella et al, J Appl Crystallogr. 2015

Increasing resolution Rigid body fitting 3D structures based on Hi-C data

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Chromosome walking path @10Kb resolution

Chromosome tracing with OligoFISSEQ

Marc A. Marti-Renom CNAG-CRG · ICREA

Huy Nguyen Shyamtanu Chattoraj David Castillo

in collaboration with the Wu Lab (HMS) Nature Methods (2020) 17 p822

Number of cells

Targets per cell

LIT barcode

HIT bridge 3' sites SIT primer site SIT barcode

Genome homology

From tens of kb to Mb Min. of few 100s oligos/target At least a Mb between targets

OligoFISSEQ

LIT primer site

LIT barcode

OligoFISSEQ

OligoFISSEQ scales exponentially!

Sequential hybridization

of targets = F*NF = # of fluorophores N = # of seq. rounds

Barcode sequencing

of targets = FNF = # of fluorophores N = # of seq. rounds

Proof-of-principle

600kb-1Mb/target (876 kb average) 5,000 oligos/target 7-70Mb between targets

Round 1

Round 2

Round 3

Round 4

Detecting a given target

OligoFISSEQ "Manhattan plot"

--**≻** X

In OligoFISSEQ every pixel matters & make "patches" 4 rounds / 4 channels

OligoFISSEQ barcode efficiency

OligoFISSEQ tracing of (almost) entire chromosomes 46 Plex in chromosome X

chrX (

5

5 rounds 445 kb/probe 2,000 Oligopaints/probe 2 Mb between loci

 $1\mu m$

OligoFISSEQ is high throughput!

~2 days of image acquisition ~1,000 cells ~5,000 <u>complete</u> chromosomes ~150 cells with <u>complete</u> chromosomes

OligoFISSEQ pipelined with OligoSTORM chr2

OligoSTROM 1 round

(2h/round)

OligoFISSEQ 2 round (3h/round)

 \bigcirc

Decoding OligoFISSEQ

3

1 300

1 1

2 µm

OligoSTORM + OligoFISSEQ

- Is a <u>set of technologies</u> for in-situ genome mapping Is <u>highly versatile</u>: mainstreet and backstreet
- Used with wide-field microscopy allows for the analysis of thousands of cells. Identifies <u>sub-clusters</u> with specific conformational characteristics

- Can be <u>pipelined</u> with other approaches
 - OligoSTORM \bullet
 - Protein immunofluorescence
 - RNA...

http://marciuslab.org http://3DGenomes.org

@marciuslab @mamartirenom

Alexander Barclay Nikolai Bykov Ronan Duchesne lana Kim Peter Hoboth François Le Dily lago Maceda John Markham Maria Marti-Marimon Mireia Novell Meritxell Novillo Aleksandra Sparavier Leo Zuber

.: Our current sponsors :.

.: Conflict of Interest Statement :. Between Sep 2021 and Apr 2023, Marc A. Marti-Renom served as a consultant to Acuity Spatial Genomics, Inc., and received compensation for these services.

<u>Obra Social "la Caix</u>a"

