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level |: Radial genome organization

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9-13 (2008).
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Llevel I Euchromatin vs heterochromatin
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level lll: Lamina-genome interactions

B nuclear membrane
I nuclear lamina

e Internal chromatin (mostly active)
lamina-associated domains (repressed)

e Genes
? m RNA Adapted from Molecular Cell 38, 603-613, 2010
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level IV: Higher-order organization
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level V: Chromatin loops
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level VI: Nucleosome
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Complex genome organization

Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 2Q0-299 (201 3).
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Hi-C 3.0

Akgol Oksuz, et al. Nature Methods 2021 & keep an eye on a possible soon paper for 4DNucleome

ANALYSIS

https://doi.org/10.1038/s41592-021-01248-7
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Systematic evaluation of chromosome
conformation capture assays

Betul Akgol Oksuz''©, Liyan Yang''°, Sameer Abraham©®2, Sergey V. VeneV', Nils Krietenstein3,
Krishna Mohan Parsi®45, Hakan Ozadam'¢, Marlies E. Oomen®?, Ankita Nand®", Hui Mao*>,
Ryan M. J. Genga*®, Rene Maehr®45, Oliver J. Rando ©3, Leonid A. Mirny ©278, Johan H. Gibcus ®'*

and Job Dekker ®"9X

Chromosome conformation capture (3C) assays are used to map chromatin interactions genome-wide. Chromatin interaction
maps provide insights into the spatial organization of chromosomes and the mechanisms by which they fold. Hi-C and Micro-C
are widely used 3C protocols that differ in key experimental parameters including cross-linking chemistry and chromatin
fragmentation strategy. To understand how the choice of experimental protocol determines the ability to detect and quantify
aspects of chromosome folding we have performed a systematic evaluation of 3C experimental parameters. We identified opti-
mal protocol variants for either loop or compartment detection, optimizing fragment size and cross-linking chemistry. We used
this knowledge to develop a greatly improved Hi-C protocol (Hi-C 3.0) that can detect both loops and compartments relatively
effectively. In addition to providing benchmarked protocols, this work produced ultra-deep chromatin interaction maps using
Micro-C, conventional Hi-C and Hi-C 3.0 for key cell lines used by the 4D Nucleome project.

become widely used to generate genome-wide chromatin

interaction maps’. Analysis of chromatin interaction maps
has led to detection of several features of the folded genome. Such
features include precise looping interactions (at the 0.1-1Mb
scale) between pairs of specific sites that appear as local dots in
interaction maps. Many of such dots represent loops formed by
cohesin-mediated loop extrusion that is stalled at convergent
CCCTC-binding factor (CTCF) sites’”. Loop extrusion also pro-
duces other features in interaction maps such as stripe-like patterns
anchored at specific sites that block loop extrusion. The effective
depletion of interactions across such blocking sites leads to domain
boundaries (insulation). At the megabase scale, interaction maps of
many organisms including mammals display checkerboard patterns
that represent the spatial compartmentalization of two main types
of chromatin: active and open A-type chromatin domains, and inac-
tive and more closed B-type chromatin domains®.

The Hi-C protocol has evolved over the years. While initial pro-
tocols used restriction enzymes such as HindIII that produces rela-
tively large fragments of several kilobases®, over the last 5 years Hi-C
using DpnlI or Mbol digestion has become the protocol of choice
for mapping chromatin interactions at kilobase resolution’. More
recently, Micro-C, which uses MNase instead of restriction enzymes
as well as a different cross-linking protocol, was shown to allow
generation of nucleosome-level interaction maps’~. It is critical to
ascertain how key parameters of these 3C-based methods, includ-
ing cross-linking and chromatin fragmentation, quantitatively

( : hromosome conformation capture (3C)-based assays' have

influence the detection of chromatin interaction frequencies and
the detection of different chromosome folding features that range
from local looping between small intra-chromosomal (cis) ele-
ments to global compartmentalization of megabase-sized domains.
Here, we systematically assessed how different cross-linking and
fragmentation methods yield quantitatively different chromatin
interaction maps.

Results

We explored how two key parameters of 3C-based protocols,
cross-linking and chromatin fragmentation, determine the abil-
ity to quantitatively detect chromatin compartment domains and
loops. We selected three cross-linkers widely used for chromatin:
1% formaldehyde (FA), conventional for most 3C-based protocols;
1% FA followed by incubation with 3mM disuccinimidyl glutarate
(the FA+DSG protocol); and 1% FA followed by incubation with
3mM ethylene glycol bis(succinimidylsuccinate) (the FA+EGS
protocol) (Fig. 1a). We selected four different nucleases for chro-
matin fragmentation: MNase, Ddel, Dpnll and HindIII, which
fragment chromatin in sizes ranging from single nucleosomes to
multiple kilobases. Combined, the three cross-linking and four
fragmentation strategies yield a matrix of 12 distinct protocols (Fig.
1b). To determine how performance of these protocols varies for
different states of chromatin we applied this matrix of protocols to
multiple cell types and cell cycle stages. We analyzed four different
cell types: pluripotent H1 human embryonic stem cells (H1-hESCs),
differentiated endoderm (DE) cells derived from H1-hESCs, fully
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Fig. 1| Outline of the experimental design. a, Experimental design for conformation capture for various cells, cross-linkers and enzymes. b, Representation

of interaction maps from experiments in a.

differentiated human foreskin fibroblast (HFF) cells (12 protocols
for each), and HeLa-S3 cells (9 protocols). We analyzed two cell
cycle stages: G1 and mitosis, in HeLa-S3 cells (9 protocols for each;
Fig. 1). Each interaction library was then sequenced on a single lane
of a HiSeq4000 instrument, producing ~150-200 million uniquely
mapping read pairs (Supplementary Table 1). We used the Distiller
pipeline to align the sequencing reads, and pairtools and cooler'
packages to process mapped reads and create multi-resolution
contact maps (Methods). Given that the density of restriction sites
for Ddel, DpnlI and HindIII fluctuates along chromosomes, we
observed different read coverages in raw interaction maps obtained
from datasets using these enzymes (Extended Data Fig. 1h). These
differences were removed after matrix balancing''.

We first assessed the size range of the chromatin fragments pro-
duced after digestion by the 12 protocols for HFF cells (Methods).
Digestion with HindIII resulted in 5-20-kb DNA fragments;
Dpnll and Ddel produced fragments of 0.5-5kb; and MNase
protocols included a size selection step to ensure that the liga-
tion product involved two mononucleosome-sized fragments
(~150bp) (Extended Data Fig. 1). Different cross-linkers did not
affect the size ranges produced by the different nucleases, although
DSG cross-linking lowered digestion efficiency slightly (Extended
Data Fig. 1b).

All 3C-based protocols can differentiate between cell states. We
first assessed the similarity between the 63 datasets by global and
pairwise correlations using HiCRep and hierarchical clustering
(Extended Data Fig. 1c)'>"’. We found that the datasets are highly
correlated and cluster primarily by cell type and state and then by
cell type similarity, for example H1-hESCs and H1-hESC-derived
DE cells cluster together; and the most distinct cluster is formed
by mitotic HeLa cells. MNase protocols show slightly lower correla-
tions with Hi-C experiments.

Extra cross-linking yields more intra-chromosomal contacts.
Given that chromosomes occupy individual territories, intra-
chromosomal (cis) interactions are more frequent than inter-
chromosomal (trans) interactions'. The cis:trans ratio is
commonly used as an indicator of Hi-C library quality given that
inter-chromosomal interactions are a mixture of true chromatin
interactions and interactions that are the result of random liga-
tions'*". For all enzymes and cell types, we found that the addi-
tion of DSG or EGS to FA cross-linking decreased the percentage
of trans interactions (Fig. 2a for HFF and Extended Data Fig. 2a for
H1-hESC, DE, HeLa-S3).

Regarding intra-chromosomal interactions, we noticed two
distinct patterns. First, digestion into smaller fragments increased
short-range interactions. MNase digestion generated more interac-
tions between loci separated by less than 10kb, whereas digestion
with either Ddel, Dpnll or HindIII resulted in a relatively larger
number of interactions between loci separated by more than 10kb
(Fig. 2a,b for HFF and Extended Data Fig. 2a,b for DE, H1-hESC,
HeLa-S3). Second, P(s) plots showed that the addition of either
DSG or EGS resulted in a steeper decay in interaction frequency
as a function of genomic distance for all fragmentation protocols.
Moreover, for a given chromatin fragmentation level, additional
cross-linking with DSG or EGS reduced trans interactions, as
shown for HFF cells and all other cell types and cell stages stud-
ied (Fig. 2¢,d and Extended Data Fig. 2¢). The addition of DSG or
EGS could have reduced fragment mobility and the formation of
spurious ligations, resulting in a steeper slope of the P(s). We note
a difference in slopes for data obtained with different cell types and
cell cycle stages, which could reflect state-dependent differences in
chromatin compaction.

Random ligation events between un-cross-linked, freely dif-
fusing fragments lead to noise that is mostly seen in trans and
long-range cis interactions. Experiments that use Dpnll and
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Fossilized chromosomes from
woolly mammoth
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VWhat happens to the nucleus in 10s of thousands of years®
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"whoolly” phenomenal sample
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* Found in permatrost in the summer of 2018

* Belaya Gora in Yakutia, Russia
* Date beyond the range of radiocarbon dating but older than >45,000 vyears
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PaleoHIC complements ancient DNA-sec

Limitations of (a]DNA-Seq

What is in the genome?
Need chrom-ength de novo assemblies!
aDNA-Seq relies on modermn reterences

What is expressed in individual tissues?
Need to probe transcriptional activity!

How expression patterns arise?
Need to probe genetic regulation!



Paleo-HIC improves endogenous long-range contact recovery
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Hi-C assisted assembly
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This is a Hi-C from mammoth

PaleoHi-C vs Loxafr3.0,
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PaleoHIC complements ancient DNA-sec

Limitations of (a]DNA-Seq allmarks of a successtul Hi-C experiment

What is in the genome?
Need chrom-length de novo assemblies! - Chromosome terrifories
aDNA-Seq relies on modermn reterences Facilitates de novo assembly of whole chromosomes

What is expressed in individual tissues?
Need to probe transcriptional activity!

How expression patterns arise?
Need to probe genetic regulation!



Compartments preserved in a 47K years old sample
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52 Mammotn Altered Regulation Sequences (MARS)
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PaleoHIC complements ancient DNA-sec

Limitations of (a]DNA-Seq allmarks of a successtul Hi-C experiment

What is in the genome?

Need chrom-length de novo assemblies! - Chromosome terrifories

aDNA-Seq relies on modermn reterences Facilitates de novo assembly of whole chromosomes
What is expressed in individual tissues? - Active and inactive chromatin compartments

Need to probe transcriptional activity! Probes Transcriptional activity

How expression patterns arise?
Need to probe genetic regulation!



Paleorhic recovers loop signatures!
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Inactive chromosome X segregates
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PaleoHIC complements ancient DNA-sec

Limitations of (a]DNA-Seq allmarks of a successtul Hi-C experiment

What is in the genome?

Need chrom-length de novo assemblies! - Chromosome terrifories

aDNA-Seq relies on modermn reterences Facilitates de novo assembly of whole chromosomes
What is expressed in individual tissues? - Active and inactive chromatin compartments

Need to probe transcriptional activity! Probes Transcriptional activity
How expression patterns arise? - Chromatin Loops

Need to probe genetic regulation! Reveals regulation of individual genes

- Barr body of the inactive X
Reflects chromosome-scale dosage compensation



How is this possible?
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The “chromoglass” hypothesis
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THREE-DIMENSIONAL GENOME
ARCHITECTURE PERSISTS

IN A 52,000-YEAR-OLD WOOLLY

MAMMOTH SKIN SAMPLE
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Take home messages:

e Hi-C was done in a 52,000-year-old well conserved sample.
e Chromosome fossils also enable to assemble the entire genome of extinct species.

e Chromosome fossils help to interpret how the genomes of those species were
organized in space as well as its functional activity.

e Key mammoth genes associated with hair follicle development were active in
mammoth compared to modern elephants.

e Specitic loop inferactions in the genome regulating gene expression were also
visible and conserved in the mammoth sample.

e Chromoglass (a glasslikestate of the chromosomes) allowed the genome structure
to be physically conserved over such long period of time.

Mammoth foot

Photo credit: Love Dalér https://tinyurl.com/MammothPaper
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